Publications

Find publications and preprints authored by people from our working group

Preprints

  1. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
  2. "Knobloch, P., "Kuzmin, D., & "Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations (P. "Knobloch, D. "Kuzmin, & A. "Jha, Eds.).
  3. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
  4. Jha, A. (2024). Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations. https://arxiv.org/pdf/2404.02804.pdf
  5. Knobloch, P., Kuzmin, D., & Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations. https://arxiv.org/pdf/2401.03964.pdf
  6. Cheng, Y., Cancès, E., Ehrlacher, V., Misquitta, A. J., & Stamm, B. (2024). Multi-center decomposition of molecular densities: A numerical perspective.
  7. Knobloch, P., Kuzmin, D., & Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations. https://arxiv.org/pdf/2401.03964.pdf
  8. Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
  9. Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
  10. Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2023). Embedded corrector problems for homogenization in linear elasticity. https://doi.org/10.48550/arXiv.2307.03537
  11. Dusson, G., Garrigue, L., & Stamm, B. (2023). A multipoint perturbation formula for eigenvalue problems. https://doi.org/10.48550/arXiv.2305.08151
  12. Jha, A., & Stamm, B. (2023). Domain decomposition method for Poisson--Boltzmann equations based on Solvent Excluded Surface. https://doi.org/10.48550/arXiv.2309.06862

Publications

  1. 2024

    1. X. Claeys, M. Hassan, and B. Stamm, “Continuity estimates for Riesz potentials on polygonal boundaries,” Partial Differential Equations and Applications, Jun. 2024, doi: 10.1007/s42985-024-00280-4.
    2. E. B. Lindgren, H. Avis, A. Miller, B. Stamm, E. Besley, and A. J. Stace, “The significance of multipole interactions for the stability of regular structures composed from charged particles,” Journal of Colloid and Interface Science, vol. 663, pp. 458–466, Jun. 2024, doi: 10.1016/j.jcis.2024.02.146.
  2. 2023

    1. F. Bamer, F. Ebrahem, B. Markert, and B. Stamm, “Molecular Mechanics of Disordered Solids,” Archives of computational methods in engineering, vol. 30, no. 3, Art. no. 3, 2023, doi: 10.1007/s11831-022-09861-1.
    2. P. Brehmer, M. F. Herbst, S. Wessel, M. Rizzi, and B. Stamm, “Reduced basis surrogates for quantum spin systems based on tensor networks,” Physical Review E, Aug. 2023, doi: 10.1103/PhysRevE.108.025306.
    3. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    4. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, vol. 113, no. 1, Art. no. 1, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    5. A. Jha, M. Nottoli, A. Mikhalev, C. Quan, and B. Stamm, “Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method,” The Journal of Chemical Physics, vol. 158, p. 104105, Feb. 2023, doi: 10.1063/5.0141025.
    6. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, pp. 9720--9726, Oct. 2023, doi: 10.1021/acs.jpclett.3c02098.
    7. G. Dusson, I. M. Sigal, and B. Stamm, “Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of computation, vol. 92, no. 340, Art. no. 340, 2023, doi: 10.1090/mcom/3774.
    8. M. Nottoli et al., “QM/AMOEBA description of properties and dynamics of embedded molecules,” WIREs Computational Molecular Science, vol. 13, no. 6, Art. no. 6, Jun. 2023, doi: 10.1002/wcms.1674.
    9. A. Jha, V. John, and P. Knobloch, “Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations,” SIAM Journal on Scientific Computing, vol. 45, no. 4, Art. no. 4, Aug. 2023, doi: 10.1137/21m1466360.
    10. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, Nov. 2023, doi: 10.1021/acs.jpclett.3c02098.
  3. 2022

    1. B. Stamm and L. Theisen, “A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains,” SIAM Journal on Numerical Analysis, vol. 60, no. 5, Art. no. 5, Sep. 2022, doi: 10.1137/21m1456005.
    2. M. Hassan et al., “Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework,” Journal of chemical theory and computation, vol. 18, no. 10, Art. no. 10, 2022, doi: 10.1021/acs.jctc.2c00008.
    3. M. Nottoli, A. Mikhalev, B. Stamm, and F. Lipparini, “Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library,” The Journal of Physical Chemistry B, vol. 126, no. 43, Art. no. 43, Oct. 2022, doi: 10.1021/acs.jpcb.2c04579.
    4. G. Dusson, I. Sigal, and B. Stamm, “Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of Computation, vol. 92, no. 339, Art. no. 339, Sep. 2022, doi: 10.1090/mcom/3774.
    5. A. Mikhalev, M. Nottoli, and B. Stamm, “Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method,” The Journal of Chemical Physics, vol. 157, no. 11, Art. no. 11, Sep. 2022, doi: 10.1063/5.0104536.
    6. T. Focks, F. Bamer, B. Markert, Z. Wu, and B. Stamm, “Displacement field splitting of defective hexagonal lattices,” Physical Review B, Jul. 2022, doi: 10.1103/PhysRevB.106.014105.
    To the top of the page