Publications

List of publications of the Chair of Applied Mathematics.

  1. 2020

    1. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor,” Complex Variables and Elliptic Equations, vol. 65, no. 1, pp. 109–140, 2020.
  2. 2019

    1. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically Flat Domains,” Comput Geosci, no. 23, pp. 285–303, 2019.
    2. A. Armiti-Juber and C. Rohde, “Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media,” Journal of Mathematical Analysis and Applications, vol. 477, no. 1, pp. 592–612, 2019.
    3. J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A High-Order Stochastic Galerkin Code for the Compressible Euler and Navier-Stokes Equations,” submitted to Computers and Fluids, 2019.
    4. E. Eggenweiler and I. Rybak, “Unsuitability of the Beavers-Joesph interface condition for filtration problems,” J. Fluid Mech. (submitted), 2019.
    5. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” accepted for publication in BIT Numerical Mathematics, 2019.
    6. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” accepted for publication in Proceedings of HYP2018, 2019.
    7. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.,” IMA J. Numer. Anal., 2019.
    8. M. Kohr and W. L. Wendland, “Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach,” Journal de Mathématiques Pures et Appliquées, no. 131, pp. 17–63, 2019.
    9. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem,” in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday, S. Rogosin and A. O. Celebi, Eds. Cham: Springer International Publishing, 2019, pp. 237--260.
    10. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows,” J Theor Comput Acoust, vol. 27, no. 1, 2019.
    11. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario,” Comput Geosci, vol. 2, no. 23, pp. 339–354, 2019.
    12. J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-Aware Neural Networks for Riemann Problems,” 2019.
    13. C. T. Miller, W. G. Gray, C. E. Kees, I. V. Rybak, and B. J. Shepherd, “Modeling sediment transport in three-phase surface water systems,” J. Hydraul. Res., 2019.
    14. L. Ostrowski and C. Rohde, “A Phase Field Approach to Compressible Droplet Impingement,” accepted for publication, 2019.
    15. L. Ostrowski and C. Rohde, “Compressible multi-component flow in porous media with Maxwell-Stefan diffusion,” 2019.
    16. C. Rohde and L. von Wolff, “Homogenization of Non-Local Navier-Stokes-Korteweg Equations for Compressible Liquid-Vapour Flow in Porous Media,” 2019.
    17. I. Rybak, C. Schwarzmeier, E. Eggenweiler, and U. Rüde, “Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models,” Comput. Geosci. (submitted), 2019.
    18. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, 2019, pp. 603–614.
    19. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow,” Phys Fluids, no. 31, p. 012110, 2019.
  3. 2018

    1. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo Methods for Uncertainty Quantification of Compressible Flows,” 2018.
    2. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” in Springer Proc. Math. Stat., Cham, 2018, pp. 309--322.
    3. J. Dürrwächter, T. Kuhn, F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations,” Journal of Computational and Applied Mathematics, p. 112602, 2018.
    4. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018.
    5. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018.
    6. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 147–175, 2018.
    7. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation.,” Numer. Math., vol. 139, no. 4, pp. 867--912, 2018.
    8. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” Math. Nachr., no. 291, pp. 55–85, 2018.
    9. G. C. Hsiao, O. Steinbach, and W. L. Wendland, “Boundary Element Methods: Foundation and Error Analysis,” vol. Encyclopedia of Computational Mechanics Second Edition, p. 62, 2018.
    10. M. Kohr and W. L. Wendland, “Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces,” Journal of Mathematical Fluid Mechanics, vol. 4, no. 20, pp. 1921–1965, 2018.
    11. M. Kohr and W. L. Wendland, “Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds,” Calculus of Variations and Partial Differential Equations, no. 57:165, 2018.
    12. J. Magiera and C. Rohde, “A Particle-Based Multiscale Solver for Compressible Liquid--Vapor Flow,” in Springer Proc. Math. Stat., Cham, 2018, pp. 291--304.
    13. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number,” International Journal of Multiphase Flow, vol. 107, pp. 82–103, 2018.
    14. C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase  Flows with Surface Tension,” Z. Angew. Math. Phys., p. 69:76, 2018.
    15. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181.
    16. I. Rybak and S. Metzger, “A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media,” Math. Models Methods Appl. Sci. (submitted), 2018.
    17. Da. Seus, I. S. Pop, C. Rohde, K. Mitra, and F. Radu, “A Linear Domain Decompostition Method for Partially Saturated Flow in Porous Media,” Comupt Method Appl M, vol. 333, pp. 331–355, 2018.
    18. V. Sharanyaa, G. P. R. Sekhara, and C. Rohde, “The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration,” International Journal of Multiphase Flow, no. 107, pp. 82–103, 2018.
  4. 2017

    1. C. Chalons, C. Rohde, and M. Wiebe, “A Finite Volume Method for Undercompressive Shock Waves in Two Space  Dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, pp. 1987–2015, 2017.
    2. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase    transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017.
    3. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints: Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 2017, pp. 185--196.
    4. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, 2017, vol. 199.
    5. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, pp. 1528–1546, 2017.
    6. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection  dominated problems,” Math. Models Methods Appl. Sci. (M3AS), vol. 27, no. 13, pp. 2381-- 2423, 2017.
    7. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics,” Arch. Ration. Mech. Anal., vol. 223, pp. 1427-- 1484, 2017.
    8. R. Gutt, M. Kohr, S. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains,” Math. Meth. Appl. Sci., vol. 18, pp. 7780–7829, 2017.
    9. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz energy problems for strongly singular kernels,” Math. Nachr., 2017.
    10. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle,” Monatshefte für Mathematik, vol. 483, pp. 269–302, 2017.
    11. M. Kohr, S. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani,” J of Mathematical Fluid Mechanics, vol. 19, pp. 203–238, 2017.
    12. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with Elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, pp. 989–1016, 2017.
    13. M. Köppel, I. Kröker, and C. Rohde, “Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media,” Comput. Geosci., vol. 21, pp. 807–832, 2017.
  5. 2016

    1. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016.
    2. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016.
    3. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, pp. 3523–3549, 2016.
    4. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions,” Appl. Math. Comput., vol. 272, Part 2, pp. 309–335, 2016.
    5. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016.
    6. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, pp. 235--236, 2016.
    7. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, pp. 1685-- 1714, 2016.
    8. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, pp. 359--372, 2016.
    9. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016.
    10. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016.
    11. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds,” Math. Nachr, vol. 289, pp. 471–484, 2016.
    12. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid solution of minimal Riesz energy problems,” Numer. Methods Partial Diff. Equ., vol. 32, pp. 1535–1552, 2016.
    13. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, pp. 5409--5426, 2016.
    14. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz  interface in R� for the Stokes and Darcy-Forchheimer-Brinkman PED  systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
    15. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
    16. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
    17. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
    18. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, pp. 749–750, 2016.
    19. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, no. 2, pp. 425–455, 2016.
    20. L. Ostrowski, B. Ziegler, and G. Rauhut, “Tensor decomposition in potential energy surface representations,” The Journal of Chemical Physics, vol. 145, no. 10, p. 104103, 2016.
    21. M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016.
    22. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621.
    23. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, p. 101, 2016.
  6. 2015

    1. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015.
    2. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, pp. 802--832, 2015.
    3. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence  of a non-local to a local model,” J. Differential Equations, vol. 258, pp. 3589–3606, 2015.
    4. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015.
    5. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains,” Math. Meth. Appl. Sciences, vol. 38, pp. 3615–3628, 2015.
    6. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015.
    7. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    8. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, pp. 269--284, 2015.
    9. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    10. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition,” J. Numer. Methods Fluids, vol. 79, pp. 615–639, 2015.
    11. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, pp. 615–639, 2015.
    12. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015.
    13. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous  medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299--309, 2015.
    14. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015.
  7. 2014

    1. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, pp. 827–861, 2014.
    2. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 873–881.
    3. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, pp. 793–817, 2014.
    4. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, pp. 554–579, 2014.
    5. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014.
    6. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014.
    7. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014.
    8. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, pp. 559--559, 2014.
    9. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, pp. 319–344, 2014.
    10. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” in ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems, 2014.
    11. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, pp. 241–281, 2014.
    12. J. Giesselmann and T. M�ller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    13. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606.
    14. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014.
    15. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    16. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, pp. 3518--3539, 2014.
    17. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on C^k-1,1 manifolds,” Math. Nachr., vol. 287, pp. 48–69, 2014.
    18. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014.
    19. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    20. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds. Cambridge Sci. Publ., 2014, pp. 111–124.
    21. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711.
    22. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014.
    23. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
  8. 2013

    1. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” in ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems, 2013.
    2. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013.
    3. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013.
    4. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364.
    5. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in S�minaire Laurent Schwartz � EDP et applications, 2013.
    6. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013.
    7. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers.” 2013.
    8. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, pp. 441--469, 2013.
    9. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, pp. 2145--2171, 2013.
    10. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” 2013.
  9. 2012

    1. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kr�nkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77.
    2. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98.
    3. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1753--A1776, 2012.
    4. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” J. Differential Equations, vol. 253, no. 5, pp. 1399--1421, 2012.
    5. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012.
    6. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 406--414.
    7. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
    8. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
    9. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” J. Math. Anal. Appl., vol. 393, no. 2, pp. 397--412, 2012.
    10. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models,” Adv. Water Res., vol. 42, pp. 71--90, 2012.
    11. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface  tension,” ESAIM: Proc., vol. 38, pp. 387–408, 2012.
    12. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    13. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, p. , 2012.
    14. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    15. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, pp. 251--275, 2012.
    16. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, pp. 441--456, 2012.
    17. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, pp. 564--573, 2012.
    18. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” Math. Biosci. Eng., vol. 9, pp. 663–683, 2012.
  10. 2011

    1. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
    2. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” Universit�t Stuttgart, 2011.
    3. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, pp. 999--1018, 2011.
    4. T. A. Mel’nyk, Iu. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, pp. 758--775, 2011.
    5. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011.
    6. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” in 19th Intern. Conf. on Computer Methods in Mechanics, Warsaw, 2011.
    7. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” SRC SimTech, 2011.
  11. 2010

    1. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, pp. 661--674, 2010.
    2. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337.
    3. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Int. J. Numer. Anal. Model., vol. 7, no. 3, pp. 520--534, 2010.
  12. 2009

    1. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast  of the conductivity,” SIAM J. Sci. Comp., vol. 31, no. 4, pp. 2568--2586, 2009.
    2. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, pp. 929–955, 2009.
    3. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws,” J. Differential Equations, vol. 247, no. 12, pp. 3338--3356, 2009.
    4. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Institute for Analysis and Computational Mathematics, Otto-von-Guericke  University Magdeburg, 2009.
  13. 2008

    1. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
    2. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase  model,” Indiana Univ. Math. J., vol. 57, no. 2, pp. 717--755, 2008.
    3. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation  Laws on Riemannian Manifolds,” in Finite Volumes for Complex Applications 5, 2008.
    4. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase  transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008.
    5. G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. Berlin: Springer-Verlag, 2008, p. xx+618.
    6. O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” Comput. Methods Appl. Math., vol. 8, no. 1, pp. 60--76, 2008.
    7. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899.
    8. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, pp. 2151--2174, 2008.
  14. 2007

    1. R. Ewing, O. Iliev, R. Lazarov, and I. Rybak, “On two-level preconditioners for flow in porous media,” Fraunhofer ITWM, 121, 2007.
    2. O. Iliev, I. Rybak, and J. Willems., “On upscaling heat conductivity for a class of industrial problems,” Fraunhofer ITWM, 120, 2007.
    3. O. Iliev and I. Rybak, “On approximation property of multipoint flux approximation method,” Fraunhofer ITWM, 119, 2007.
    4. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, pp. 1089--1123, 2007.
    5. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, pp. 91--109, 2007.
    6. H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” Applied Physics Letters, vol. 91, no. 23, p. , 2007.
  15. 2006

    1. D. Diehl and C. Rohde, “On the structure of MHD shock waves in diffusive-dispersive media,” J. Math. Fluid Mech., vol. 8, no. 1, pp. 120--145, 2006.
    2. J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” in Hyperbolic problems: theory, numerics and applications. I, Yokohama Publ., Yokohama, 2006, pp. 147--154.
    3. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, pp. 2423--2449 (electronic), 2006.
    4. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, pp. 1450--1463, 2006.
  16. 2005

    1. F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems  in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, vol. 7, Eur. Math. Soc., Zürich, 2005, pp. 239--270.
    2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation magnetohydrodynamics: analysis for model problems and efficient  3d-simulations for the full system,” in Analysis and numerics for conservation laws, Berlin: Springer, 2005, pp. 163--202.
    3. M. J. Gander and C. Rohde, “Overlapping Schwarz waveform relaxation for convection-dominated  nonlinear conservation laws,” SIAM J. Sci. Comput., vol. 27, no. 2, pp. 415--439, 2005.
    4. M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, vol. 40, Berlin: Springer, 2005, pp. 251--258.
    5. O. Iliev and I. Rybak, “On numerical upscaling of flow in anisotropic porous media,” in Mathematisches Forschungsinstitut Oberwolfach Report No. 20, 2005, pp. 1162–1165.
    6. V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space  dimensions: a priori and a posteriori error estimates,” Numer. Methods Partial Differential Equations, vol. 21, no. 1, pp. 104--131, 2005.
    7. C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion  terms,” SIAM J. Math. Anal., vol. 37, no. 1, pp. 103--129 (electronic), 2005.
    8. C. Rohde, “On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour  phase transitions,” ZAMM Z. Angew. Math. Mech., vol. 85, no. 12, pp. 839--857, 2005.
    9. C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity  system with non-local energy,” Interfaces Free Bound., vol. 7, no. 1, pp. 107--129, 2005.
  17. 2004

    1. A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg, “A parallel, load-balanced MHD code on locally-adapted unstructured  grids in 3d,” Comput. Vis. Sci., vol. 7, no. 2, pp. 79--96, 2004.
    2. A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential  equations,” Numer. Math., vol. 97, no. 3, pp. 441--471, 2004.
    3. P. Matus and I. Rybak, “Difference schemes for elliptic equations with mixed derivatives,” Comput. Methods Appl. Math., vol. 4, no. 4, pp. 494--505, 2004.
    4. P. Matus, R. Melnik, L. Wang, and I. Rybak, “Applications of fully conservative schemes in nonlinear thermoelasticity:  modelling shape memory materials,” Math. Comp. Simulation, vol. 65, pp. 489--509, 2004.
    5. C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational  scheme,” J. Hyperbolic Differ. Equ., vol. 1, no. 4, pp. 747--768, 2004.
    6. I. Rybak, “Monotone and conservative difference schemes for elliptic equations  with mixed derivatives,” Math. Model. Anal., vol. 9, no. 2, pp. 169--178, 2004.
    7. I. Rybak, “Computational dynamics of shape memory alloys,” in Proc. of Lobachevski Mathematical Center, 2004, pp. 209--218.
    8. I. Rybak, “Monotone and conservative difference schemes for nonlinear nonstationary  equations and equations with mixed derivatives,” Institute of Mathematics of the National Academy of Sciences of Belarus, 2004.
    9. I. Rybak, “Monotone difference schemes for equations with mixed derivatives  in the case of boundary conditions of the third type,” Proceedings of the National Academy of Sciences of Belarus, Series  of Physical-Mathematical Sciences, vol. 40, no. 1, pp. 37--42, 2004.
    10. I. Rybak, “Monotone and conservative difference schemes for equations with mixed  derivatives,” Dokl. Akad. Navuk Belarusi, vol. 48, no. 1, pp. 45--48, 2004.
  18. 2003

    1. A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods  of higher order for systems of conservation laws in multiple space  dimensions,” in Geometric analysis and nonlinear partial differential equations, Berlin: Springer, 2003, pp. 573--589.
    2. A. Dedner, C. Rohde, and M. Wesenberg, “Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 499--508.
    3. A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
    4. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,” Phys. D, vol. 185, no. 2, pp. 78--96, 2003.
    5. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
    6. P. Matus and I. Rybak, “Monotone difference schemes for nonlinear parabolic equations,” Differential Equations, vol. 39, no. 7, pp. 1013--1022, 2003.
    7. P. Matus, R. Melnik, and I. Rybak, “Fully conservative difference schemes for nonlinear models describing  dynamics of materials with shape memory,” Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003., vol. 47, no. 1, pp. 15--17, 2003.
    8. R. Melnik, L. Wang, P. Matus, and I. Rybak, “Computational aspects of conservative difference schemes for shape  memory alloys applications,” Lecture Notes in Comput. Sci., vol. 2668, pp. 791--800, 2003.
    9. C. Rohde and W. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD  fluids with radiation,” Appl. Math., vol. 48, no. 4, pp. 257--277, 2003.
    10. I. Rybak, “Difference schemes for nonlinear models describing dynamic behaviour  of shape memory alloys,” in Condensed State Physics: XI Republican Scientific Conference, Grodno,  Belarus, April 23�25, 2003, 2003, pp. 200–203.
  19. 2002

    1. A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 165--172.
    2. H. Freistühler and C. Rohde, “Numerical computation of viscous profiles for hyperbolic conservation  laws,” Math. Comp., vol. 71, no. 239, pp. 1021--1042 (electronic), 2002.
    3. P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal., vol. 40, no. 5, pp. 1968--1992 (electronic), 2002.
    4. M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection  dominated parabolic systems,” IMA J. Numer. Anal., vol. 22, no. 2, pp. 253--280, 2002.
  20. 2001

    1. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods (Oxford, 1999), Kluwer/Plenum, New York, 2001, pp. 209--216.
    2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 277--286.
    3. H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and  non-classical shock waves,” in Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 287--309, 814.
    4. H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 399--408.
    5. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    6. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    7. T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive  movement,” J. Math. Anal. Appl., vol. 260, no. 1, pp. 173--199, 2001.
    8. P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions  to hyperbolic systems of conservation laws,” Indiana Univ. Math. J., vol. 50, no. 4, pp. 1707--1743, 2001.
  21. 2000

    1. P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” SIAM J. Numer. Anal., vol. 37, no. 6, pp. 2023--2060 (electronic), 2000.
  22. 1999

    1. A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II, Hermes Sci. Publ., Paris, 1999, pp. 491--498.
    2. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998), vol. 129, Basel: Birkhäuser, 1999, pp. 333--342.
  23. 1998

    1. C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems  of conservation laws in 2D,” Numer. Math., vol. 81, no. 1, pp. 85--123, 1998.
    2. C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, pp. 470--499, 1998.
To the top of the page