MOR Seminar

SimTech Seminar on Model Reduction and Data Techniques for Surrogate Modelling




Thursday, 14:00, PWR 5a, 0.015 (SimTech-Seminar room)


ITM: Jun.-Prof. Dr. Jörg Fehr
IAM (CE): Dr. Felix Fritzen
IANS: Prof. Dr. Bernard Haasdonk


SimTech-PhD students, in particular members of Project Network 3, General interested audience in MOR, Surrogate Modelling, Control and Real-time Simulation from academia as well as industry.


Since 2009, this seminar represents a general platform for talks and exchange in the field of surrogate modelling, in particular Model Order Reduction (MOR) as well as novel data-based techniques in simulation science. Both methodological as well as application oriented presentations highlight the various aspects and the relevance of surrogate modelling in mathematics, technical mechanics, material science, control theory and other fields. We aim both at university members, as well as external persons from science and industry. The seminar is organized by three institutes and represents an activity of the SimTech Project Network 3 on "Dynamical Systems: Model Reduction, Control and Optimization".

The presentations are announced some days in advance via the mor-seminar mailing list of the University of Stuttgart.In case of interest to join this mailing list, please contact the organizers.

Presentations SS 2018


"Space-Time Model Order Reduction for nonlinear path-dependent long-term and cyclic processes"

"Efficient Large Strain Homogenization: Reduced Bases and High-dimensional Interpolation"

"Nonlinear model order reduction for explicit dynamics"

"The Reduced Basis Method for Parameter Functions and Application in Quantum Mechanics"

Presentations WS 2017/2018


"Using Feedthrough to avoid unphysical frequencies in reduced systems"

Abstract: Almost all linear model order reduction schemes for mechanical systems achieve static correctness or local precision by adding static mode shapes to the reduction basis. Since this basis is used to project mass and stiffness matrix, these static mode shape develop a entirely unphysical frequency in the reduced system which may cause serious problems if these frequencies are excited. Instead of achieving static correction by using static correction modes, a simple addition to the spectral sum is proposed. This approach has several advantages: The number of degrees of freedom is further reduced, unphysical dynamics are  eliminated, the reduction is still statically correct and the numerical  efficiency increases considerably. The potential and advantages of the approach will be discussed and demonstrated for numerical test examples.

"Greedy algorithms for optimal measurements selection in state estimation using reduced models"

Abstract: In this talk, we will talk about recent techniques developed to estimate the state of a physical system using sensor measurements and reduced models. After giving a short overview on the methodology and the approximation results, we will explain how we can use the methodology in order to select the sensors to place in the physical system in an optimal way. If time permits, we will also discuss the challenges posed when the the sensor measurements are no longer exact but polluted by noise. This is a work in collaboration with P. Binev, A. Cohen and J. Nichols.

"Automatic derivation of material laws for simulating structural components"

Abstract: In our talk we will present a novel approach to automatically derive material laws by model order reduction methods (MOR) for the component simulation of fiber reinforced plastic (FRP) materials, which is based on the output of
an injection or compression moulding simulation.

"Structure Preserving Model Reduction for Linear Elasticity"

Presentations SS 2017


"Structure-Preserving Model-Reduction"

Abstract: Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, many challenges remain to secure the flexibility, robustness, and efficiency needed for general large-scale applications, in particular for nonlinear and/or time-dependent problems. In this talk, we present a greedy approach for the construction of a reduced system that preserves the geometric structure of Hamiltonian systems. Preserving the Hamiltonian structure ensures the stability of the reduced system over long-time integration. The performance of the approach is demonstrated for both ODEs and PDEs. We then discuss how the method can be extended to preserve the symmetries and intrinsic structures of dissipative problems through the notion of port-Hamiltonian systems.

 "Controlling of the model reduction error in FE2 analysis of transient heat flow"

 "Variational Inertia Scaling for Explicit Dynamics"

"Kernel Methods for Nonlinear Control and Random Dynamical Systems"

Presentations WS 2016/2017


"Error Controlled Nonlinear Model Reduction Techniques for Crash Simulations"

"A Newton-Euler approach to modelling and control of flexible manipulators"

"Homogenization of viscoplastic composites based on the complementary TFA"

14:15, PWR 5a, 0.015
Prof. Sonia Marfia (University of Cassino and Southern Lazio)

"A nonuniform TFA homogenization technique based on piecewise interpolation functions of the inelastic field"

"Kernel Methods for Accelerating Implicit Integrators"

Presentations SS 2016


"Reduced Basis Approximation of the time-discrete Algebraic Riccati Equation"

"Robust optimization of permanent magnet synchronous machines using model order reduction for the efficient computation of local and global sensitivities"

"Efficient finite element simulation for cyclic loads with a viscoelastic-viscoplastic-damage material model"

"Nonlinear modes and their suitability for model order reduction"

"Application of model order reduction techniques to the lubricated contact of elastic bodies"


Dieses Bild zeigt Haasdonk
Prof. Dr.

Bernard Haasdonk

Head of Group, Dean of Studies (Studiendekan Lehramt)