Institute of Applied Analysis and Numerical Simulation

Research

List of publications.

Research highlights, all publications, and successes of the individual groups are available on the group pages.

Selected Publications

  1. 2021

    1. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” J. Nonlinear Sci., no. 31, Art. no. 31, 2021, doi: doi.org/10.1007/s00332-021-09755-9.
    2. M. Altenbernd, N.-A. Dreier, C. Engwer, and D. Göddeke, “Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers,” in High Performance Computing in Science and Engineering -- HPCSE 2019, 2021, vol. 12456, pp. 17--38. doi: 10.1007/978-3-030-67077-1_2.
    3. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “Uncertainty Quantification in High Performance Computational Fluid Dynamics,” in High Performance Computing in Science and Engineering ’19, Cham, 2021, pp. 355--371.
    4. T. Benacchio et al., “Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction,” The International Journal of High Performance Computing Applications, vol. 35, no. 4, Art. no. 4, 2021, doi: 10.1177/1094342021990433.
    5. P. Buchfink and B. Haasdonk, “Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem,” in Numerical Mathematics and Advanced Applications ENUMATH 2019, 2021, vol. 139. doi: 10.1007/978-3-030-55874-1.
    6. J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations,” Computers & Fluids, p. 105039, 2021, doi: 10.1016/j.compfluid.2021.105039.
    7. E. Eggenweiler and I. Rybak, “Effective coupling conditions for arbitrary flows in Stokes-Darcy systems,” Multiscale Model. Simul., vol. 19, pp. 731–757, 2021, doi: 10.1137/20M1346638.
    8. E. Eggenweiler, M. Discacciati, and I. Rybak, “Analysis of the Stokes-Darcy problem with generalised interface conditions,” ESAIM Math. Model. Numer. Anal. (submitted), 2021, [Online]. Available: https://arxiv.org/abs/2104.02339
    9. M. Gander, S. Lunowa, and C. Rohde, “Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” 2021. [Online]. Available: http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    10. M. Gander, S. Lunowa, and C. Rohde, “Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations,” 2021. [Online]. Available: http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    11. J. Giesselmann, F. Meyer, and C. Rohde, “Error control for statistical solutions of hyperbolic systems of conservation laws,” Calcolo, vol. 58, no. 2, Art. no. 2, 2021, doi: 10.1007/s10092-021-00417-6.
    12. A. Krämer et al., “Multi-physics multi-scale HPC simulations of skeletal muscles,” in High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds. 2021. doi: 10.1007/978-3-030-80602-6_13.
    13. J. Kühnert, D. Göddeke, and M. Herschel, “Provenance-integrated parameter selection and optimization in numerical simulations,” 2021. [Online]. Available: https://www.usenix.org/conference/tapp2021/presentation/kühnert
    14. J. Magiera, “A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow,” in Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), 2021, vol. 41. doi: 10.14760/OWR-2021-41.
    15. J. Magiera and C. Rohde, “Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics,” in submitted to Droplet Dynamics under Extreme Ambient Conditions, K. Schulte, C. Tropea, and B. Weigand, Eds. Springer, 2021.
    16. F. Massa, L. Ostrowski, F. Bassi, and C. Rohde, “An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations,” J. Comput. Phys., p. 110705, 2021, doi: https://doi.org/10.1016/j.jcp.2021.110705.
    17. Y. Miao, C. Rohde, and H. Tang, “Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities.” 2021. [Online]. Available: https://arxiv.org/abs/2105.08607
    18. F. Mohammadi et al., “Uncertainty-aware Validation Benchmarks for Coupling Free Flow and Porous-Medium Flow,” Water Resour. Res. (preprint), 2021, [Online]. Available: https://arxiv.org/abs/2106.13639
    19. M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke, “A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media,” Computer Physics Communications, vol. 267, no. 108059, Art. no. 108059, 2021, doi: 10.1016/j.cpc.2021.108059.
    20. C. Rohde and L. von Wolff, “A Ternary Cahn-Hilliard-Navier-Stokes model for two phase flow with precipitation and dissolution,” Math. Models Methods Appl. Sci., vol. 31, no. 1, Art. no. 1, 2021, doi: 10.1142/S0218202521500019.
    21. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” NoDEA Nonlinear Differential Equations Appl., vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
    22. I. Rybak, C. Schwarzmeier, E. Eggenweiler, and U. Rüde, “Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models,” Comput. Geosci., vol. 25, pp. 621–635, 2021, doi: 10.1007/s10596-020-09994-x.
    23. A. Rörich, T. A. Werthmann, D. Göddeke, and L. Grasedyck, “Bayesian inversion for electromyography using low-rank tensor formats,” Inverse Problems, vol. 37, no. 5, Art. no. 5, 2021, doi: 10.1088/1361-6420/abd85a.
    24. P. Strohbeck, E. Eggenweiler, and I. Rybak, “Determination of the Beavers-Joseph slip coefficient for coupled Stokes/Darcy problems,” Adv. Water Res. (submitted), 2021, [Online]. Available: https://arxiv.org/abs/2106.15556
    25. L. von Wolff, F. Weinhardt, H. Class, J. Hommel, and C. Rohde, “Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling,” Transp. Porous Media, vol. 137, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01560-y.
    26. A. Wagner et al., “Permeability estimation of regular porous structures: a benchmark for comparison of methods,” Transp. Porous Med., vol. 138, pp. 1--23, 2021, doi: 10.1007/s11242-021-01586-2.
  2. 2020

    1. A. Armiti-Juber and C. Rohde, “On the well-posedness of a nonlinear fourth-order extension of Richards’ equation,” J. Math. Anal. Appl., vol. 487, no. 2, Art. no. 2, 2020, doi: https://doi.org/10.1016/j.jmaa.2020.124005.
    2. P. Bastian et al., “Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications,” in Software for Exascale Computing -- SPPEXA 2016--2019, H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel, Eds. Springer, 2020, pp. 225--269. doi: 10.1007/978-3-030-47956-5_9.
    3. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows,” SIAM J. Sci. Comput., vol. 42, no. 4, Art. no. 4, 2020, doi: https://doi.org/10.1137/18M1210575.
    4. I. Berre et al., “Verification benchmarks for single-phase flow in three-dimensional fractured porous media.” 2020.
    5. M. Brehler, M. Schirwon, P. M. Krummrich, and D. Göddeke, “Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 84, p. 105150, 2020, doi: 10.1016/j.cnsns.2019.105150.
    6. P. Buchfink, B. Haasdonk, and S. Rave, “PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems,” in Proceedings of the Conference Algoritmy 2020, 2020, pp. 151--160. [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    7. S. Burbulla and C. Rohde, “A fully conforming finite volume approach to two-phase flow in fractured porous media,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Cham, 2020, pp. 547–555. doi: https://doi.org/10.1007/978-3-030-43651-3_51.
    8. E. Eggenweiler and I. Rybak, “Unsuitability of the Beavers-Joseph interface condition for filtration problems,” J. Fluid Mech., vol. 892, p. A10, 2020, doi: http://dx.doi.org/10.1017/jfm.2020.194.
    9. E. Eggenweiler and I. Rybak, “Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, 2020, vol. 323, pp. 345--353. doi: 10.1007/978-3-030-43651-3_31.
    10. J. T. Gerstenberger, S. Burbulla, and D. Kröner, “Discontinuous Galerkin method for incompressible two-phase flows,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Cham, 2020, pp. 675–683.
    11. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method,” IMA J. Numer. Anal., vol. 40, no. 2, Art. no. 2, 2020, doi: 10.1093/imanum/drz004.
    12. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 449–456. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    13. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” BIT Numerical Mathematics, vol. 60, no. 3, Art. no. 3, 2020, doi: 10.1007/s10543-019-00794-z.
    14. L. Giraud, U. Rüde, and L. Stals, “Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101),” Dagstuhl Reports, vol. 10, no. 3, Art. no. 3, 2020, doi: 10.4230/DagRep.10.3.1.
    15. T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” J. Comput. Phys., vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
    16. T. Koch et al., “DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling,” Computers & Mathematics with Applications, 2020, doi: https://doi.org/10.1016/j.camwa.2020.02.012.
    17. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor,” Complex Variables and Elliptic Equations, vol. 65, no. 1, Art. no. 1, 2020, doi: 10.1080/17476933.2019.1631293.
    18. J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-aware neural networks for Riemann problems,” J. Comput. Phys., vol. 409, no. 109345, Art. no. 109345, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109345.
    19. L. Ostrowski and C. Rohde, “Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion,” Math. Meth. Appl. Sci., vol. 43, no. 7, Art. no. 7, 2020, doi: 10.1002/mma.6185.
    20. L. Ostrowski, F. C. Massa, and C. Rohde, “A phase field approach to compressible droplet impingement,” in Droplet Interactions and Spray Processes, Cham, 2020, pp. 113–126. [Online]. Available: https://doi.org/10.1007/978-3-030-33338-6_9
    21. L. Ostrowski and C. Rohde, “Phase field modelling for compressible droplet impingement,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 586–593. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    22. C. Rohde and L. von Wolff, “Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media,” SIAM J. Math. Anal., vol. 52, no. 6, Art. no. 6, 2020, doi: 10.1137/19M1242434.
    23. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” accepted for publication in J. Dynam. Differential Equations, 2020, [Online]. Available: https://arxiv.org/abs/2001.05754
    24. I. Rybak and S. Metzger, “A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media,” Appl. Math. Comp., vol. 384, 2020, doi: 10.1016/j.amc.2020.125260.
    25. R. Tielen, M. Möller, D. Göddeke, and C. Vuik, “p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113347, 2020, doi: 10.1016/j.cma.2020.113347.
  3. 2019

    1. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains,” Comput. Geosci., vol. 23, no. 2, Art. no. 2, 2019, doi: https://doi.org/10.1007/s10596-018-9756-2.
    2. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Cham, 2019, pp. 889--896.
    3. P. Buchfink, A. Bhatt, and B. Haasdonk, “Symplectic Model Order Reduction with Non-Orthonormal Bases,” Mathematical and Computational Applications, vol. 24, no. 2, Art. no. 2, 2019, doi: 10.3390/mca24020043.
    4. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-Driven Time Parallelism via Forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, Art. no. 3, 2019, doi: 10.1137/18M1174362.
    5. R. M. Colombo, P. G. LeFloch, C. Rohde, and K. Trivisa, “Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics,” Oberwohlfach Rep., no. 16, Art. no. 16, 2019, [Online]. Available: https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    6. A. Denzel, B. Haasdonk, and J. Kästner, “Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search,” J. Phys. Chem. A, vol. 123, no. 44, Art. no. 44, 2019, [Online]. Available: https://doi.org/10.1021/acs.jpca.9b08239
    7. M. Kohr and W. L. Wendland, “Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach,” Journal de Mathématiques Pures et Appliquées, no. 131, Art. no. 131, 2019, doi: https://doi.org/10.1016/j.matpur.2019.04.002.
    8. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem,” in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday, S. Rogosin and A. O. Celebi, Eds. Cham: Springer International Publishing, 2019, pp. 237--260. doi: 10.1007/978-3-030-02650-9_12.
    9. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, 1850044, Art. no. 1, 1850044, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    10. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” Computational Geosciences, vol. 23, no. 2, Art. no. 2, 2019, doi: 10.1007/s10596-018-9785-x.
    11. C. T. Miller, W. G. Gray, C. E. Kees, I. V. Rybak, and B. J. Shepherd, “Modeling sediment transport in three-phase surface water systems,” J. Hydraul. Res., vol. 57, 2019, doi: 10.1080/00221686.2019.1581673.
    12. L. Ostrowski and F. Massa, “An incompressible-compressible approach for droplet impact,” in Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019, 2019, pp. 18–21. doi: 10.6092/DIPSI2019_pp18-21.
    13. G. Santin and B. Haasdonk, “Kernel Methods for Surrogate Modelling,” University of Stuttgart, 2019.
    14. G. Santin, D. Wittwar, and B. Haasdonk, “Sparse approximation of regularized kernel interpolation by greedy algorithms,” 2019.
    15. G. Santin and B. Haasdonk, “Kernel Methods for Surrogate Modeling,” ArXiv 1907.10556, 2019. [Online]. Available: https://arxiv.org/abs/1907.10556
    16. A. Schmidt, D. Wittwar, and B. Haasdonk, “Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods,” Advances in Computational Mathematics, 2019, doi: 10.1007/s10444-019-09730-9.
    17. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, 2019, pp. 603–614. doi: 10.1007/978-3-319-96415-7_55.
    18. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow,” Phys. Fluids, no. 31, 012110, Art. no. 31, 012110, 2019, doi: https://doi.org/10.1063/1.5064694.
    19. T. Wenzel, G. Santin, and B. Haasdonk, “A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.” 2019.
    20. D. Wittwar, G. Santin, and B. Haasdonk, “Part II on matrix valued kernels including analysis,” 2019.
    21. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, Cham, 2019, pp. 113--121.
  4. 2018

    1. B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” 2018.
    2. M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, vol. 32, no. 6, Art. no. 6, 2018, doi: 10.1177/1094342016684006.
    3. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise,” Math. Comput. Simulation, vol. 143, pp. 215--225, 2018, [Online]. Available: https://doi.org/10.1016/j.matcom.2017.03.007
    4. A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS,” RAMSA 2017, New Delhi. 2018.
    5. A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction,” Invited online talk in Department of Mathematics, IIT Roorkee. 2018.
    6. C. P. Bradley et al., “Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems,” Frontiers in Physiology, vol. 9, no. 816, Art. no. 816, 2018, doi: 10.3389/fphys.2018.00816.
    7. M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs,” 2018.
    8. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” 2018.
    9. P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” Diploma thesis, 2018.
    10. S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive  definite kernel functions,” Calcolo, vol. 55, no. 1, Art. no. 1, 2018, doi: 10.1007/s10092-018-0247-6.
    11. C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, and K. Rothermel, “Enabling interactive mobile simulations through distributed reduced models,” Pervasive and Mobile Computing, Elsevier BV, vol. 45, pp. 19--34, 2018, doi: https://doi.org/10.1016/j.pmcj.2018.02.002.
    12. J. Dürrwächter, T. Kuhn, F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations,” Journal of Computational and Applied Mathematics, p. 112602, 2018, doi: https://doi.org/10.1016/j.cam.2019.112602.
    13. C. Engwer, M. Altenbernd, N.-A. Dreier, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application,” 2018.
    14. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018, doi: http://dx.doi.org/10.1016/j.compfluid.2017.03.026.
    15. J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,” 2018.
    16. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem,” Math. Comput. Appl. 2018, vol. 23, no. 1, Art. no. 1, 2018, doi: doi:10.3390/mca23010008.
    17. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018, [Online]. Available: https://arxiv.org/abs/1704.08208
    18. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 147–175, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.025.
    19. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation.,” Numer. Math., vol. 139, no. 4, Art. no. 4, 2018, doi: https://doi.org/10.1007/s00211-018-0954-6.
    20. B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar, “Greedy Kernel Methods for Center Manifold Approximation,” ArXiv 1810.11329, 2018.
    21. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, W. Keiper, A. Milde, and S. Volkwein, Eds. Cham: Springer International Publishing, 2018, pp. 21--45. doi: 10.1007/978-3-319-75319-5_2.
    22. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” Math. Nachr., no. 291, Art. no. 291, 2018, doi: https://doi.org/10.1002/mana.201600024.
    23. G. C. Hsiao, O. Steinbach, and W. L. Wendland, “Boundary Element Methods: Foundation and Error Analysis,” vol. Encyclopedia of Computational Mechanics Second Edition, p. 62, 2018, doi: https://doi.org/10.1002/9781119176817.ecm2007.
    24. M. Kohr and W. L. Wendland, “Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces,” Journal of Mathematical Fluid Mechanics, vol. 4, no. 20, Art. no. 20, 2018, doi: https://doi.org/10.1007/s00021-018-0394-1.
    25. M. Kohr and W. L. Wendland, “Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds,” Calculus of Variations and Partial Differential Equations, p. 57:165, 2018, doi: https://doi.org/10.1007/s00526-018-1426-7.
    26. M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow  in porous media,” (submitted), 2018, [Online]. Available: https://hal.archives-ouvertes.fr/hal-01700663v2
    27. M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures,” (submitted), 2018, [Online]. Available: https://hal.archives-ouvertes.fr/hal-01761591
    28. T. Köppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,” International Journal for Numerical Methods in Biomedical Engineering, vol. 34, no. 8, Art. no. 8, 2018, doi: 10.1002/cnm.3095.
    29. A. Langer, “Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method,” Journal of Imaging, vol. 4, p. 1, 2018, [Online]. Available: http://www.mdpi.com/2313-433X/4/1/12
    30. A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse  noise,” International Journal of Computer Mathematics, p. 19, 2018, [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    31. A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018. [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    32. B. Maboudi Afkham and J. S. Hesthaven, “Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems,” Journal of Scientific Computing, pp. 1–19, 2018, doi: 10.1007/s10915-018-0653-6.
    33. J. Magiera and C. Rohde, “A particle-based multiscale solver for compressible liquid-vapor flow,” Springer Proc. Math. Stat., pp. 291--304, 2018, doi: 10.1007/978-3-319-91548-7_23.
    34. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number,” International Journal of Multiphase Flow, vol. 107, pp. 82–103, 2018, [Online]. Available: http://arxiv.org/abs/1609.03410
    35. C. Rohde and C. Zeiler, “On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension,” Z. Angew. Math. Phys., no. 3, Art. no. 3, 2018, doi: https://doi.org/10.1007/s00033-018-0958-1.
    36. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181. doi: 10.1007/978-3-319-94343-5.
    37. G. Santin, D. Wittwar, and B. Haasdonk, “Greedy regularized kernel interpolation,” University of Stuttgart, ArXiv preprint 1807.09575, 2018.
    38. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” IFAC-PapersOnLine, vol. 51, no. 2, Art. no. 2, 2018, doi: https://doi.org/10.1016/j.ifacol.2018.03.053.
    39. A. Schmidt, D. Wittwar, and B. Haasdonk, “Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods,” University of Stuttgart, SimTech Preprint, 2018.
    40. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 24, no. 1, Art. no. 1, Jan. 2018, doi: 10.1051/cocv/2017011.
    41. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow  in porous media,” Comp. Methods Appl. Mech. Eng., vol. 333, pp. 331--355, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.029.
    42. D. Wittwar, G. Santin, and B. Haasdonk, “Interpolation with uncoupled separable matrix-valued kernels,” ArXiv e-prints, 2018.
    43. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
  5. 2017

    1. M. Alkämper and R. Klöfkorn, “Distributed Newest Vertex Bisection,” Journal of Parallel and Distributed Computing, vol. 104, pp. 1–11, 2017, doi: http://dx.doi.org/10.1016/j.jpdc.2016.12.003.
    2. M. Alkämper, R. Klöfkorn, and F. Gaspoz, “A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension,” 2017. [Online]. Available: http://arxiv.org/abs/1711.03141
    3. M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions,” Archive of Numerical Software, vol. 5, no. 1, Art. no. 1, 2017, [Online]. Available: https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    4. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
    5. A. Alla, M. Gunzburger, B. Haasdonk, and A. Schmidt, “Model order reduction for the control of parametrized partial differential equations via dynamic programming principle,” University of Stuttgart, 2017.
    6. A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation,” in Model Reduction of Parametrized Systems, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds. Cham: Springer International Publishing, 2017, pp. 333--347. doi: 10.1007/978-3-319-58786-8_21.
    7. A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations with stochastic  process or random field coefficients,” Appl. Numer. Math., vol. 121, pp. 38--51, 2017, [Online]. Available: https://doi.org/10.1016/j.apnum.2017.06.009
    8. A. Barth, B. Harrach, N. Hyvoenen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” INVERSE PROBLEMS, vol. 33, no. 11, Art. no. 11, 2017, doi: 10.1088/1361-6420/aa8f5c.
    9. A. Barth and A. Stein, “A study of elliptic partial differential equations with jump diffusion  coefficients,” 2017.
    10. A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” Inv. Prob., vol. 33, no. 11, Art. no. 11, 2017, [Online]. Available: http://arxiv.org/abs/1706.03962
    11. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary problems,” in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. SIAM Philadelphia, 2017. [Online]. Available: https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    12. A. Bhatt and R. VanGorder, “Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels,” 2017.
    13. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers,” Journal of Lightwave Technology, vol. 35, no. 17, Art. no. 17, 2017, doi: 10.1109/JLT.2017.2715358.
    14. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    15. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds. Cham: Springer International Publishing, 2017, pp. 189--197. doi: 10.1007/978-3-319-57394-6_21.
    16. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” APPLIED NUMERICAL MATHEMATICS, vol. 116, no. SI, Art. no. SI, 2017, doi: 10.1016/j.apnum.2016.07.005.
    17. C. Chalons, C. Rohde, and M. Wiebe, “A finite volume method for undercompressive shock waves in two space dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, Art. no. 5, 2017, doi: https://doi.org/10.1051/m2an/2017027.
    18. A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 335, pp. 387–403, 2017, doi: 10.1016/j.jcp.2017.01.030.
    19. S. De Marchi, A. Iske, and G. Santin, “Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions,” 2017.
    20. S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds. Cham: Springer International Publishing, 2017, pp. 39--59. doi: 10.1007/978-3-319-59912-0_3.
    21. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-assisted interactive mobile simulations for pervasive applications,” in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 2017, pp. 111--120. doi: 10.1109/PERCOM.2017.7917857.
    22. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017, doi: 10.1016/j.jcp.2017.02.001.
    23. J. Fehr, D. Grunert, A. Bhatt, and B. Hassdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems,” 2017.
    24. M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon,” IMA, vol. 00, pp. 1–31, 2017, doi: https://doi.org/10.1093/imanum/drx070.
    25. M. Feistauer, O. Bartos, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition,” Proceeding of the EQUADIFF 17, pp. 127–136, 2017, [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    26. M. Fetzer and C. W. Scherer, “Absolute stability analysis of discrete time feedback interconnections,” IFAC-PapersOnLine, no. 1, Art. no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.757.
    27. M. Fetzer and C. W. Scherer, “Full-block multipliers for repeated, slope restricted scalar nonlinearities,” Int. J. Robust Nonlin., 2017, doi: 10.1002/rnc.3751.
    28. M. Fetzer and C. W. Scherer, “Zames-Falb Multipliers for Invariance,” IEEE Control Systems Letters, vol. 1, no. 2, Art. no. 2, 2017, doi: 10.1109/LCSYS.2017.2718556.
    29. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints: Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 2017, pp. 185--196. doi: 10.1137/1.9781611974768.15.
    30. F. D. Gaspoz, C. Kreuzer, K. Siebert, and D. Ziegler, “A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution,” Submitted, 2017. [Online]. Available: https://arxiv.org/abs/1610.06814
    31. F. D. Gaspoz, P. Morin, and A. Veeser, “A posteriori error estimates with point sources in fractional sobolev spaces,” NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, vol. 33, no. 4, Art. no. 4, 2017, doi: 10.1002/num.22065.
    32. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, 2017, vol. 199. [Online]. Available: http://www.springer.com/de/book/9783319573960
    33. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, Art. no. 9, 2017, doi: 10.1080/00036811.2016.1276175.
    34. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,” MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, vol. 27, no. 13, Art. no. 13, 2017, doi: 10.1142/S0218202517500476.
    35. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics,” Arch. Ration. Mech. Anal., vol. 223, pp. 1427-- 1484, 2017, doi: 10.1007/s00205-016-1063-2.
    36. R. Gutt, M. Kohr, S. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains,” Math. Meth. Appl. Sci., vol. 18, pp. 7780–7829, 2017, doi: 10.1002/mma.4562.
    37. R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 18, Art. no. 18, 2017, doi: 10.1002/mma.4562.
    38. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems,” in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. SIAM, Philadelphia, 2017, pp. 65--136. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    39. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz energy problems for strongly singular kernels,” Math. Nachr., 2017, doi: 10.1002/mana.201600024.
    40. M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” Journal of Mathematical Imaging and Vision, pp. 1--19, 2017, [Online]. Available: https://link.springer.com/article/10.1007/s10851-017-0736-2
    41. M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data.” WIAS Preprint No. 2379, 2017. [Online]. Available: http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    42. B. Kane, R. Klöfkorn, and C. Gersbacher, “hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow,” in International Conference on Finite Volumes for Complex Applications, 2017, pp. 447--456.
    43. B. Kane, “Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media,” Archive of Numerical Software, vol. 5, no. 1, Art. no. 1, 2017.
    44. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle,” Monatshefte für Mathematik, vol. 483, pp. 269–302, 2017, doi: MOFM-D16-00078.
    45. M. Kohr, S. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani,” J of Mathematical Fluid Mechanics, vol. 19, pp. 203–238, 2017.
    46. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two scale model for liquid phase epitaxy with elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, Art. no. 4, 2017, doi: 10.1007/s00161-015-0462-1.
    47. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    48. M. Köppel, I. Kröker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” Comput. Geosci., vol. 21, pp. 807–832, 2017, doi: 10.1007/s10596-017-9662-z.
    49. M. Köppel et al., “Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage.” 2017. doi: 10.5281/zenodo.933827.
    50. T. Köppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,” University of Stuttgart, 2017.
    51. A. Langer, “Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise,” Inverse Problems, vol. 33, p. 41, 2017, [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    52. A. Langer, “Automated Parameter Selection for Total Variation Minimization in  Image Restoration,” Journal of Mathematical Imaging and Vision, vol. 57, pp. 239--268, 2017, doi: 10.1007/s10851-016-0676-2.
    53. B. Maboudi Afkham and J. Hesthaven, “Structure Preserving Model Reduction of Parametric Hamiltonian Systems,” SIAM Journal on Scientific Computing, vol. 39, no. 6, Art. no. 6, 2017, doi: 10.1137/17M1111991.
    54. I. Martini, G. Rozza, and B. Haasdonk, “Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models,” Journal of Scientific Computing, vol. 74, no. 1, Art. no. 1, Jan. 2017, doi: 10.1007/s10915-017-0430-y.
    55. V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds., Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume, no. 258. Birkhäuser/Springer International, 2017.
    56. H. Minbashian, H. Adibi, and M. Dehghan, “On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.” 2017.
    57. H. Minbashian, “Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws,” Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran., 2017.
    58. H. Minbashian, H. Adibi, and M. Dehghan, “An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws,” Numerical Methods for Partial Differential Equations, vol. 33, no. 6, Art. no. 6, 2017, doi: 10.1002/num.22180.
    59. H. Minbashian, H. Adibi, and M. Dehghan, “An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations,” International Journal of Numerical Methods for Heat & Fluid Flow, 2017.
    60. C. A. Rösinger and C. W. Scherer, “Structured Controller Design With Applications to Networked Systems,” 2017. doi: 10.1109/CDC.2017.8264365.
    61. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” Dolomites Res. Notes Approx., vol. 10, pp. 68--78, 2017, [Online]. Available: /brokenurl#www.emis.de/journals/DRNA/9-2.html
    62. G. Santin and B. Haasdonk, “Greedy Kernel Approximation for Sparse Surrogate Modelling,” University of Stuttgart, 2017.
    63. G. Santin and B. Haasdonk, “Non-symmetric kernel greedy interpolation.,” 2017.
    64. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
    65. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2017, doi: 10.1051/cocv/2017011.
    66. I. Steinwart, “A Short Note on the Comparison of Interpolation Widths, Wntropy Numbers, and Kolmogorov Widths,” J. Approx. Theory, vol. 215, pp. 13--27, 2017.
    67. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots,” University of Stuttgart, 2017.
    68. D. Wittwar, G. Santin, and B. Haasdonk, “Interpolation with uncoupled separable matrix-valued kernels.,” ArXiv preprint 1807.09111, Accepted for publications in {Dolomites Res. Notes Approx.}, 2017.
    69. D. Wittwar and B. Haasdonk, “On uncoupled separable matrix-valued kernels,” University of Stuttgart, 2017.
    70. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced Basis Approximation for the Discrete-time Parametric Algebraic Riccati Equation,” University of Stuttgart, 2017.
  6. 2016

    1. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid Module.,” Archive of Numerical Software, vol. 4, no. 1, Art. no. 1, 2016, doi: 10.11588/ans.2016.1.23252.
    2. A. Alla, A. Schmidt, and B. Haasdonk, “Model order reduction approaches for infinite horizon optimal control problems via the HJB equation,” University of Stuttgart, 2016. [Online]. Available: https://arxiv.org/abs/1607.02337
    3. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” AMSES, Advanced Modeling and Simulation in Engineering Sciences, vol. 3, no. 6, Art. no. 6, 2016, doi: 10.1186/s40323-016-0059-7.
    4. A. C. Antoulas, B. Haasdonk, and B. Peherstorfer, MORML 2016 Book of Abstracts. University of Stuttgart, 2016.
    5. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Lévy processes,” 2016. [Online]. Available: http://arxiv.org/abs/1612.05541
    6. A. Barth, C. Schwab, and J. Sukys, “Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations,” in Monte Carlo and quasi-Monte Carlo methods, vol. 163, Springer, Cham, 2016, pp. 209--227. doi: 10.1007/978-3-319-33507-0_8.
    7. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach,” Computers & Chemical Engineering, vol. 89, pp. 11-- 26, 2016, doi: http://dx.doi.org/10.1016/j.compchemeng.2016.02.016.
    8. A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations  with spatial noise,” in Springer Proceedings in Mathematics and Statistics, vol. submitted, Springer International Publishing, 2016.
    9. A. Barth and F. G. Fuchs, “Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields,” SIAM J. Sci. Comput., vol. 38, no. 4, Art. no. 4, 2016, doi: 10.1137/15M1027723.
    10. A. Barth, S. Moreno-Bromberg, and O. Reichmann, “A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting,” Comp. Economics, vol. 47, no. 3, Art. no. 3, 2016, doi: 10.1007/s10614-015-9502-y.
    11. P. Bastian et al., “Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 25--43. doi: 10.1007/978-3-319-40528-5_2.
    12. P. Bastian et al., “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 3--23. doi: 10.1007/978-3-319-40528-5_1.
    13. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary  problems,” in Model Reduction and Approximation for Complex Systems, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. Birkhäuser Publishing, 2016. [Online]. Available: https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    14. F. Betancourt and C. Rohde, “Finite-volume schemes for Friedrichs systems with involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016, doi: 10.1016/j.amc.2015.03.050.
    15. A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” SIAM J. Sci Comp, 2016.
    16. A. Bhatt, “Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations,” University of Central Florida, 2016.
    17. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016, doi: 10.1016/j.apnum.2016.07.005.
    18. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable  radial bases,” 2016. doi: 10.1063/1.4952177.
    19. A. Chertock, P. Degond, and J. Neusser, “An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations,” Journal of Computational Physics, vol. 335, pp. 387–403, 2016, [Online]. Available: http://arxiv.org/abs/1512.04228
    20. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the  non-smooth case,” Archive for Rational Mechanics and Analysis, vol. 219, no. 2, Art. no. 2, 2016, doi: 10.1007/s00205-015-0904-8.
    21. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016, doi: 10.4171/OWR/2016/30.
    22. R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 219, no. 2, Art. no. 2, 2016, doi: 10.1007/s00205-015-0904-8.
    23. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, Art. no. 6, 2016, [Online]. Available: http://epubs.siam.org/toc/sjnaam/54/6
    24. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
    25. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
    26. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential equations,” ESAIM: COCV, vol. 22, no. 3, Art. no. 3, 2016, doi: 10.1051/cocv/2015019.
    27. F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, vol. 104, pp. 386–395, 2016, doi: 10.1016/j.ijthermalsci.2016.01.019.
    28. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016, doi: https://doi.org/10.1016/j.ijthermalsci.2016.01.019.
    29. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, Art. no. part 2, 2016, doi: 10.1016/j.amc.2015.11.023.
    30. M. Fetzer and C. W. Scherer, “A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems.,” SIAM J. Contr. Optim., vol. 54, no. 3, Art. no. 3, 2016, doi: 10.1137/140985482.
    31. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,” University of Stuttgart, Arxiv Report, 2016. [Online]. Available: https://arxiv.org/abs/1610.05029
    32. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” Inverse Problems, vol. 32, no. 3, Art. no. 3, 2016, doi: http://dx.doi.org/10.1088/0266-5611/32/3/035001.
    33. F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection,” IMA Journal of Numerical Analysis, vol. 36, no. 3, Art. no. 3, 2016, doi: 10.1093/imanum/drv044.
    34. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science -- Research and Development, vol. 31, no. 4, Art. no. 4, 2016, doi: 10.1007/s00450-016-0324-5.
    35. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, Art. no. 4, 2016, [Online]. Available: http://imajna.oxfordjournals.org/content/36/4/1685
    36. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, Art. no. 1, 2016, doi: 10.1007/s00574-016-0144-z.
    37. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016, doi: 10.1007/s10543-015-0560-2.
    38. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016. [Online]. Available: http://arxiv.org/abs/1607.03944
    39. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, Art. no. 4, 2016, doi: 10.1093/imanum/drv052.
    40. G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the 1D    p-system in the non smooth case,” BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, vol. 47, no. 1, Art. no. 1, 2016, doi: 10.1007/s00574-016-0146-x.
    41. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds,” Math. Nachr, vol. 289, pp. 471–484, 2016.
    42. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid solution of minimal Riesz energy problems,” Numer. Methods Partial Diff. Equ., vol. 32, pp. 1535–1552, 2016.
    43. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, Art. no. 18, 2016, doi: 10.1002/mma.3926.
    44. B. Kabil and M. Rodrigues, “Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems,” Journal of Differential Equations, vol. 260, no. 3, Art. no. 3, 2016, doi: 10.1016/j.jde.2015.10.025.
    45. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
    46. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
    47. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
    48. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
    49. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, Art. no. 2, 2016, doi: 10.1007/s00021-015-0236-3.
    50. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, Art. no. 1, 2016, doi: 10.1002/pamm.201610363.
    51. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” COMPUTATIONAL GEOSCIENCES, vol. 20, no. 2, Art. no. 2, 2016, doi: 10.1007/s10596-016-9566-3.
    52. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, pp. 425–455, 2016, doi: 10.1007/S11242-015-0548-Z.
    53. L. Ostrowski, B. Ziegler, and G. Rauhut, “Tensor decomposition in potential energy surface representations,” The Journal of Chemical Physics, vol. 145, no. 10, Art. no. 10, 2016, doi: 10.1063/1.4962368.
    54. M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016, doi: https://doi.org/10.1093/imamat/hxw023.
    55. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MCMDS, Mathematical and Computer Modelling of Dynamical Systems, vol. 22, no. 4, Art. no. 4, 2016, doi: 10.1080/13873954.2016.1198384.
    56. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” ESAIM Math. Model. Numer. An., vol. 50, no. 2, Art. no. 2, 2016, doi: 10.1051/m2an/2015050.
    57. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621. doi: 10.1007/978-3-319-18827-0\_54.
    58. G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction,” Doctoral School in Mathematical Sciences, University of Padova, 2016. [Online]. Available: http://paduaresearch.cab.unipd.it/9186/
    59. G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” Adv. Comput. Math., vol. 42, no. 4, Art. no. 4, 2016, doi: 10.1007/s10444-015-9449-5.
    60. V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces and    phase transitions,” APPLIED NUMERICAL MATHEMATICS, vol. 108, pp. 256–270, 2016, doi: 10.1016/j.apnum.2015.12.010.
    61. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” IFAC-PapersOnLine, vol. 49, no. 8, Art. no. 8, 2016, doi: http://dx.doi.org/10.1016/j.ifacol.2016.07.462.
    62. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, Art. no. 4, 2016, doi: 10.1007/s00033-016-0699-y.
    63. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität,” Master Thesis, Germany, 2016.
  7. 2015

    1. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” University of Stuttgart, SimTech Preprint, 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1436
    2. D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special Issue on Model Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, Art. no. 5, 2015, doi: 10.1002/nme.4889.
    3. D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, Art. no. 5, 2015, doi: 10.1002/nme.4889.
    4. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM journal on Financial Mathematics (SIFIN), vol. 6, no. 1, Art. no. 1, 2015, doi: 10.1137/140981216.
    5. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local  stabilization,” in CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering, 2015, pp. 317--326.
    6. S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov  space methods,” BIT Numerical Mathematics, vol. 55, no. 4, Art. no. 4, 2015, doi: 10.1007/s10543-014-0537-6.
    7. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2015, doi: 10.1051/cocv/2015019.
    8. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” COAP, Computational Optimization and Applications, vol. 60, no. 3, Art. no. 3, 2015, doi: DOI: 10.1007/s10589-014-9697-1.
    9. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” University of Stuttgart, 2015.
    10. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” Habilitationsschrift, Stuttgart, 2015.
    11. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015, [Online]. Available: http://www.esaim-m2an.org/articles/m2an/pdf/2015/01/m2an140033.pdf
    12. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, Art. no. 2, 2015, doi: 10.1093/imanum/dru022.
    13. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model,” JOURNAL OF DIFFERENTIAL EQUATIONS, vol. 258, no. 10, Art. no. 10, 2015, doi: 10.1016/j.jde.2015.01.047.
    14. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015, [Online]. Available: http://dx.doi.org/10.1137/140970999
    15. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman    system in Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 17, Art. no. 17, 2015, doi: 10.1002/mma.3302.
    16. M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011),” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 5, Art. no. 5, 2015, doi: 10.1002/mma.3122.
    17. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117–135, 2015, doi: 10.1016/j.parco.2015.07.003.
    18. M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation  based image denoising,” Journal of Scientific Computing, vol. 62, no. 2, Art. no. 2, 2015, [Online]. Available: http://link.springer.com/article/10.1007/s10915-014-9863-8
    19. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in    porous media,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, Art. no. 5, SI, 2015, doi: 10.1002/nme.4773.
    20. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015, doi: 10.1137/120899236.
    21. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    22. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, Art. no. 3–4, 2015, doi: 10.1007/s10884-014-9359-0.
    23. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, Art. no. 3, 2015, doi: 10.1007/s00033-014-0439-0.
    24. I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, Art. no. 2, 2015, doi: 10.1007/s10596-014-9464-5.
    25. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, Art. no. 2, 2015, doi: 10.1007/s10596-014-9464-5.
    26. M. Kutter, “A two scale model for liquid phase epitaxy with elasticity,” University of Stuttgart, 2015. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
    27. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” 2015, [Online]. Available: http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
    28. I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, 2015, vol. 103, pp. 437--445. doi: 10.1007/978-3-319-10705-9_43.
    29. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system,” Advances in Computational Mathematics, vol. 41, no. 5, Art. no. 5, 2015, doi: 10.1007/s10444-014-9396-6.
    30. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    31. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, Art. no. 2, 2015, doi: 10.1093/imanum/dru009.
    32. S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in Numerical Mathematics and Advanced Applications -- ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer, 2015, pp. 601--609. doi: 10.1007/978-3-319-10705-9_59.
    33. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition,” J. Numer. Methods Fluids, vol. 79, pp. 615–639, 2015, doi: 10.1002/fld.4065.
    34. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, Art. no. 12, 2015, doi: 10.1002/fld.4065.
    35. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions,” 2015.
    36. G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death,” Far East Journal of Dynamical Systems, 2015, doi: 10.17654/FJDSMar2015_031_059.
    37. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” University of Stuttgart, SimTech Preprint, 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=964
    38. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, vol. 41, no. 5, Art. no. 5, 2015, doi: 10.1007/s10444-014-9367-y.
    39. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015, doi: 10.1016/j.apnum.2014.05.001.
    40. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015, doi: https://doi.org/10.1016/j.jhydrol.2014.11.051.
    41. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299–309, 2015, doi: 10.1007/s10596-015-9469-8.
    42. C. W. Scherer, “GAIN-SCHEDULING CONTROL WITH DYNAMIC MULTIPLIERS BY CONVEX OPTIMIZATION,” SIAM J. Contr. Optim., vol. 53, no. 3, Art. no. 3, 2015, doi: 10.1137/140985871.
    43. V. Schleper, “Nonlinear Transport and Coupling of Conservation Laws.” 2015.
    44. V. Schleper, “A HYBRID MODEL FOR TRAFFIC FLOW AND CROWD DYNAMICS WITH RANDOM    INDIVIDUAL PROPERTIES,” MATHEMATICAL BIOSCIENCES AND ENGINEERING, vol. 12, no. 2, Art. no. 2, 2015, doi: 10.3934/mbe.2015.12.393.
    45. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” in Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling, 2015, pp. 713--718. doi: 10.1016/j.ifacol.2015.05.016.
    46. A. Schmidt and B. Haasdonk, “Reduced basis method for $H_2$ optimal feedback control problems,” University of Stuttgart, 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1442
    47. A. Schmidt and B. Haasdonk, “Reduced Basis Approximation of Large Scale Algebraic Riccati Equations,” University of Stuttgart, 2015.
    48. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 101, no. 1, Art. no. 1, 2015, doi: 10.1002/nme.4767.
    49. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,” International Journal of Numerical Methods in Engineering, vol. 101, no. 1, Art. no. 1, 2015, doi: 10.1002/nme.4767.
    50. C. Zeiler, “Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation,” Verlag Dr. Hut, München, 2015. [Online]. Available: http://elib.uni-stuttgart.de/handle/11682/8919%7D
  8. 2014

    1. H. Adibi and H. Minbashian, Integral Equations (in Persian). Amirkabir University of Technology Press, 2014.
    2. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, Art. no. 5, 2014, doi: 10.1142/S0218202513500693.
    3. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 873–881. doi: 10.1007/978-3-319-05591-6_88.
    4. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014, doi: 10.1016/j.insmatheco.2014.05.001.
    5. A. Barth and F. E. Benth, “The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation,” Stochastics, vol. 86, no. 6, Art. no. 6, 2014, doi: 10.1080/17442508.2014.895359.
    6. P. Bastian et al., “EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8806, L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, Eds. Springer, 2014, pp. 530--541. doi: 10.1007/978-3-319-14313-2_45.
    7. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” Arxiv, Preprint 1408.1220, 2014. [Online]. Available: http://arxiv.org/abs/1408.1220
    8. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, Art. no. 10, 2014, doi: 10.1002/zamm.201200174.
    9. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    10. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.jmaa.2014.01.049
    11. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential equations,” University of Stuttgart, 2014.
    12. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014, doi: http://dx.doi.org/10.1016/j.physd.2014.01.006.
    13. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014. [Online]. Available: http://arxiv.org/abs/1405.6625
    14. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, Art. no. 7–8, 2014, doi: 10.1002/zamm.201400559.
    15. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, Art. no. 4, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    16. R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous  media,” Numer. Meth. Part. D. E., vol. 30, pp. 723–748, 2014, doi: 10.1002/num.21823.
    17. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” 2014.
    18. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014, vol. Vol. 77/78. 2014.
    19. H. Garikapati, “A PGD Based Preconditioner for Scalar Elliptic Problems,” 2014.
    20. F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” Math. Comp., vol. 83, no. 289, Art. no. 289, 2014, doi: 10.1090/S0025-5718-2013-02777-9.
    21. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, Art. no. 1, 2014, doi: 10.1007/s00205-013-0677-x.
    22. J. Giesselmann and T. M�ller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    23. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606. [Online]. Available: https://aimsciences.org/books/am/AMVol8.html
    24. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014, doi: http://dx.doi.org/10.1090/S0025-5718-2014-02792-0.
    25. J. Giesselmann and T. M�ller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, Art. no. 3, 2014, doi: 10.1007/s00211-014-0621-5.
    26. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    27. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, Art. no. 5, 2014, doi: 10.1137/140951710.
    28. D. Göddeke, D. Komatitsch, and M. Möller, “Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods,” in Numerical Computations with GPUs, V. Kindratenko, Ed. Springer, 2014, pp. 183--206. doi: 10.1007/978-3-319-06548-9_9.
    29. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, Art. no. 1, 2014.
    30. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden für effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, Art. no. 1, 2014.
    31. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems,” IANS, University of Stuttgart, Germany, {S}im{T}ech Preprint, 2014. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    32. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on C^k-1,1 manifolds,” Math. Nachr., vol. 287, pp. 48–69, 2014.
    33. M. Hintermüller and A. Langer, “Adaptive Regularization for Parseval Frames in Image Processing.” SFB-Report No. 2014-014, 2014. [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
    34. M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image  Processing,” in Domain Decomposition Methods in Science and Engineering XXI, Springer, 2014, pp. 829--837. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
    35. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 107, no. 0, Art. no. 0, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.na.2014.04.003
    36. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in porous media,” International Journal for Numerical Methods in Engineering, 2014, doi: 10.1002/nme.4773.
    37. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flow in porous media,” arXiv preprint arXiv:1405.2810, 2014.
    38. L. Kazaz, “Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.” 2014.
    39. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints,” SIAM J. Control Optim., vol. 52(3), p. 1832�1861. (30 pages), 2014, doi: http://dx.doi.org/10.1137/130909251.
    40. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014, doi: 03934/cpaa.2013.13.
    41. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    42. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds. Cambridge Sci. Publ., 2014, pp. 111–124.
    43. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 353–361. doi: 10.1007/978-3-319-05684-5_34.
    44. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    45. S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven  porous media flow solver,” in 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 2014, pp. 109--113.
    46. M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” University of Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
    47. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” 2014, [Online]. Available: http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
    48. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711. doi: 10.1007/978-3-319-05591-6_70.
    49. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014, doi: 10.1016/j.jcp.2014.04.036.
    50. M. Staehle, “Anisotrope Diffusion zur Bildfilterung,” 2014.
    51. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
    52. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems,” SIAM Journal on Scientific Computing, vol. 36, no. 2, Art. no. 2, 2014, doi: 10.1137/120899042.
    53. D. Wittwar, “Empirische Interpolation and Anwendung zur Numerischen Integration.” 2014.
  9. 2013

    1. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs,” Multiscale Model. Simul., vol. 11, no. 4, Art. no. 4, 2013, doi: 10.1137/120894725.
    2. D. Amsallem, B. Haasdonk, and G. Rozza, “A Conference within a Conference for MOR Researchers,” SIAM News, vol. 46, no. 6, Art. no. 6, 2013, [Online]. Available: http://www.siam.org/news/news.php?id=2089
    3. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial  differential equations,” BIT, vol. 53, no. 1, Art. no. 1, 2013, doi: 10.1007/s10543-012-0401-5.
    4. A. Barth and A. Lang, “L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations,” Stochastic Process. Appl., vol. 123, no. 5, Art. no. 5, 2013, doi: 10.1016/j.spa.2013.01.003.
    5. T. Bissinger, “Verfahren zur Stabilen Kerninterpolation.” 2013.
    6. S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” J. Comput. Appl. Math., vol. 253, pp. 1--13, 2013, doi: 10.1016/j.cam.2013.03.048.
    7. M. Dihlmann and B. Haasdonk, “Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate Models,” PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad 2013; Editors: L. Cvetković, T. Atanacković and V. Kostić, vol. 13, no. 1, Art. no. 1, 2013, doi: doi: 10.1002/pamm.201310002.
    8. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” University of Stuttgart, 2013.
    9. Ch. Eck, M. Kutter, A.-M. Sändig, and Ch. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, no. 10–11, Art. no. 10–11, 2013, doi: 10.1002/zamm.201200238.
    10. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” 2013.
    11. S. Fechter, F. Jägle, and V. Schleper, “Exact and approximate Riemann solvers at phase boundaries,” Computers & Fluids, vol. 75, pp. 112--126, 2013, doi: 10.1016/j.compfluid.2013.01.024.
    12. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based Approximation of Frequency-weighted Gramian Matrices for Model Reduction in Multibody Dynamics,” ZAMM, vol. 93, no. 8, Art. no. 8, 2013, doi: 10.1002/zamm.201200014.
    13. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013, doi: 10.1002/mma.2716.
    14. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013, doi: 10.1002/zamm.20100185.
    15. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses,” Computers & Fluids, vol. 80, pp. 327--332, 2013, doi: 10.1016/j.compfluid.2012.01.025.
    16. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364. doi: 10.1002/pamm.201310177.
    17. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” 2013. [Online]. Available: http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
    18. D. Göddeke et al., “Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster,” Journal of Computational Physics, vol. 237, pp. 132--150, 2013, doi: 10.1016/j.jcp.2012.11.031.
    19. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor  belts,” Appl. Math. Modell., vol. 38, no. 13, Art. no. 13, 2013, [Online]. Available: http://dx.doi.org/10.1016/j.apm.2013.11.039
    20. B. Haasdonk, K. Urban, and B. Wieland, “Reduced basis methods for parametrized partial differential equations with stochastic influences using the Karhunen Loeve expansion,” SIAM/ASA J. Unc. Quant., vol. 1, pp. 79–105, 2013.
    21. B. Haasdonk, “Convergence Rates of the POD--Greedy Method,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 3, Art. no. 3, 2013, doi: 10.1051/m2an/2012045.
    22. C.-J. Heine, C. A. M�ller, M. A. Peter, and K. G. Siebert, “Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure,” in Poromechanics, 2013, vol. V, p. 1964�1972. doi: http://dx.doi.org/10.1061/9780784412992.232.
    23. M. Hintermüller and A. Langer, “Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing,” SIAM Journal on Imaging Sciences, vol. 6, no. 4, Art. no. 4, 2013, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/120894130
    24. S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction using Dictionaries,” University of Stuttgart, SimTech Preprint, 2013.
    25. F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, p. n/a--n/a, 2013, doi: 10.1002/zamm.201200141.
    26. F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” Universität Stuttgart, 2013. [Online]. Available: http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
    27. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, pp. 446–458, 2013, doi: 10.1002/zamm.201100194.
    28. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013, doi: 10.1093/imnr/run999.
    29. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains,” Potential Analysis, vol. 38, pp. 1123–1171, 2013, doi: 10.1007/s.11118-012-9310-0.
    30. D. Kreplin, “Adaptive Reduzierte Basis Methoden für Evolutionsprobleme.” 2013.
    31. I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” Universität Stuttgart, 2013.
    32. M. Köppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept,” Diplomarbeit, Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit Pomdapi INRIA Rocquencourt . Paris, France., 2013.
    33. A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized domain decomposition for image restoration,” Journal of Scientific Computing, vol. 54, no. 2–3, Art. no. 2–3, 2013, [Online]. Available: http://link.springer.com/article/10.1007/s10915-012-9603-x
    34. S. Moutari, M. Herty, A. Klein, M. Oeser, V. Schleper, and G. Steinaur, “Modeling road traffic accidents using macroscopic second-order models  of traffic flow,” IMA Journal of Applied Mathematics, vol. 78, no. 5, Art. no. 5, 2013, doi: doi: 10.1093/imamat/hxs012.
    35. F. Nitsch, “Stability Analysis of Linear Time-periodic Systems.” 2013.
    36. V. Ortmann, “Empirische Matrixinterpolation.” 2013.
    37. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers.” 2013.
    38. M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies,” Journal of Computational Physics, vol. 240, pp. 268–283, 2013, doi: 10.1016/j.jcp.2012.12.025.
    39. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, Art. no. 03, 2013, doi: 10.1142/S0218202512500522.
    40. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, Art. no. 5, 2013, doi: 10.3934/cpaa.2013.12.2145.
    41. A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen,” 2013.
    42. A. Schmidt, “Galerkin-Radiosity.” 2013.
    43. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” 2013.
    44. A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” 2013.
    45. D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” 2013.
    46. A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” Bachelor Thesis, Germany, 2013.
    47. T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System.” 2013.
    48. S. Turek and D. Göddeke, “Hardware-oriented Numerics for PDE,” in Encyclopedia of Applied and Computational Mathematics, B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, and A. Tveito, Eds. Springer, 2013.
    49. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83–100, 2013, [Online]. Available: http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    50. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Res. Notes Approx., vol. 6, pp. 83–100, 2013, [Online]. Available: http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
    51. J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries.” 2013.
    52. B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape  design,” Machanics & Industry, vol. 14, pp. 1–22, 2013.
  10. 2012

    1. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kr�nkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77. doi: 10.1051/proc/201238004.
    2. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” in ALGORITMY 2012 - Proceedings of contributed papers and posters, 2012, vol. 1, pp. 393--403. [Online]. Available: http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/40Albrecht.pdf
    3. C. Appel, “Mathematische Methoden zur Bestimmung alterungskritischer Parameter  von Lithium-Ionen Zellen,” Diploma thesis, 2012.
    4. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98. doi: 10.1051/proc/201238005.
    5. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite  element methods,” Stochastics, vol. 84, no. 2–3, Art. no. 2–3, 2012, doi: 10.1080/17442508.2010.523466.
    6. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises,” Appl. Math. Optim., vol. 66, no. 3, Art. no. 3, 2012, doi: 10.1007/s00245-012-9176-y.
    7. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic  partial differential equations,” Int. J. Comput. Math., vol. 89, no. 18, Art. no. 18, 2012, doi: 10.1080/00207160.2012.701735.
    8. J. Bernl�hr, “Online Reduzierte Basis Generierung f�r Parameterabh�ngige Elliptische  Partielle Differentialgleichungen,” Diploma thesis, 2012.
    9. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO  and Dune,” Theoretical and Computational Fluid Dynamics, pp. 1–20, 2012, doi: 10.1007/s00162-012-0264-z.
    10. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion  problems.,” SIAM J. Sci. Comput., vol. 34, no. 1, Art. no. 1, 2012, doi: 10.1137/100817528.
    11. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, Art. no. 3, 2012, doi: 10.1137/110848815.
    12. F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes  and Stimulate Designer’s Creativity,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7, Art. no. 7, 2012.
    13. R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to  incompressible limit,” Nonlinear Anal. Real World Appl., vol. 13, no. 5, Art. no. 5, 2012, doi: 10.1016/j.nonrwa.2012.01.015.
    14. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS 2011, Multiscale Coupling of Complex Models, vol. 38. ESAIM Proceedings, 2012.
    15. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” J. Differential Equations, vol. 253, no. 5, Art. no. 5, 2012, doi: 10.1016/j.jde.2012.05.006.
    16. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and  Adaptive Scientific Computing,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 17–31. doi: 10.1007/978-3-642-28589-9_2.
    17. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Springer, 2012.
    18. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of Parametrized Evolution Systems,” 2012.
    19. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012, [Online]. Available: http://www.ems-ph.org/journals/show_pdf.php?issn=1463-9963&vol=14&iss=1&rank=4
    20. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous Media,” 2012. doi: https://doi.org/10.3182/20120215-3-AT-3016.00128.
    21. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” SIAM J. Sci. Comput., vol. 34, no. 2, Art. no. 2, 2012, doi: 10.1137/10081157X.
    22. M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and  RBMATLAB,” in Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer, 2012. [Online]. Available: http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-28588-2
    23. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 406--414.
    24. M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE  solutions of elliptic boundary value problems in polygons,” Numerical Methods for Partial Differential Equations, vol. 28, no. 4, Art. no. 4, 2012, doi: 10.1002/num.20668.
    25. M. Fornasier, Y. Kim, A. Langer, and C.-B. Schönlieb, “Wavelet Decomposition Method for L\_2//TV-Image Deblurring,” SIAM Journal on Imaging Sciences, vol. 5, no. 3, Art. no. 3, 2012, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/100819801
    26. D. Garmatter, “Reduzierte Basis Methoden für lineare Evolutionsprobleme am Beispiel  von European Option Pricing,” Diploma thesis, 2012.
    27. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
    28. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
    29. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” 2012. [Online]. Available: http://arxiv.org/pdf/1201.3289v1
    30. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” SIAM Journal on Numerical Analysis, vol. 50, no. 5, Art. no. 5, 2012.
    31. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” J. Math. Anal. Appl., vol. 393, no. 2, Art. no. 2, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    32. S. Hoher, P. Schindler, S. G?ttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material  Flow Systems,” in Enabling Manufacturing Competitiveness and Economic Sustainability, H. A. ElMaraghy, Ed. Springer Berlin Heidelberg, 2012, pp. 316–321. doi: 10.1007/978-3-642-23860-4_52.
    33. A. H�cker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” Journal of mathematical Biology, vol. 64, pp. 361–401, 2012, doi: 10.1007/s00285-011-0415-7.
    34. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models,” Adv. Water Res., vol. 42, pp. 71--90, 2012, doi: 10.1016/j.advwatres.2012.01.006.
    35. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface  tension,” ESAIM: Proc., vol. 38, pp. 387–408, 2012, doi: 10.1051/proc/201238022.
    36. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” Mathematical Models and Methods in Applied Sciences, vol. 22, no. 03, Art. no. 03, 2012, doi: 10.1142/S0218202511500175.
    37. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    38. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, Art. no. 3, 2012, doi: 10.2136/vzj2011.0193.
    39. R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods  for Compressible Flow Problems,” in Proceedings of the ALGORITMY 2012, 2012, pp. 11–21.
    40. R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 45–58. doi: 10.1007/978-3-642-28589-9_4.
    41. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control  Problems,” in Constrained Optimiziation and Optimal Control for Partial Differential  Equations, vol. 160, L. et al., Ed. Springer, 2012, pp. 431–443. doi: 10.1007/978-3-0348-0133-1_22.
    42. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    43. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, Art. no. 2, 2012, doi: 10.1080/00036811.2011.614604.
    44. C. Kreuzer, C. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of  the Heat Equation,” IMA Journal of Numerical Analysis, 2012. http://dx.doi.org/10.1093/imanum/drr026
    45. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, Art. no. 4, 2012, doi: 10.1016/j.apnum.2011.01.011.
    46. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., “Fast Boundary Element Methods on Engineering and Industrial Applications.” Springer, p. 269, 2012.
    47. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246–262, 2012, doi: 10.1108/17415651211284039.
    48. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, Art. no. 5, 2012, doi: 10.1002/mma.1593.
    49. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” Acta Mechanica Sinica, vol. 28(3), pp. 854--862, 2012.
    50. V. Schleper, “On the coupling of compressible and incompressible fluids,” in Numerical Methods for Hyperbolic Equations, 2012. [Online]. Available: http://www.taylorandfrancis.com/books/details/9780415621502/
    51. V. Schleper, M. Gugat, M. Herty, A. Klar, and G. Leugering, “Well-posedness of networked hyperbolic systems of balance laws,” in Constrained Optimization and Optimal Control for Partial Differential  Equations, vol. 160, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds. Birkh�user, 2012.
    52. K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in Multiscale and Adaptivity: Modelling, Numerics and Applications, vol. 2040, Berlin: Springer, 2012, pp. 227–309. doi: 10.1007/978-3-642-24079-9_4.
    53. P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic  elastic material,” Inverse Problems, vol. 28, no. 8, Art. no. 8, 2012, [Online]. Available: http://stacks.iop.org/0266-5611/28/i=8/a=085010
    54. S. Waldherr and B. Haasdonk, “Efficient Parametric Analysis of the Chemical Master Equation through Model Order Reduction,” BMC Systems Biology, vol. 6, p. 81, 2012, [Online]. Available: http://www.biomedcentral.com/1752-0509/6/81
    55. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” Math. Biosci. Eng., vol. 9, pp. 663–683, 2012, doi: 10.3934/mbe.2012.9.663.
    56. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” University of Stuttgart, SimTech Preprint, 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=742
    57. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical systems,” University of Stuttgart, SimTech Preprint, 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=733
    58. D. Wirtz, N. Karajan, and B. Haasdonk, “Model order reduction of multiscale models using kernel methods,” SRC SimTech, University of Stuttgart, Germany, Preprint, 2012.
    59. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” 2012. [Online]. Available: http://www.ifac-papersonline.net/
    60. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems,” Systems & Control Letters, vol. 61, no. 1, Art. no. 1, 2012, doi: 10.1016/j.sysconle.2011.10.012.
  11. 2011

    1. A. Barth, C. Schwab, and N. Zollinger, “Multi-level Monte Carlo finite element method for elliptic PDEs  with stochastic coefficients,” Numer. Math., vol. 119, no. 1, Art. no. 1, 2011, doi: 10.1007/s00211-011-0377-0.
    2. A. Barth, F. E. Benth, and J. Potthoff, “Hedging of spatial temperature risk with market-traded futures,” Appl. Math. Finance, vol. 18, no. 2, Art. no. 2, 2011, doi: 10.1080/13504861003722385.
    3. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and Stable Discontinuous Galerkin Methods with Application  to Atmospheric Flows,” in Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT, I. K. et al., Ed. KIT Scientific Publishing, 2011, pp. 109–116. doi: 10.5445/KSP/1000023323.
    4. S. Brdar, A. Dedner, R. Klöfkorn, M. Kränkel, and D. Kröner, “Simulation of Geophysical Problems with DUNE-FEM,” in Computational Science and High Performance Computing IV, vol. 115, E. K. et al., Ed. Springer, 2011, pp. 93–106. doi: 10.1007/978-3-642-17770-5_8.
    5. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203. doi: 10.1007/978-3-642-20671-9_21.
    6. A. Dedner et al., “On the computation of slow manifolds in chemical kinetics via optimization  and their use as reduced models in reactive flow systems.,” 2011.
    7. A. Dedner and R. Klöfkorn, “A Generic Stabilization Approach for Higher Order Discontinuous  Galerkin Methods for Convection Dominated Problems,” J. Sci. Comput., vol. 47, no. 3, Art. no. 3, 2011, doi: 10.1007/s10915-010-9448-0.
    8. M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model Reduction of Parametrized Evolution Problems using the Reduced basis Method with Adaptive Time-Partitioning,” 2011.
    9. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations,” 2011.
    10. C. Eck and M. Kutter, “On the solvability of a two scale model for liquid phase epitaxy  with elasticity,” Bericht 2011/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-001.pdf
    11. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, “3D Benchmark on Discretization Schemes for Anisotropic Diffusion  Problems on General Grids,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 895–930. doi: 10.1007/978-3-642-20671-9_89.
    12. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Geometric  multigrid solvers,” 2011.
    13. M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, and S. Turek, “A Simulation Suite for Lattice-Boltzmann based Real-Time CFD  Applications Exploiting Multi-Level Parallelism on modern Multi-  and Many-Core Architectures,” Journal of Computational Science, vol. 2, pp. 113--123, 2011, doi: 10.1016/j.jocs.2011.01.008.
    14. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Efficient Finite Element Geometric Multigrid Solvers for Unstructured  Grids on GPUs,” in Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering, 2011. doi: 10.4203/ccp.95.22.
    15. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” Universit�t Stuttgart, 2011.
    16. M. Gugat, M. Herty, and V. Schleper, “Flow control in gas networks: exact controllability to a given demand,” Math. Methods Appl. Sci., vol. 34, no. 7, Art. no. 7, 2011, doi: 10.1002/mma.1394.
    17. D. Göddeke and R. Strzodka, “Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision  Multigrid,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, Art. no. 1, 2011, doi: 10.1109/TPDS.2010.61.
    18. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Basis Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 423--442, 2011.
    19. B. Haasdonk, “Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011,” University of Stuttgart, IANS-Report 2011–004, 2011.
    20. B. Haasdonk and B. Lohmann, “Special Issue on ‘“Model Order Reduction of Parametrized Problems,”’” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, Art. no. 4, 2011, doi: 10.1080/13873954.2011.547661.
    21. B. Haasdonk and M. Ohlberger, “Efficient reduced models and a posteriori error estimation  for parametrized dynamical systems by offline/online decomposition,” Math. Comput. Model. Dyn. Syst., vol. 17, no. 2, Art. no. 2, 2011, doi: 10.1080/13873954.2010.514703.
    22. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction  FIR Filters,” Mazandaran University, Babolsar, Iran, 2011.
    23. M. Herty and V. Schleper, “Traffic flow with unobservant drivers,” ZAMM Z. Angew. Math. Mech., vol. 91, no. 10, Art. no. 10, 2011, doi: 10.1002/zamm.201000122.
    24. M. Herty and V. Schleper, “Time discretizations for numerical optimisation of hyperbolic problems,” Appl. Math. Comput., vol. 218, no. 1, Art. no. 1, 2011, doi: 10.1016/j.amc.2011.05.116.
    25. N. Jung, A. T. Patera, B. Haasdonk, and B. Lohmann, “Model Order Reduction and Error Estimation with an Application to the Parameter-Dependent Eddy Current Equation,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, Art. no. 4, 2011, doi: 10.1080/13873954.2011.582120.
    26. B. Kabil, “On the asymptotics of solutions to resonator equations,” Hyperbolic Problems: Theory, Numerics, Applications, vol. 8, pp. 373–380, 2011, [Online]. Available: https://aimsciences.org/books/am/AMVol8.html
    27. S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous  multiscale problems,” Comptes Rendus Mathematique, vol. 349, no. 23–24, Art. no. 23–24, 2011, doi: 10.1016/j.crma.2011.10.024.
    28. S. Kaulmann, “A Localized Reduced Basis Approach for Heterogenous Multiscale Problems,” Westfälische Wilhelms Universität Münster, Einsteinstrasse 62, 48149 Münster, 2011.
    29. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Mathematical Biosciences and Engineering, vol. 8, no. 2, Art. no. 2, 2011, doi: 10.3934/mbe.2011.8.575.
    30. J. Kelkel, “A Multiscale Approach to Cell Migration in Tissue Networks,” Universität Stuttgart, 2011.
    31. R. Klöfkorn, “Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 1023–1033. doi: 10.1007/978-3-642-20671-9_100.
    32. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, Art. no. 4, 2011, doi: 10.3934/dcdsb.2011.15.999.
    33. C. Kreuzer and K. G. Siebert, “Decay Rates of Adaptive Finite Elements with Dörfler Marking,” Numerische Mathematik, vol. 117, no. 4, Art. no. 4, 2011, doi: 10.1007/s00211-010-0324-5.
    34. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” GAMM-Mitteilungen, vol. 34, no. 1, Art. no. 1, 2011, doi: 10.1002/gamm.201110013.
    35. A. Lalegname and A. Sändig, “Wave-crack interaction in finite elastic bodies,” International Journal of Fracture, vol. 172, no. 2, Art. no. 2, 2011, doi: 10.1007/s10704-011-9650-6.
    36. A. Lalegname and A.-M. Sändig, “Wave-crack interaction in finite elastic bodies,” Bericht 2011/002 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2011. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-002.pdf
    37. Maier, “Ein iteratives Gebietszerlegungsverfahren für die Reduzierte-Basis-Methode,” diploma thesis, 2011.
    38. T. A. Mel’nyk, Iu. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, Art. no. 7, 2011, doi: 10.1002/mma.1395.
    39. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011, doi: 10.1029/2011WR010685.
    40. Th. Richter et al., “ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering,” in Proceedings of the 2011 IEEE International Symposium on Multimedia, Washington, DC, USA, 2011, pp. 537--542. doi: 10.1109/ISM.2011.95.
    41. T. Ruiner, “A-posteriori Fehlersch�tzer f�r Reduzierte Mechanische Systeme zweiter  Ordnung,” Diploma thesis, 2011.
    42. A. Rössle and A.-M. Sändig, “Corner Singularities and Regularity Results for the Reissner/Mindlin  Plate Model,” Journal of Elasticity, vol. 103, no. 2, Art. no. 2, 2011, doi: 10.1007/s10659-010-9258-5.
    43. G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,” Applied Mathematics and Computation, vol. 217, no. 24, Art. no. 24, 2011, doi: 10.1016/j.amc.2011.04.071.
    44. D. Schuster, “SVD-basierte Modellreduktion für Elastische Mehrkörpersysteme,” Diploma thesis, 2011.
    45. K. G. Siebert, “A Convergence Proof for Adaptive Finite Elements without Lower Bound,” IMA Journal of Numerical Analysis, vol. 31, no. 3, Art. no. 3, 2011, [Online]. Available: http://imajna.oxfordjournals.org/content/31/3/947.abstract
    46. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” Warsaw, 2011.
    47. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” SRC SimTech, 2011. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=486
    48. O. Zeeb, “Reduzierte Basis Modelle f�r Formoptimierung unter Verwendung des  SQP-Algorithmus,” Diploma thesis, 2011.
  12. 2010

    1. A. Barth, “A finite element method for martingale-driven stochastic partial  differential equations,” Commun. Stoch. Anal., vol. 4, no. 3, Art. no. 3, 2010, [Online]. Available: https://www.math.lsu.edu/cosa/4-3-04209.pdf
    2. S. Brdar, A. Dedner, and R. Klöfkorn, “CDG Method for Navier-Stokes Equations,” in Proc. of the 13th International Conference on Hyperbolic Problems:  Theory, Numerics, Applications, 2010.
    3. K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, “An $h$-narrow band finite-element method for elliptic equations on  implicit surfaces,” IMA J. Numer. Anal., vol. 30, no. 2, Art. no. 2, 2010.
    4. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “A Generic Interface for Parallel and Adaptive Scientific Computing:  Abstraction Principles and the DUNE-FEM Module,” Computing, vol. 90, no. 3--4, Art. no. 3--4, 2010, [Online]. Available: http://www.springerlink.com/content/vj103u6079861001/
    5. A. Dedner, R. Klöfkorn, and D. Kröner, “Higher Order Adaptive and Parallel Simulations Including Dynamic  Load Balancing with the Software Package DUNE,” in High Performance Computing in Science and Engineering ’09, W. N. et al., Ed. Springer, 2010, pp. 229–239. doi: 10.1007/978-3-642-04665-0_16.
    6. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” University of Münster, Preprint Angewandte Mathematik und Informatik 02/10-N, 2010.
    7. M. Feistauer and A.-M. Sändig, “Graded Mesh Re?nement and Error Estimates of Higher Order for DGFE-solutions  of Elliptic Boundary Value Problems in Polygons,” Bericht 2010/005 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2010. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-005.pdf
    8. M. Fornasier, A. Langer, and C.-B. Schönlieb, “A convergent overlapping domain decomposition method for total variation  minimization,” Numerische Mathematik, vol. 116, no. 4, Art. no. 4, 2010, [Online]. Available: http://link.springer.com/article/10.1007/s00211-010-0314-7
    9. M. Geveler, D. Ribbrock, D. Göddeke, and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-Water Equations with  Fluid-Structure Interaction on Multi- and Manycore Processors,” in Facing the Multicore Challenge, vol. 6310, R. Keller, D. Kramer, and J.-P. Weiß, Eds. Springer, 2010, pp. 92--104. doi: 10.1007/978-3-642-16233-6_11.
    10. D. Göddeke and R. Strzodka, “Mixed Precision GPU-Multigrid Solvers with Strong Smoothers,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. CRC Press, 2010, pp. 131--147. doi: 10.1201/b10376-11.
    11. D. Göddeke, “Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations  on GPU Clusters,” Technische Universität Dortmund, Fakultät für Mathematik, 2010. [Online]. Available: http://hdl.handle.net/2003/27243
    12. B. Haasdonk, “Effiziente und Gesicherte Modellreduktion für Parametrisierte Dynamische Systeme.,” at - Automatisierungstechnik, vol. 58, no. 8, Art. no. 8, 2010.
    13. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space.,” University of Stuttgart, 2010.
    14. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Approximating Functions by Using Daubechies Wavelets and comparison  with Other Approximation Methods,” University of Sistan and Baluchestan, Zahedan, Iran, 2010.
    15. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Numerical Solution of Linear Fredholm Integral Equations by Using  Daubechies Wavelets,” Shahid Chamran University - Jangjeon Mathematical Society(Iran-S.Korea),  Ahvaz, Iran, 2010.
    16. M. Herty, J. Mohring, and V. Sachers, “A new model for gas flow in pipe networks,” Math. Methods Appl. Sci., vol. 33, no. 7, Art. no. 7, 2010, doi: 10.1002/mma.1197.
    17. M. Kargar, H. Minbashian, and M. Mashinchi, “Solving Delay Differential Equation with Fuzzy Coefficients,” Shahid Beheshti Univ. Of Tehran, Tehran, Iran, 2010.
    18. M. Kargar, H. Minbashian, and M. A. Yaghoobi., “Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification,” 2010.
    19. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Journal of Mathematical Biology, vol. 60, no. 6, Art. no. 6, 2010, doi: 10.1007/s00285-009-0284-5.
    20. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.3934/nhm.2010.5.661.
    21. K. Kohls, A. Rösch, and K. G. Siebert, “Analysis of Adaptive Finite Elements for Constrained Optimal Control  Problems.” pp. 308–311, 2010. doi: 10.4171/OWR/2010/07.
    22. D. Komatitsch, Michéa, G. Erlebacher, and D. Göddeke, “Running 3D finite-difference or spectral-element wave propagation  codes 25x to 50x faster using a GPU cluster,” in 72nd European Association of Geoscientists and Engineers Conference  and Exhibition (EAGE’2010), 2010, vol. 4, pp. 2920--2924.
    23. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seismic wave propagation modeling with  MPI on a large GPU cluster,” Journal of Computational Physics, vol. 229, pp. 7692--7714, 2010, doi: 10.1016/j.jcp.2010.06.024.
    24. D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, “Modeling the propagation of elastic waves using spectral elements  on a cluster of 192 GPUs,” Computer Science -- Research and Development, vol. 25, no. 1--2, Art. no. 1--2, 2010, doi: 10.1007/s00450-010-0109-1.
    25. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” Bericht 2010/008 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2010. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-008.pdf
    26. H. Li, “Modellreduktion f�r Stochastische Modelle Biochemischer Netzwerke.” 2010.
    27. E. Pekalska and B. Haasdonk, “Indefinite Kernel Discriminant Analysis,” 2010.
    28. D. Ribbrock, M. Geveler, D. Göddeke, and S. Turek, “Performance and Accuracy of Lattice-Boltzmann Kernels on Multi-  and Manycore Architectures,” in International Conference on Computational Science (ICCS’10), 2010, vol. 1, pp. 239--247. doi: 10.1016/j.procs.2010.04.027.
    29. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337. doi: 10.1090/conm/526/10387.
    30. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Int. J. Numer. Anal. Model., vol. 7, no. 3, Art. no. 3, 2010, [Online]. Available: http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-3-10/2010-03-09.pdf
    31. S. Turek, D. Göddeke, S. H. M. Buijssen, and H. Wobker, “Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated  Clusters,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. CRC Press, 2010, pp. 113--130. doi: 10.1201/b10376-10.
    32. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “FEAST -- Realisation of hardware-oriented Numerics for HPC  simulations with Finite Elements,” Concurrency and Computation: Practice and Experience, vol. 22, no. 6, Art. no. 6, 2010, doi: 10.1002/cpe.1584.
  13. 2009

    1. A. Barth, “Stochastic Partial Differential Equations: Approximations  and Applications,” University of Oslo, CMA, 2009. [Online]. Available: https://www.duo.uio.no/handle/10852/10669
    2. T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, “Solvability and regularity results to boundary-transmission problems  for metallic and piezoelectric elastic materials,” Mathematische Nachrichten, vol. 282, no. 8, Art. no. 8, 2009, doi: 10.1002/mana.200610790.
    3. R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, “Optimal control in networks of pipes and canals,” SIAM J. Control Optim., vol. 48, no. 3, Art. no. 3, 2009, doi: 10.1137/080716372.
    4. A. Dedner and R. Klöfkorn, “Stabilization for Discontinuous Galerkin Methods Applied to Systems  of Conservation Laws,” in Proc. of the 12th International Conference on Hyperbolic Problems,  Proceedings of Symposia in Applied Mathematics 67, Part 1, 253-268, 2009.
    5. M. Drohmann, “Reduzierte Basis Methode für die Richards Gleichung,” Diploma Thesis, 2009.
    6. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” 2009.
    7. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast  of the conductivity,” SIAM J. Sci. Comp., vol. 31, no. 4, Art. no. 4, 2009, doi: 10.1137/080731906.
    8. M. Fischer, “Einfluss der Snapshot-Wahl bei der POD basierten Reduktion.” 2009.
    9. M. Fornasier, A. Langer, and C.-B. Schönlieb, “Domain decomposition methods for compressed sensing,” 2009. [Online]. Available: http://arxiv.org/abs/0902.0124
    10. F. D. Gaspoz and P. Morin, “Convergence rates for adaptive finite elements,” IMA J. Numer. Anal., vol. 29, no. 4, Art. no. 4, 2009.
    11. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, Art. no. 5, 2009, [Online]. Available: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8194518
    12. G. Guerra, F. Marcellini, and V. Schleper, “Balance laws with integrable unbounded sources,” SIAM J. Math. Anal., vol. 41, no. 3, Art. no. 3, 2009, doi: 10.1137/080735436.
    13. D. Göddeke, S. H. M. Buijssen, H. Wobker, and S. Turek, “GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes  Solver,” in High Performance Computing & Simulation 2009, 2009, pp. 12--21. doi: 10.1109/HPCSIM.2009.5191718.
    14. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics  Code with FEASTGPU,” International Journal of Computational Science and Engineering, vol. 4, no. 4, Art. no. 4, 2009, doi: 10.1504/IJCSE.2009.029162.
    15. B. Haasdonk, M. Ohlberger, T. Tonn, and K. Urban, MoRePaS 2009 Book of Abstracts. University of Münster, 2009.
    16. B. Haasdonk and M. Ohlberger, “Efficient a-posteriori Error Estimation for Parametrized Reduced Dynamical Systems,” 2009.
    17. B. Haasdonk and M. Ohlberger, “Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems,” 2009. [Online]. Available: http://www.ians.uni-stuttgart.de/am/Haasdonk/publications/mathmod2009_Nadapt.pdf
    18. B. Haasdonk and M. Ohlberger, “Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online Decomposition,” 2009. [Online]. Available: http://www.ians.uni-stuttgart.de/am/Haasdonk/publications/mathmod2009_PMOR.pdf
    19. B. Haasdonk and M. Ohlberger, “Reduced basis method for explicit finite volume approximations of nonlinear conservation laws,” in Hyperbolic problems: theory, numerics and applications, vol. 67, Providence, RI: Amer. Math. Soc., 2009, pp. 605--614.
    20. N. Jung, B. Haasdonk, and D. Kröner, “Reduced Basis Method for Quadratically Nonlinear Transport Equations,” IJCSM, vol. 2, no. 4, Art. no. 4, 2009.
    21. J. Kelkel and C. Surulescu, “A weak solution approach to a reaction--diffusion system modeling  pattern formation on seashells,” Mathematical Methods in the Applied Sciences, vol. 32, no. 17, Art. no. 17, 2009, doi: 10.1002/mma.1133.
    22. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws,” J. Differential Equations, vol. 247, no. 12, Art. no. 12, 2009, doi: 10.1016/j.jde.2009.05.006.
    23. R. Klöfkorn, “Numerics for Evolution Equations --- A General Interface Ba\-sed  De\-sign Con\-cept,” Albert-Ludwigs-Universität Freiburg, 2009.
    24. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Theory of Adaptive Finite Element Methods: An Introduction,” in Multiscale, Nonlinear and Adaptive Approximation, R. A. DeVore and A. Kunoth, Eds. Springer, 2009, pp. 409–542. doi: 10.1007/978-3-642-03413-8_12.
    25. E. Pekalska and B. Haasdonk, “Kernel Discriminant Analysis with Positive Definite and Indefinite Kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, Art. no. 6, 2009.
    26. V. Schleper, “Modeling, Analysis and Optimal Control of Gas Pipeline Networks,” Dissertation, Fachbereich Mathematik, TU Kaiserslautern, Verlag Dr. Hut, München, 2009. [Online]. Available: http://www.dr.hut-verlag.de/978-3-86853-322-4.html
    27. A.-M. Sändig, “Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen,  Vorlesung im Wintersemester 2008/09,” Bericht 2009/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2009. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2009/2009-001.pdf
    28. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Institute for Analysis and Computational Mathematics, Otto-von-Guericke  University Magdeburg, 2009. [Online]. Available: http://www.math.uni-magdeburg.de/up_preprints/preprint18_2009.pdf
    29. D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C. Gutwenger, “HONEI: A collection of libraries for numerical computations targeting  multiple processor architectures,” Computer Physics Communications, vol. 180, no. 12, Art. no. 12, 2009, doi: 10.1016/j.cpc.2009.04.018.
    30. D. Wirtz, “SegMedix - Development and Application of a Medical Imaging  Framework,” Diplomarbeit, University of M�nster, Einsteinstr. 58, 2009.
  14. 2008

    1. H. Antil, A. Gantner, R. H. W. Hoppe, D. K�ster, K. G. Siebert, and A. Wixforth, “Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio-chips,” in Domain Decomposition Methods in Science and Engineering XVII, 2008, vol. 60, pp. 305–312. doi: 10.1007/978-3-540-75199-1_36.
    2. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part I: Abstract Framework,” Computing, vol. 82, no. 2--3, Art. no. 2--3, 2008, [Online]. Available: http://www.springerlink.com/content/4v77662363u41534/
    3. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part II: Implementation and Tests in DUNE,” Computing, vol. 82, no. 2--3, Art. no. 2--3, 2008, [Online]. Available: http://www.springerlink.com/content/gn177r643q2168g7/
    4. S. H. M. Buijssen, H. Wobker, D. Göddeke, and S. Turek, “FEASTSolid and FEASTFlow: FEM Applications Exploiting FEAST’s  HPC Technologies,” in High Performance Computing in Science and Engineering ’08, vol. 2008, W. Nagel, D. Kröner, and M. Resch, Eds. Springer, 2008, pp. 425--440. doi: 10.1007/978-3-540-88303-6_30.
    5. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method,” SIAM Journal on Numerical Analysis, vol. 46, no. 5, Art. no. 5, 2008, doi: 10.1137/07069047X.
    6. R. M. Colombo, M. Herty, and V. Sachers, “On $2\times2$ conservation laws at a junction,” SIAM J. Math. Anal., vol. 40, no. 2, Art. no. 2, 2008, doi: 10.1137/070690298.
    7. A. Dedner and R. Klöfkorn, “The compact discontinuous Galerkin method for elliptic problems,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 761--776.
    8. A. Dedner, R. Klöfkorn, and D. Kröner, “Efficient higher order methods for convection dominated problems  on unstructured grids and applications,” Comput.~Tech., vol. 13, pp. 25–35, 2008.
    9. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
    10. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase  model,” Indiana Univ. Math. J., vol. 57, no. 2, Art. no. 2, 2008, doi: 10.1512/iumj.2008.57.3271.
    11. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” in Proceedings of ALGORITMY 2009, 2008, pp. 111--120. [Online]. Available: http://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2009/drohmann.pdf
    12. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation  Laws on Riemannian Manifolds,” in Finite Volumes for Complex Applications 5, 2008.
    13. D. Göddeke et al., “Using GPUs to Improve Multigrid Solver Performance on a Cluster,” International Journal of Computational Science and Engineering, vol. 4, no. 1, Art. no. 1, 2008, doi: 10.1504/IJCSE.2008.021111.
    14. D. Göddeke and R. Strzodka, “Performance and accuracy of hardware-oriented native, emulated-  and mixed-precision solvers in FEM simulations (Part 2: Double  Precision GPUs),” Fakultät für Mathematik, Technische Universität  Dortmund, 2008.
    15. B. Haasdonk and M. Ohlberger, “Adaptive basis enrichment for the reduced basis method applied to finite volume schemes,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 471--478.
    16. B. Haasdonk and E. Pekalska, “Indefinite Kernel Fisher Discriminant,” 2008.
    17. B. Haasdonk and M. Ohlberger, “Reduced basis method for finite volume approximations of parametrized linear evolution equations,” ESAIM: M2AN, vol. 42, no. 2, Art. no. 2, 2008, doi: 10.1051/m2an:2008001.
    18. B. Haasdonk and E. Pekalska, “Classification with Kernel Mahalanobis Distances,” 2008.
    19. B. Haasdonk, M. Ohlberger, and G. Rozza, “A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators,” ETNA, Electronic Transactions on Numerical Analysis, vol. 32, pp. 145--161, 2008, [Online]. Available: http://etna.mcs.kent.edu/vol.32.2008/pp145-161.dir/pp145-161.pdf
    20. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase  transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008, [Online]. Available: https://www.researchgate.net/profile/Christian_Rohde2/publication/228406932_Local_discontinuous-Galerkin_schemes_for_model_problems_in_phase_transition_theory/links/00b4952cb030e0da90000000.pdf
    21. C.-J. Heine, “Finite element methods on unfitted meshes,” Preprint Fak. f. Math. Phys. Univ. Freiburg, no. 08–09, Art. no. 08–09, 2008.
    22. G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. Berlin: Springer-Verlag, 2008, p. xx+618. doi: 10.1007/978-3-540-68545-6.
    23. O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” Comput. Methods Appl. Math., vol. 8, no. 1, Art. no. 1, 2008.
    24. N. Jung, “Anwendung der Reduzierten Basis Methode auf quadratisch nichtlineare  Transportgleichungen,” Diploma Thesis, 2008.
    25. R. Klöfkorn, D. Kröner, and M. Ohlberger, “Parallel Adaptive Simulation of PEM Fuel Cells,” in Mathematics -- Key Technology for the Future, H.-J. Krebs and W. Jäger, Eds. Springer, 2008, pp. 235–249. doi: 10.1007/978-3-540-77203-3_16.
    26. I. Kröker, “Finite volume methods for conservation laws with noise,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 527--534.
    27. D. Köster, O. Kriessl, and K. G. Siebert, “Design of Finite Element Tools for Coupled Surface and Volume Meshes,” Numerical Mathematics: Theory, Methods and Applications, vol. 1, no. 3, Art. no. 3, 2008, [Online]. Available: http://www.global-sci.org/nmtma/
    28. M. Köster, D. Göddeke, H. Wobker, and S. Turek, “How to gain speedups of 1000 on single processors with fast FEM  solvers ---- Benchmarking numerical and computational efficiency,” Fakultät für Mathematik, TU Dortmund, 2008.
    29. A. Lalegname, A. Sändig, and G. Sewell, “Analytical and numerical treatment of a dynamic crack model,” International Journal of Fracture, vol. 152, no. 2, Art. no. 2, 2008, doi: 10.1007/s10704-008-9274-7.
    30. P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Elements,” Mathematical Models and Methods in Applied Science, vol. 18, pp. 707–737, 2008, doi: 10.1142/S0218202508002838.
    31. P. Märkl and A.-M. Sändig, “Singularities of the Stokes System in Polygons,” Bericht 2008/009 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2008. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2008/2008-009.pdf
    32. E. Pekalska and B. Haasdonk, “Kernel Quadratic Discriminant Analysis with Positive and Indefinite Kernels,” University of Münster, Preprint Angewandte Mathematik und Informatik 06/08, 2008.
    33. H. Perfahl and A.-M. Sändig, “A Continuum-Mechanical Approach to Avascular Solid Tumor Growth,” Bericht 2008/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2008. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2008/2008-001.pdf
    34. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899. doi: 10.1007/978-3-540-75712-2_93.
    35. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, Art. no. 12, 2008, doi: 10.1142/S0218202508003327.
    36. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “UCHPC -- Unconventional High-Performance Computing for Finite  Element Simulations,” 2008.
  15. 2007

    1. J. M. Cascón, R. H. Nochetto, and K. G. Siebert, “Design and Convergence of AFEM in $H(div)$,” Mathematical Models & Methods in Applied Sciences, vol. 17, no. 11, Art. no. 11, 2007, doi: 10.1142/S0218202507002492.
    2. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Optimal Cardinality of an Adaptive Finite Element Method.” pp. 1719–1722, 2007. doi: 10.4171/OWR/2007/29.
    3. R. Ewing, O. Iliev, R. Lazarov, and I. Rybak, “On two-level preconditioners for flow in porous media,” Fraunhofer ITWM, 121, 2007.
    4. J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger, “Guest Editorial for Special Issue on Modelling and Simulation of PEM-FC,” Journal of Fuel Cell Science and Technology, 2007.
    5. A. Ganter, R. H. W. Hoppe, D. Köster, K. G. Siebert, and A. Wixforth, “Numerical Simulation of Piezoelectrically Agitated Surface Acoustic  Waves on Microfluidic Biochips,” Computing and Visualization in Science, vol. 10, no. 3, Art. no. 3, 2007, doi: 10.1007/s00791-006-0040-y.
    6. D. Göddeke et al., “Exploring weak scalability for FEM calculations on a GPU-enhanced  cluster,” Parallel Computing, vol. 33, no. 10--11, Art. no. 10--11, 2007, doi: 10.1016/j.parco.2007.09.002.
    7. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-processor acceleration of an unmodified parallel structural mechanics  code with FEAST-GPU.” 2007.
    8. D. Göddeke, R. Strzodka, and S. Turek, “Performance and accuracy of hardware-oriented native-, emulated-  and mixed-precision solvers in FEM simulations,” International Journal of Parallel, Emergent and Distributed Systems, vol. 22, no. 4, Art. no. 4, 2007, doi: 10.1080/17445760601122076.
    9. B. Haasdonk, M. Ohlberger, and G. Rozza, “A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators,” University of Münster, 09/07-N, FB 10, 2007.
    10. B. Haasdonk and M. Ohlberger, “Basis Construction for Reduced Basis Methods By Adaptive Parameter Grids,” in Proc. International Conference on Adaptive Modeling and Simulation, ADMOS 2007, 2007.
    11. B. Haasdonk and H. Burkhardt, “Invariant Kernels for Pattern Analysis and Machine Learning,” Machine Learning, vol. 68, pp. 35--61, 2007, doi: DOI 10.1007/s10994-007-5009-7.
    12. B. Haasdonk and H. Burkhardt, “Classification with Invariant Distance Substitution Kernels,” 2007.
    13. M. Herty and V. Sachers, “Adjoint calculus for optimization of gas networks,” Netw. Heterog. Media, vol. 2, no. 4, Art. no. 4, 2007, doi: 10.3934/nhm.2007.2.733.
    14. O. Iliev, I. Rybak, and J. Willems., “On upscaling heat conductivity for a class of industrial problems,” Fraunhofer ITWM, 120, 2007.
    15. O. Iliev and I. Rybak, “On approximation property of multipoint flux approximation method,” Fraunhofer ITWM, 119, 2007.
    16. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, Art. no. 6, 2007, doi: 10.1051/m2an:2007048.
    17. P. Morin, K. G. Siebert, and A. Veeser, “Basic Convergence Results for Conforming Adaptive Finite Elements,” Proceedings in Applied Mathematics and Mechanics, vol. 7, no. 1, Art. no. 1, 2007, doi: 10.1002/pamm.200700771.
    18. P. Morin, K. G. Siebert, and A. Veeser, “Convergence of Finite Elements Adapted for Weaker Norms,” in Applied and Industrial Matematics in Italy - II, Hackensack, NJ, 2007, vol. 75, pp. 468–479. doi: 10.1142/9789812709394_0041.
    19. P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Element  Methods.” pp. 1705–1708, 2007. doi: 10.4171/OWR/2007/29.
    20. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, Art. no. 1, 2007, doi: 10.1016/j.jde.2006.11.010.
    21. H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” Applied Physics Letters, vol. 91, no. 23, Art. no. 23, 2007, doi: http://dx.doi.org/10.1063/1.2819603.
    22. K. G. Siebert and A. Veeser, “A Unilaterally Constrained Quadratic Minimization with Adaptive Finite  Elements,” SIAM Journal on Optimization, vol. 18, no. 1, Art. no. 1, 2007, doi: 10.1137/05064597X.
  16. 2006

    1. R. Backofen et al., “A Bottom-up approach to Grid-Computing at a University: the Black-Forest-Grid  Initiative,” Praxis der Informationsverarbeitung und Kommunikation, vol. 29, no. 2, Art. no. 2, 2006.
    2. A. Barth, “Distribution of the First Rendezvous Time of Two Geometric  Brownian Motions,” 2006.
    3. P. Bastian et al., “The Distributed and Unified Numerics Environment (DUNE),” 2006.
    4. A. Burri, A. Dedner, D. Diehl, R. Klöfkorn, and M. Ohlberger, “A general object oriented framework for discretizing non-linear evolution  equations,” in Advances in High Performance Computing and Computational Sciences, vol. 93, Y. S. et al., Ed. Springer, 2006, pp. 69–87. doi: 10.1007/978-3-540-33844-4_7.
    5. A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger, “An efficient implementation of an adaptive and parallel grid in DUNE,” in Computational Science and High Performance Computing II, vol. 91, E. K. et al., Ed. Springer, 2006, pp. 67–82. doi: 10.1007/3-540-31768-6_7.
    6. D. Diehl and C. Rohde, “On the structure of MHD shock waves in diffusive-dispersive media,” J. Math. Fluid Mech., vol. 8, no. 1, Art. no. 1, 2006, doi: 10.1007/s00021-004-0149-z.
    7. D. Göddeke, C. Becker, and S. Turek, “Integrating GPUs as fast co-processors into the parallel FE package  FEAST,” in 19th Symposium Simulationstechnique (ASIM’06), 2006, pp. 277--282.
    8. B. Haasdonk and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations,” University of Freiburg, Institute of Applied Mathematics, 12/2006, 2006.
    9. B. Haasdonk, R. Klöfkorn, M. Ohlberger, J. Schumacher, and K. Steinkamp, “Complete 3D-Modelling of a PEM Fuel Cell and Stack,” Universität Freiburg, Abteilung für Angewandte Mathematik, 2006.
    10. J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” in Hyperbolic problems: theory, numerics and applications. I, Yokohama Publ., Yokohama, 2006, pp. 147--154.
    11. C.-J. Heine, “Computations of form and stability of rotating drops with finite  elements,” IMA J. Numer. Anal., vol. 26, no. 4, Art. no. 4, 2006.
    12. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, Art. no. 6, 2006, doi: 10.1137/S0036142903438136.
    13. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, Art. no. 10–11, 2006, doi: 10.1016/j.apnum.2006.03.025.
    14. R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations,” Numerische Mathematik, vol. 104, no. 4, Art. no. 4, 2006, doi: 10.1007/s00211-006-0027-0.
    15. K.-D. Peschke et al., “Using Transformation Knowledge for the Classification of Raman Spectra of Biological Samples,” in BIOMED 2006, Proc. of the 4th IASTED International Conference on Biomedical Engineering, 2006, pp. 288–293.
    16. R. Strzodka and D. Göddeke, “Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate  PDE Solvers from Low Precision Components,” in Proceedings of the 14th Annual IEEE Symposium on Field-Programmable  Custom Computing Machines (FCCM’06), 2006, pp. 259--270. doi: 10.1109/FCCM.2006.57.
    17. R. Strzodka and D. Göddeke, “Mixed Precision Methods for Convergent Iterative Schemes,” in Proceedings of the Workshop on Edge Computing Using New Commodity  Architectures, 2006, p. D-59--60.
  17. 2005

    1. P. Bastian et al., “Towards a Unified Framework for Scientific Computing,” in Domain Decomposition Methods in Science and Engineering, 2005, no. 40, pp. 167–174. doi: 10.1007/3-540-26825-1_13.