Dieses Bild zeigt

Publications

Find publications and preprints authored by people from our working group

  1. 2018

    1. Langer, A. Overlapping domain decomposition methods for total variation denoising Retrieved from http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf.
    2. Langer, A. Locally adaptive total variation for removing mixed Gaussian-impulse noise. International Journal of Computer Mathematics, 19.
    3. Langer, A. Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1.
  2. 2017

    1. Alkämper, M., Klöfkorn, R., & Gaspoz, F. A Weak Compatibility Condition for Newest Vertex Bisection in any Dimension Retrieved from http://arxiv.org/abs/1711.03141.
    2. Hintermüller, Michael, Rautenberg, C. N., Wu, T., & Andreas Langer. Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19.
    3. Alkämper, M., & Langer, A. Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions. Archive of Numerical Software, 5(1), 3--19.
    4. Langer, A. Automated Parameter Selection in the $L^1$-$L^2$-TV Model for Removing Gaussian Plus Impulse Noise. Inverse Problems, 33, 41.
    5. Langer, A. Automated Parameter Selection for Total Variation Minimization in Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268.
    6. Hintermüller, Michael, Langer, A., Rautenberg, C. N., & Wu, T. Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379 Retrieved from http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf.
    7. Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution Retrieved from https://arxiv.org/abs/1610.06814.
    8. Gaspoz, F. D., Morin, P., & Veeser, A. A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, 33(4), 1018--1042.
    9. Alkämper, M., & Klöfkorn, R. Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1-- 11.
  3. 2016

    1. Gaspoz, Fernando D., Heine, C.-J., & Siebert, K. G. Optimal Grading of the Newest Vertex Bisection and H1-Stability of the L2-Projection. IMA Journal of Numerical Analysis, 36(3), 1217--1241.
    2. Alkämper, M., Dedner, A., Klöfkorn, R., & Martin Nolte. The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1), 1--28.
  4. 2015

    1. Hintermüller, Michael, & Langer, A. Non-overlapping domain decomposition methods for dual total variation based image denoising. Journal of Scientific Computing, 62(2), 456--481.
  5. 2014

    1. Hintermüller, Michael, & Langer, A. Surrogate Functional Based Subspace Correction Methods for Image Processing. In Domain Decomposition Methods in Science and Engineering XXI (pp. 829--837). Springer.
    2. Hintermüller, M, & Langer, A. Adaptive Regularization for Parseval Frames in Image Processing. SFB-Report No. 2014-014 Retrieved from http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf.
    3. Gaspoz, Fernando D., & Morin, P. Approximation classes for adaptive higher order finite element approximation. Mathematics of Computation, 83(289), 2127--2160.
    4. Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints. SIAM J. Control Optim., 52(3), 1832--1861. (30 pages).
  6. 2013

    1. Hintermüller, Michael, & Langer, A. Subspace Correction Methods for a Class of Nonsmooth and Nonadditive Convex Variational Problems with Mixed $L^1$/$L^2$ Data-Fidelity in Image Processing. SIAM Journal on Imaging Sciences, 6(4), 2134--2173.
    2. Langer, A., Osher, S., & Schönlieb, C.-B. Bregmanized domain decomposition for image restoration. Journal of Scientific Computing, 54(2), 549--576.
    3. Heine, C.-J., Möller, C. A., Peter, M. A., & Siebert, K. G. Multiscale adaptive simulations of concrete carbonation taking into account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Eds.), C. Hellmich, B. Pichler, & D. Adam, Poromechanics (Vol. V, pp. 1964--1972). ASCE.
  7. 2012

    1. Siebert, K. G. Mathematically Founded Design of Adaptive Finite Element Software. In Multiscale and Adaptivity: Modelling, Numerics and Applications (Vol. 2040, pp. 227--309). Berlin: Springer.
    2. Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Estimators for Control Constrained Optimal Control Problems. In Leugering et al (Ed.), Leugering et al, Constrained Optimiziation and Optimal Control for Partial Differential Equations (Vol. 160, pp. 431--443). Springer.
    3. Fornasier, M., Kim, Y., Langer, A., & Schönlieb, C.-B. Wavelet Decomposition Method for $L_2$/TV-Image Deblurring. SIAM Journal on Imaging Sciences, 5(3), 857--885.
  8. 2011

    1. Kreuzer, C., & Siebert, K. G. Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679--716.
    2. Siebert, K. G. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, 31(3), 947--970.
  9. 2010

    1. Deckelnick, K., Dziuk, G., Elliott, C. M., & Heine, C.-J. An $h$-narrow band finite-element method for elliptic equations on implicit surfaces. IMA J. Numer. Anal., 30(2), 351--376.
    2. Fornasier, M., Langer, A., & Schönlieb, C.-B. A convergent overlapping domain decomposition method for total variation minimization. Numerische Mathematik, 116(4), 645--685.
    3. Kohls, K., Rösch, A., & Siebert, K. G. Analysis of Adaptive Finite Elements for Constrained Optimal Control Problems doi:10.4171/OWR/2010/07.
  10. 2009

    1. Fornasier, M., Langer, A., & Schönlieb, C.-B. Domain decomposition methods for compressed sensing. In Proceedings of the International Conference of SampTA09 Retrieved from http://arxiv.org/abs/0902.0124.
    2. Nochetto, R. H., Siebert, K. G., & Veeser, A. Theory of Adaptive Finite Element Methods: An Introduction. In R. A. DeVore & A. Kunoth (Eds.), R. A. DeVore & A. Kunoth, Multiscale, Nonlinear and Adaptive Approximation (pp. 409--542). Springer.
    3. Gaspoz, Fernando D., & Morin, P. Convergence rates for adaptive finite elements. IMA Journal on Numerical Analysis, 29(4), 917--936.
  11. 2008

    1. Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method. SIAM Journal on Numerical Analysis, 46(5), 2524--2550.
    2. Heine, C.-J. Finite element methods on unfitted meshes. Preprint Fak. f. Math. Phys. Univ. Freiburg, (8).
    3. Antil, H., Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio\textbackslash-chips. In L. et al (Ed.), L. et al, Domain Decomposition Methods in Science and Engineering XVII (Vol. 60, pp. 305--312). Springer.
    4. Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Elements. Mathematical Models and Methods in Applied Science, 18, 707--737.
    5. Köster, D., Kriessl, O., & Siebert, K. G. Design of Finite Element Tools for Coupled Surface and Volume Meshes. Numerical Mathematics: Theory, Methods and Applications, 1(3), 245--274.
  12. 2007

    1. Morin, P., Siebert, K. G., & Veeser, A. Convergence of Finite Elements Adapted for Weaker Norms. In V. Cutello, G. Fotia, & L. Puccio (Eds.), V. Cutello, G. Fotia, & L. Puccio, Applied and Industrial Matematics in Italy - II (Vol. 75, pp. 468--479). Hackensack, NJ: World Sci. Publ.
    2. Ganter, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Numerical Simulation of Piezoelectrically Agitated Surface Acoustic Waves on Microfluidic Biochips. Computing and Visualization in Science, 10(3), 145--161.
    3. Cascón, J. M., Nochetto, R. H., & Siebert, K. G. Design and Convergence of AFEM in $H^div$. Mathematical Models & Methods in Applied Sciences, 17(11), 1849--1881.
    4. Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Element Methods doi:10.4171/OWR/2007/29.
    5. Siebert, K. G., & Veeser, A. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements. SIAM Journal on Optimization, 18(1), 260--289.
    6. Morin, P., Siebert, K. G., & Veeser, A. Basic Convergence Results for Conforming Adaptive Finite Elements. Proceedings in Applied Mathematics and Mechanics, 7(1), 1026001--1026002.
    7. Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Optimal Cardinality of an Adaptive Finite Element Method doi:10.4171/OWR/2007/29.
  13. 2006

    1. Heine, C.-J. Computations of form and stability of rotating drops with finite elements. IMA J. Numer. Anal., 26(4), 723--751.
    2. Nochetto, R. H., Schmidt, A., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations. Numerische Mathematik, 104(4), 515--538.
  14. 2005

    1. Schmidt, A., & Siebert, K. G. Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA. (B. T.J., M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, & T. Schlick, Eds., B. T.J., M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, & T. Schlick)Lecture Notes in Computational Science and Engineering (Vol. 42). Berlin: Springer doi:10.1007/b138692.
    2. Nochetto, R. H., Siebert, K. G., & Veeser, A. Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems. SIAM Journal on Numerical Analysis, 42(5), 2118--2135.
    3. Siebert, K. G., & Veeser, A. Convergence of the Equidistribution Strategy doi:10.4171/OWR/2005/37.
  15. 2004

    1. Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones. ZAMM Journal of Applied Mathematics and Mechanics, 84(9), 632--646.
    2. Heine, C.-J. Isoparametric finite element approximation of curvature on hypersurfaces. Preprint Fak. f. Math. Phys. Univ. Freiburg, (26).
  16. 2003

    1. Heine, C.-J. Computations of form and stability of rotating drops with finite elements.
    2. Dörfler, W., & Siebert, K. G. An Adaptive Finite Element Method for Minimal Surfaces. In H. K. S. Hildebrandt (Ed.), H. K. S. Hildebrandt, Geometric Analysis and Nonlinear Partial Differential Equations (pp. 146--175). Springer.
    3. Boschert, S., Schmidt, A., Siebert, K. G., Bänsch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method.
    4. Haasdonk, B., Ohlberger, M., Rumpf, M., Schmidt, A., & Siebert, K. G. Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations. Computing, 70(3), 181--204.
    5. Nochetto, R. H., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Control for Elliptic Obstacle Problems. Numerische Mathematik, 95(1), 163--195.
    6. Morin, P., Nochetto, R. H., & Siebert, K. G. Local Problems on Stars: A Posteriori Error Estimators, Convergence, and Performance. Mathematics of Computation, 72(243), 1067--1097.
  17. 2002

    1. Morin, P., Nochetto, R. H., & Siebert, K. G. Convergence of Adaptive Finite Element Methods. SIAM Review, 44(4), 631--658.
    2. Lin, K.-M., Boschert, S., Dold, P., Benz, K. W., Kriessl, O., Schmidt, A., … Dziuk, G. Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te. Journal of Crystal Growth, 237239, 1736--1740.
  18. 2001

    1. Schmidt, A., & Siebert, K. G. \textbackslashtextsfALBERT — Software for Scientific Computations and Applications. Acta Mathematica Universitatis Comenianae, New Ser., 70(1), 105--122.
  19. 2000

    1. Schmidt, A., & Siebert, K. G. A Posteriori Estimators for the $h$-$p$ Version of the Finite Element Method in 1d. Applied Numerical Mathematics, 35(1), 43--66.
    2. Boschert, S., Schmidt, A., & Siebert, K. G. Numerical Simulation of Crystal Growth by the Vertical Bridgman Method. In J. S. Szmyd & K. Suzuki (Eds.), J. S. Szmyd & K. Suzuki, Modelling of Transport Phenomena in Crystal Growth (Vol. 6, pp. 315--330). WIT Press.
    3. Deckelnick, Klaus, & Siebert, K. G. $W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle Problems. IMA Journal of Numerical Analysis, 20(3), 481--498.
    4. Morin, P., Nochetto, R. H., & Siebert, K. G. Data Oscillation and Convergence of Adaptive FEM. SIAM Journal on Numerical Analysis, 38(2), 466--488.
  20. 1999

    1. Schmidt, A., & Siebert, K. G. Abstract Data Structures for a Finite Element Package: Design Principles of ALBERT. Journal of Applied Mathematics and Mechanics, 79(1), 49--52.
  21. 1998

    1. Schmidt, A., & Siebert, K. G. Concepts of the Finite Element Toolbox ALBERT.
    2. Boschert, S., Kaiser, T., Schmidt, A., Siebert, K. G., Benz, K.-W., & Dziuk, G. Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical Bridgman Technique. In S. N. Atluri & P. E. O’Donoghue (Eds.), S. N. Atluri & P. E. O’Donoghue, Modeling and Simulation Based Engineering. Tech Science Press Retrieved from http://www.techscience.com/books/msbe_hc_rm.html.
    3. Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.
  22. 1996

    1. Rumpf, M., Schmidt, A., & Siebert, K. G. Functions Defining Arbitrary Meshes — A Flexible Interface Between Numerical Data and Visualization Routines. Computer Graphics Forum, 15(2), 129--141.
    2. Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement. Numerische Mathematik, 73(3), 373--398.
    3. Schmidt, A., & Siebert, K. G. Numerical Aspects of Parabolic Free Boundary Problems - Adaptive Finite Element Methods.
  23. 1995

    1. Bänsch, E., & Siebert, K. G. A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques.
    2. Rumpf, M., Schmidt, A., & Siebert, K. G. On a Unified Visualization Approach for Data from Advanced Numerical Methods. In P. Z. R. Scateni, J. Van Wijk (Ed.), P. Z. R. Scateni, J. Van Wijk, Visualization in Scientific Computing ’95 (pp. 35--44). Springer.
  24. 1993

    1. Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement.
    2. Siebert, K. G. Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure. IMPACT of Computing in Science and Engineering, 5(4), 271--284.
  25. 1990

    1. Siebert, K. G. Ein Finite-Elemente-Verfahren zur Lösung der inkompressiblen Euler-Gleichungen auf der Sphäre mit der Stromlinien-Diffusions-Methode.