Publications

Find publications and preprints authored by people from our working group

Preprints

  1. Cheng, Y. (2024). Relativistic and electron-correlation effects in static dipole polarizabilities for group 11 elements. https://arxiv.org/abs/2410.01493
  2. Cheng, Y., Cancès, E., Ehrlacher, V., Misquitta, A. J., & Stamm, B. (2024). Multi-center decomposition of molecular densities: A numerical perspective. https://arxiv.org/abs/2405.08455
  3. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
  4. Corso, T. C., & Ried, T. (2024). On a variational problem related to the Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities. https://arxiv.org/abs/2403.04347
  5. Corso, T. C., Kemlin, G., Melcher, C., & Stamm, B. (2024). Numerical simulation of the Gross-Pitaevskii equation via vortex tracking. https://arxiv.org/abs/2404.02133
  6. Corso, T. C. (2024). A generalized three lines lemma in Hardy-like spaces. https://arxiv.org/abs/2407.10117
  7. Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). Trace estimates for harmonic functions along circular arcs with applications to domain decomposition on overlapping disks. https://arxiv.org/abs/2401.16344
  8. "Knobloch, P., "Kuzmin, D., & "Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations (P. "Knobloch, D. "Kuzmin, & A. "Jha, Eds.).
  9. Corso, T. C., Weidl, T., & Zeng, Z. (2024). Lieb-Thirring inequalities for the shifted Coulomb Hamiltonian. https://arxiv.org/abs/2409.01291
  10. Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2023). Embedded corrector problems for homogenization in linear elasticity. https://doi.org/10.48550/arXiv.2307.03537
  11. Theisen, L., & Stamm, B. (2023). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. https://doi.org/10.48550/arXiv.2311.08757
  12. Dusson, G., Garrigue, L., & Stamm, B. (2023). A multipoint perturbation formula for eigenvalue problems. https://doi.org/10.48550/arXiv.2305.08151
  13. Jha, A., & Stamm, B. (2023). Domain decomposition method for Poisson--Boltzmann equations based on Solvent Excluded Surface. https://doi.org/10.48550/arXiv.2309.06862

Publications

  1. 2024

    1. X. Claeys, M. Hassan, and B. Stamm, “Continuity estimates for Riesz potentials on polygonal boundaries,” Partial Differential Equations and Applications, Jun. 2024, doi: 10.1007/s42985-024-00280-4.
    2. M. Bondanza, T. Nottoli, M. Nottoli, L. Cupellini, F. Lipparini, and B. Mennucci, “The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics,” The Journal of Chemical Physics, vol. 160, no. 13, Art. no. 13, Apr. 2024, doi: 10.1063/5.0198251.
    3. A. Jha, “Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations,” Applied Mathematics Letters, vol. 157, p. 109192, Jun. 2024, doi: 10.1016/j.aml.2024.109192.
    4. T. Carvalho Corso, M.-S. Dupuy, and G. Friesecke, “The density–density response function in time-dependent density functional theory: Mathematical foundations and pole shifting,” Annales de l’Institut Henri Poincaré C, Analyse non linéaire, May 2024, doi: 10.4171/aihpc/116.
    5. M. Nottoli, M. F. Herbst, A. Mikhalev, A. Jha, F. Lipparini, and B. Stamm, “ddX: Polarizable continuum solvation from small molecules to proteins,” WIREs Computational Molecular Science, vol. 14, no. 4, Art. no. 4, Jul. 2024, doi: 10.1002/wcms.1726.
    6. M. Nottoli, E. Vanich, L. Cupellini, G. Scalmani, C. Pelosi, and F. Lipparini, “Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol,” The Journal of Physical Chemistry Letters, pp. 7992–7999, Jul. 2024, doi: 10.1021/acs.jpclett.4c01550.
    7. P. Knobloch, D. Kuzmin, and A. Jha, “Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations,” Journal of Computational Physics, vol. 518, p. 113305, 2024, doi: 10.1016/j.jcp.2024.113305.
    8. E. B. Lindgren, H. Avis, A. Miller, B. Stamm, E. Besley, and A. J. Stace, “The significance of multipole interactions for the stability of regular structures composed from charged particles,” Journal of Colloid and Interface Science, vol. 663, pp. 458–466, Jun. 2024, doi: 10.1016/j.jcis.2024.02.146.
    9. T. C. Corso and G. Friesecke, “Next-order correction to the Dirac exchange energy of the free electron gas in the thermodynamic limit and generalized gradient approximations,” Journal of Mathematical Physics, vol. 65, no. 8, Art. no. 8, Aug. 2024, doi: 10.1063/5.0152359.
    10. Y. Cheng, “Relativistic and electron-correlation effects in static dipole polarizabilities for main-group elements,” Physical Review A, vol. 110, no. 4, Art. no. 4, Oct. 2024, doi: 10.1103/physreva.110.042805.
    11. T. C. Corso, “A mathematical analysis of the adiabatic Dyson equation from time-dependent density functional theory,” Nonlinearity, vol. 37, no. 6, Art. no. 6, Apr. 2024, doi: 10.1088/1361-6544/ad3a50.
  2. 2023

    1. F. Bamer, F. Ebrahem, B. Markert, and B. Stamm, “Molecular Mechanics of Disordered Solids,” Archives of computational methods in engineering, vol. 30, no. 3, Art. no. 3, 2023, doi: 10.1007/s11831-022-09861-1.
    2. P. Brehmer, M. F. Herbst, S. Wessel, M. Rizzi, and B. Stamm, “Reduced basis surrogates for quantum spin systems based on tensor networks,” Physical Review E, Aug. 2023, doi: 10.1103/PhysRevE.108.025306.
    3. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    4. A. Jha, V. John, and P. Knobloch, “Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations,” SIAM Journal on Scientific Computing, vol. 45, no. 4, Art. no. 4, Aug. 2023, doi: 10.1137/21m1466360.
    5. A. Jha, M. Nottoli, A. Mikhalev, C. Quan, and B. Stamm, “Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method,” The Journal of Chemical Physics, vol. 158, p. 104105, Feb. 2023, doi: 10.1063/5.0141025.
    6. G. Dusson, I. M. Sigal, and B. Stamm, “Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of computation, vol. 92, no. 340, Art. no. 340, 2023, doi: 10.1090/mcom/3774.
    7. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, vol. 113, no. 1, Art. no. 1, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    8. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, pp. 9720--9726, Oct. 2023, doi: 10.1021/acs.jpclett.3c02098.
    9. M. Nottoli et al., “QM/AMOEBA description of properties and dynamics of embedded molecules,” WIREs Computational Molecular Science, vol. 13, no. 6, Art. no. 6, Jun. 2023, doi: 10.1002/wcms.1674.
    10. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, Nov. 2023, doi: 10.1021/acs.jpclett.3c02098.
  3. 2022

    1. B. Stamm and L. Theisen, “A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains,” SIAM Journal on Numerical Analysis, vol. 60, no. 5, Art. no. 5, Sep. 2022, doi: 10.1137/21m1456005.
    2. M. Hassan et al., “Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework,” Journal of chemical theory and computation, vol. 18, no. 10, Art. no. 10, 2022, doi: 10.1021/acs.jctc.2c00008.
    3. M. Nottoli, A. Mikhalev, B. Stamm, and F. Lipparini, “Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library,” The Journal of Physical Chemistry B, vol. 126, no. 43, Art. no. 43, Oct. 2022, doi: 10.1021/acs.jpcb.2c04579.
    4. G. Dusson, I. Sigal, and B. Stamm, “Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of Computation, vol. 92, no. 339, Art. no. 339, Sep. 2022, doi: 10.1090/mcom/3774.
    5. A. Mikhalev, M. Nottoli, and B. Stamm, “Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method,” The Journal of Chemical Physics, vol. 157, no. 11, Art. no. 11, Sep. 2022, doi: 10.1063/5.0104536.
    6. T. Focks, F. Bamer, B. Markert, Z. Wu, and B. Stamm, “Displacement field splitting of defective hexagonal lattices,” Physical Review B, Jul. 2022, doi: 10.1103/PhysRevB.106.014105.

Datasets

  1. Kemlin, G., Carvalho Corso, T., Stamm, B., & Melcher, C. (2024). Replication Data for: “Numerical simulation of the Gross-Pitaevskii equation via vortex tracking.” DaRUS. https://doi.org/10.18419/DARUS-4229
  2. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). Replication Data for: “ddX: Polarizable Continuum Solvation from Small Molecules to Proteins.” DaRUS. https://doi.org/10.18419/DARUS-4030
To the top of the page