Exercise 1: [Finite volumes]

Consider a single-phase flow in the porous medium domain \(\Omega = \Omega \cup \partial \Omega = [0, 1] \times [0, 1] \):

\[
S_s \frac{\partial p(x,t)}{\partial t} - \nabla \cdot \left(\frac{K}{\mu} \nabla p(x,t) \right) = f(x,t), \quad (x,t) \in \Omega \times (0,T],
\]

\[
p(x,t) = p_D, \quad x \in \Gamma_D, \quad -K \nabla p(x,t) \cdot n = v_N, \quad x \in \Gamma_N, \quad t \in (0,T]
\]

where \(S_s \) is the mass storativity coefficient, \(p \) is the fluid pressure, \(K \) is the intrinsic permeability tensor, \(\mu \) is the fluid viscosity, and \(n \) is the unit outward normal vector at the boundary \(\partial \Omega = \Gamma_D \cup \Gamma_N \) with \(\Gamma_D \cap \Gamma_N = \emptyset \).

a) Develop an implicit second-order in space cell-centered finite volume scheme for problem (1)-(3).

b) Construct the matrix \(A \) and the right-hand side \(b \) of the discrete system of equations \(A_p^{n+1} = b \) for the grid steps \(h_x = 0.25, h_y = 0.5, \Delta t = 0.01 \), the parameters \(S_s = 0.01 \) and \(\mu = 0.01 \), the source term \(f(x,y) = x + y \), the Dirichlet and Neumann boundary conditions \(p_D(x,y) = 1 \), and \(v_N(x,y) = 0 \). The permeability tensor \(K(x,y) \) is isotropic and depicted below.

![Permeability Tensor Diagram]

\[
K_1 = \begin{pmatrix} 10^{-4} & 0 \\ 0 & 10^{-4} \end{pmatrix}, \quad K_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Exercise 2: [Nonlinear equations]

In the domain \(\Omega \), consider the following nonlinear elliptic equation

\[
- \nabla \cdot \left(K(p) \nabla p \right) = f(x), \quad x \in \Omega.
\]

Develop a finite-volume scheme for the case \(K(p) = \text{diag}(p^2, p) \). How to solve this problem?