Research

Institute of Applied Analysis and Numerical Simulation

List of publications.

Research highlights, all publications, and successes of the individual groups are available on the group pages.

Selected Publications

  1. 2025

    1. A. Barth and A. Stein, “A stochastic transport problem with Lévy noise: Fully discrete numerical approximation.,” Mathematics and Computers in Simulation, vol. 227, pp. 347–370, 2025, [Online]. Available: https://doi.org/10.1016/j.matcom.2024.07.036
  2. 2024

    1. A. F. Albişoru, M. Kohr, I. Papuc, and W. L. Wendland, “On some Robin–transmission problems for the Brinkman system and a Navier–Stokes type system,” Math. Meth. Appl. Sci., pp. 1–28, 2024, doi: https://doi.org/10.1002/mma.10170.
    2. M. Alkämper, J. Magiera, and C. Rohde, “An Interface-Preserving Moving Mesh in Multiple Space  Dimensions,” ACM Trans. Math. Softw., vol. 50, no. 1, Art. no. 1, Mar. 2024, doi: 10.1145/3630000.
    3. C. Beschle and A. Barth, “Complexity analysis of quasi continuous level Monte Carlo,” ESAIM: Mathematical Modelling and Numerical Analysis, 2024, doi: 10.1051/m2an/2024039.
    4. C. A. Beschle and A. Barth, “Quasi continuous level Monte Carlo for random elliptic PDEs,” in Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2022, vol. 460, in Hinrichs, A., Kritzer, P., Pillichshammer, F. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2022, vol. 460. , Springer Proceedings in Mathematics & Statistics, 2024, pp. 3–31. doi: 10.1007/978-3-031-59762-6_1.
    5. M. Bondanza, T. Nottoli, M. Nottoli, L. Cupellini, F. Lipparini, and B. Mennucci, “The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics,” The Journal of Chemical Physics, vol. 160, no. 13, Art. no. 13, Apr. 2024, doi: 10.1063/5.0198251.
    6. P. Buchfink, S. Glas, B. Haasdonk, and B. Unger, “Model reduction on manifolds: A differential geometric framework.” 2024. [Online]. Available: https://arxiv.org/abs/2312.01963
    7. X. Claeys, M. Hassan, and B. Stamm, “Continuity estimates for Riesz potentials on polygonal boundaries,” Partial Differential Equations and Applications, Jun. 2024, doi: 10.1007/s42985-024-00280-4.
    8. F. Döppel, T. Wenzel, R. Herkert, B. Haasdonk, and M. Votsmeier, “Goal‐Oriented Two‐Layered Kernel Models as Automated Surrogates for Surface Kinetics in Reactor Simulations,” Chemie Ingenieur Technik, vol. 96, no. 6, Art. no. 6, Jan. 2024, doi: 10.1002/cite.202300178.
    9. T. Ghosh, C. Bringedal, C. Rohde, and R. Helmig, “A phase-field approach to model evaporation from porous media: Modeling and upscaling.” 2024. [Online]. Available: https://arxiv.org/abs/2112.13104
    10. M. Hammer et al., “A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs,” Biomechanics and Modeling in Mechanobiology, vol. 23, no. 3, Art. no. 3, Jun. 2024, doi: 10.1007/s10237-023-01804-4.
    11. R. Herkert, P. Buchfink, T. Wenzel, B. Haasdonk, P. Toktaliev, and O. Iliev, “Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data,” Mathematics, vol. 12, no. 13, Art. no. 13, 2024, doi: 10.3390/math12132111.
    12. R. R. Herkert, “Replication Code for: Greedy Kernel Methods for Approximating Breakthrough Curves for Reactive Flow from 3D Porous Geometry Data.” 2024. doi: 10.18419/darus-4227.
    13. C. Homs-Pons et al., “Coupled Simulation and Parameter Inversion for Neural System  and Electrophysiological Muscle Models,” GAMM-Mitteilungen, Mar. 2024, doi: 10.1002/gamm.202370009.
    14. G. C. Hsiao, T. Sánchez-Vizuet, and W. L. Wendland, “Boundary-field formulation for transient electromagnetic scattering by dielectric scatterers and coated conductors,” SIAM J. Math. Analysis, to appear, 2024. doi: https://doi.org/10.48550/arXiv.2406.05367.
    15. F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Knowledge-based modeling of simulation behavior for Bayesian optimization,” Computational Mechanics, vol. 74, no. 1, Art. no. 1, Jul. 2024, doi: 10.1007/s00466-023-02427-3.
    16. F. Huber, P.-C. Bürkner, D. Göddeke, and M. Schulte, “Knowledge-based modeling of simulation behavior for Bayesian  optimization,” Computational Mechanics, Jan. 2024, doi: 10.1007/s00466-023-02427-3.
    17. M. Hörl and C. Rohde, “Rigorous Derivation of Discrete Fracture Models for Darcy Flow in the Limit of Vanishing Aperture,” Netw. Heterog. Media, vol. 19, no. 1, Art. no. 1, 2024, doi: 10.3934/nhm.2024006.
    18. A. Jha, “Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations,” Applied Mathematics Letters, vol. 157, p. 109192, Jun. 2024, doi: 10.1016/j.aml.2024.109192.
    19. P. Knobloch, D. Kuzmin, and A. Jha, “Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations,” Journal of Computational Physics, vol. 518, p. 113305, 2024, doi: 10.1016/j.jcp.2024.113305.
    20. M. Kohr, V. Nistor, and W. L. Wendland, “The Stokes operator on manifolds with cylindrical ends,” Journal of Differential Equations, no. 407, Art. no. 407, 2024, doi: https://doi.org/10.1016/j.jde.2024.06.017.
    21. E. B. Lindgren, H. Avis, A. Miller, B. Stamm, E. Besley, and A. J. Stace, “The significance of multipole interactions for the stability of regular structures composed from charged particles,” Journal of Colloid and Interface Science, vol. 663, pp. 458–466, Jun. 2024, doi: 10.1016/j.jcis.2024.02.146.
    22. M. Lukácová-Medvid’ová and C. Rohde, “Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness,” Accepted for publication in Jahresber. Dtsch. Math.-Ver. in Accepted for publication in Jahresber. Dtsch. Math.-Ver. 2024.
    23. M. Lukácová-Medvid’ová and C. Rohde, “Mathematical Challenges for the Theory of Hyperbolic Balance Laws in Fluid Mechanics: Complexity, Scales, Randomness.” 2024.
    24. J. Magiera and C. Rohde, “A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate,” Communications on Applied Mathematics and Computation, 2024, doi: 10.1007/s42967-023-00349-8.
    25. B. Maier, D. Göddeke, F. Huber, T. Klotz, O. Röhrle, and M. Schulte, “OpenDiHu: An Efficient and Scalable Framework for Biophysical  Simulations of the Neuromuscular System,” Journal of Computational Science, vol. 79, no. 102291, Art. no. 102291, Jul. 2024, doi: 10.1016/j.jocs.2024.102291.
    26. B. Maier, D. Göddeke, F. Huber, T. Klotz, O. Röhrle, and M. Schulte, “OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System,” Journal of Computational Science, vol. 79, 2024, doi: https://doi.org/10.1016/j.jocs.2024.102291.
    27. T. A. Mel’nyk and T. Durante, “Spectral problems with perturbed Steklov conditions in thick junctions with branched structure.,” Applicable Analysis, pp. 1–26, 2024, doi: https://doi.org/10.1080/00036811.2024.2322644.
    28. T. Mel’nyk and C. Rohde, “Asymptotic expansion for convection-dominated transport in a thin graph-like junction.,” Analysis and Applications, vol. 22 (05), pp. 833–879, 2024, doi: https://doi.org/10.1142/S0219530524500040.
    29. T. Mel’nyk and C. Rohde, “Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks,” J. Math. Anal. Appl., vol. 529, no. 1, Art. no. 1, 2024, doi: 10.1016/j.jmaa.2023.127587.
    30. T. Mel’nyk and C. Rohde, “Reduced-dimensional modelling for nonlinear convection-dominated flow in cylindric domains,” Nonlinear Differ. Equ. Appl., vol. 31:105, 2024, doi: https://doi.org/10.1007/s00030-024-00997-6.
    31. T. Mel’nyk and C. Rohde, “Puiseux asymptotic expansions for convection-dominated transport problems in thin graph-like networks: strong boundary interactions,” Asymptotic Analysis, vol. 137, pp. 27–52, 2024, doi: 10.3233/ASY-231876.
    32. Y. Miao, C. Rohde, and H. Tang, “Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities,” Stoch. Partial Differ. Equ. Anal. Comput., vol. 12, no. 1, Art. no. 1, 2024, doi: 10.1007/s40072-023-00291-z.
    33. M. Nottoli, M. F. Herbst, A. Mikhalev, A. Jha, F. Lipparini, and B. Stamm, “ddX: Polarizable continuum solvation from small molecules to proteins,” WIREs Computational Molecular Science, Jul. 2024, doi: 10.1002/wcms.1726.
    34. M. Nottoli, E. Vanich, L. Cupellini, G. Scalmani, C. Pelosi, and F. Lipparini, “Importance of Polarizable Embedding for Computing Optical Rotation: The Case of Camphor in Ethanol,” The Journal of Physical Chemistry Letters, pp. 7992–7999, Jul. 2024, doi: 10.1021/acs.jpclett.4c01550.
    35. L. Ruan and I. Rybak, “Stokes-Brinkman-Darcy models for coupled fluid-porous systems: derivation, analysis and validation,” Appl. Math. Comp.  (submitted), 2024.
    36. T. Schollenberger, L. von Wolff, C. Bringedal, I. S. Pop, C. Rohde, and R. Helmig, “Investigation of Different Throat Concepts for Precipitation Processes in Saturated Pore-Network Models,” Transport in Porous Media, Oct. 2024, doi: 10.1007/s11242-024-02125-5.
    37. P. Strohbeck, M. Discacciati, and I. Rybak, “Optimized Schwarz method for the Stokes-Darcy problem with generalized interface conditions,” J. Comput. Phys. (submitted), 2024.
    38. P. Strohbeck and I. Rybak, “Efficient preconditioners for coupled Stokes-Darcy problems with MAC scheme: Spectral analysis and numerical study,” J. Sci. Comput. (submitted), 2024.
    39. W. L. Wendland, “On the construction of the Stokes flow in a domain with cylindrical ends,” Math. Meth. Appl. Sci., pp. 1–6, 2024, doi: https://doi.org/10.1002/mma.10106.
    40. T. Wenzel, B. Haasdonk, H. Kleikamp, M. Ohlberger, and F. Schindler, “Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling,” in Large-Scale Scientific Computations, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computations. Cham: Springer Nature Switzerland, 2024, pp. 117--125.
  3. 2023

    1. F. Bamer, F. Ebrahem, B. Markert, and B. Stamm, “Molecular Mechanics of Disordered Solids,” Archives of computational methods in engineering, vol. 30, no. 3, Art. no. 3, 2023, doi: 10.1007/s11831-022-09861-1.
    2. P. Brehmer, M. F. Herbst, S. Wessel, M. Rizzi, and B. Stamm, “Reduced basis surrogates for quantum spin systems based on tensor networks,” Physical Review E, Aug. 2023, doi: 10.1103/PhysRevE.108.025306.
    3. P. Buchfink, S. Glas, and B. Haasdonk, “Approximation Bounds for Model Reduction on Polynomially Mapped Manifolds.” 2023. [Online]. Available: https://arxiv.org/abs/2312.00724
    4. S. Burbulla, L. Formaggia, C. Rohde, and A. Scotti, “Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models,” Comput. Methods Appl. Mech. Engrg., vol. 403, 2023, doi: https://doi.org/10.1016/j.cma.2022.115699.
    5. S. Burbulla, M. Hörl, and C. Rohde, “Flow in Porous Media with Fractures of Varying Aperture,” SIAM J. Sci. Comput, vol. 45, no. 4, Art. no. 4, 2023, doi: 10.1137/22M1510406.
    6. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    7. E. Cancès, M. F. Herbst, G. Kemlin, A. Levitt, and B. Stamm, “Numerical stability and efficiency of response property calculations in density functional theory,” Letters in Mathematical Physics, vol. 113, no. 1, Art. no. 1, Feb. 2023, doi: 10.1007/s11005-023-01645-3.
    8. G. Dusson, I. M. Sigal, and B. Stamm, “Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of computation, vol. 92, no. 340, Art. no. 340, 2023, doi: 10.1090/mcom/3774.
    9. E. Eggenweiler, J. Nickl, and I. Rybak, “Justification of generalized interface conditions for Stokes-Darcy problems,” in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems, E. Franck, J. Fuhrmann, V. Michel-Dansac, and L. Navoret, Eds., in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. Springer Nature Switzerland, 2023, pp. 275–283. doi: 10.1007/978-3-031-40864-9_22.
    10. M. J. Gander, S. B. Lunowa, and C. Rohde, “Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations,” SIAM J. Sci. Comput., vol. 45, no. 1, Art. no. 1, 2023, doi: 10.1137/21M1415005.
    11. M. J. Gander, S. B. Lunowa, and C. Rohde, “Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations,” in Domain Decomposition Methods in Science and Engineering XXVI, S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, and J. Zou, Eds., in Domain Decomposition Methods in Science and Engineering XXVI. Cham: Springer International Publishing, 2023, pp. 443--450.
    12. B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler, and T. Wenzel, “A New Certified Hierarchical and Adaptive RB-ML-ROM Surrogate Model for Parametrized PDEs,” SIAM Journal on Scientific Computing, vol. 45, no. 3, Art. no. 3, May 2023, doi: 10.1137/22m1493318.
    13. A. Jha, V. John, and P. Knobloch, “Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations,” SIAM Journal on Scientific Computing, vol. 45, no. 4, Art. no. 4, Aug. 2023, doi: 10.1137/21m1466360.
    14. A. Jha, M. Nottoli, A. Mikhalev, C. Quan, and B. Stamm, “Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method,” The Journal of Chemical Physics, vol. 158, p. 104105, Feb. 2023, doi: 10.1063/5.0141025.
    15. J. Keim, A. Schwarz, S. Chiocchetti, C. Rohde, and A. Beck, “A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes,” 2023, doi: 10.13140/RG.2.2.18046.87363.
    16. J. Keim, C.-D. Munz, and C. Rohde, “A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains,” J. Comput. Phys., vol. 474, p. 111830, 2023, doi: https://doi.org/10.1016/j.jcp.2022.111830.
    17. M. Kohr, V. Nistor, and W. L. Wendland, “Layer potentials and essentially translation invariant pseudodifferential operators on manifolds with cylindrical ends,” Postpandemic Operator Theory, Springer-Verlag Berlin, pp. 61–115, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2308.06308
    18. I. Kröker, S. Oladyshkin, and I. Rybak, “Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems,” Comput. Geosci., 2023, doi: 10.1007/s10596-023-10236-z.
    19. T. A. Mel’nyk, Complex Analysis. Springer Nature Switzerland, 2023. doi: https://doi.org/10.1007/978-3-031-39615-1.
    20. T. A. Mel’nyk, “Asymptotic analysis of spectral problems in thick junctions with the branched fractal structure,” Mathematical Methods in the Applied Sciences, vol. 46, no. 3, Art. no. 3, 2023, doi: https://doi.org/10.1002/mma.8692.
    21. C. T. Miller, W. G. Gray, C. E. Kees, I. Rybak, and B. J. Shepherd, “Correction to: Modelling Sediment Transport in Three-Phase Surface Water Systems,” J. Hydraul. Res., vol. 61, pp. 168–171, 2023, doi: 10.1080/00221686.2022.2107580.
    22. F. Mohammadi et al., “A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow,” Comput. Geosci., 2023, doi: 10.1007/s10596-023-10228-z.
    23. M. Nottoli et al., “QM/AMOEBA description of properties and dynamics of embedded molecules,” WIREs Computational Molecular Science, vol. 13, no. 6, Art. no. 6, Jun. 2023, doi: 10.1002/wcms.1674.
    24. F. Pes, É. Polack, P. Mazzeo, G. Dusson, B. Stamm, and F. Lipparini, “A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics,” The Journal of Physical Chemistry Letters, pp. 9720--9726, Oct. 2023, doi: 10.1021/acs.jpclett.3c02098.
    25. L. Ruan and I. Rybak, “Stokes-Brinkman-Darcy models for coupled free-flow and porous-medium systems,” in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems, E. Franck, J. Fuhrmann, V. Michel-Dansac, and L. Navoret, Eds., in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. Springer Nature Switzerland, 2023, pp. 365–373. doi: 10.1007/978-3-031-40864-9_31.
    26. G. Santin, T. Wenzel, and B. Haasdonk, “On the optimality of target-data-dependent kernel greedy interpolation in Sobolev Reproducing Kernel Hilbert Spaces.” 2023. [Online]. Available: https://arxiv.org/abs/2307.09811
    27. D. Seus, F. A. Radu, and C. Rohde, “Towards hybrid two-phase modelling using linear domain decomposition,” Numer. Methods Partial Differential Equations, vol. 39, no. 1, Art. no. 1, 2023, doi: https://doi.org/10.1002/num.22906.
    28. P. Strohbeck, E. Eggenweiler, and I. Rybak, “A modification of the Beavers-Joseph condition for arbitrary flows to the fluid-porous interface,” Transp. Porous Med., vol. 147, no. 3, Art. no. 3, Apr. 2023, doi: 10.1007/s11242-023-01919-3.
    29. P. Strohbeck, C. Riethmüller, D. Göddeke, and I. Rybak, “Robust and efficient preconditioners for Stokes-Darcy problems,” in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems, E. Franck, J. Fuhrmann, V. Michel-Dansac, and L. Navoret, Eds., in Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. Springer Nature Switzerland, 2023, pp. 375–383. doi: 10.1007/978-3-031-40864-9_32.
    30. W. L. Wendland, “My relation with GAMM,” GAMM Rundbrief. [Online]. Available: https://www.gamm.org/wp-content/uploads/2024/03/GAMM_1-23_web.pdf
    31. T. Wenzel, G. Santin, and B. Haasdonk, “Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f -, f · P - and f /P -greedy,” Constructive Approximation, vol. 57, no. 1, Art. no. 1, Feb. 2023, doi: 10.1007/s00365-022-09592-3.
    32. T. Wenzel, G. Santin, and B. Haasdonk, “Stability of convergence rates: Kernel interpolation on non-Lipschitz domains.” 2023. doi: https://doi.org/10.1093/imanum/drae014.
  4. 2022

    1. E. Agullo et al., “Resiliency in numerical algorithm design for extreme scale simulations,” The International Journal of High Performance ComputingApplications, vol. 36, no. 2, Art. no. 2, 2022, doi: 10.1177/10943420211055188.
    2. P. Benner et al., “Die mathematische Forschungsdateninitiative in der NFDI:  MaRDI (Mathematical Research Data Initiative),” GAMM Rundbrief, vol. 2022, no. 1, Art. no. 1, May 2022.
    3. C. Beschle, “Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5,” 2022, doi: 10.18419/darus-3154.
    4. C. Beschle and B. Kovács, “Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces,” Numerische Mathematik, pp. 1--48, 2022, doi: 10.1007/s00211-022-01280-5.
    5. T. Boege et al., “Research-Data Management Planning in the German Mathematical Community.” arXiv, 2022. doi: 10.48550/ARXIV.2211.12071.
    6. P. Buchfinck, S. Glas, and B. Haasdonk, “Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems,” 2022.
    7. S. Burbulla, A. Dedner, M. Hörl, and C. Rohde, “Dune-MMesh: The Dune Grid Module for Moving Interfaces,” J. Open Source Softw., vol. 7, no. 74, Art. no. 74, 2022, doi: 10.21105/joss.03959.
    8. S. Burbulla and C. Rohde, “A finite-volume moving-mesh method for two-phase flow in fracturing porous media,” J. Comput. Phys., p. 111031, 2022, doi: https://doi.org/10.1016/j.jcp.2022.111031.
    9. G. Dusson, I. Sigal, and B. Stamm, “Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators,” Mathematics of Computation, vol. 92, no. 339, Art. no. 339, Sep. 2022, doi: 10.1090/mcom/3774.
    10. E. Eggenweiler, M. Discacciati, and I. Rybak, “Analysis of the Stokes-Darcy problem with generalised interface conditions,” ESAIM Math. Model. Numer. Anal., vol. 56, pp. 727–742, 2022, doi: 10.1051/m2an/2022025.
    11. E. Eggenweiler, “Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation.” Universität Stuttgart, 2022. doi: 10.18419/OPUS-12573.
    12. T. Focks, F. Bamer, B. Markert, Z. Wu, and B. Stamm, “Displacement field splitting of defective hexagonal lattices,” Physical Review B, Jul. 2022, doi: 10.1103/PhysRevB.106.014105.
    13. P. Gavrilenko et al., “A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 378--386.
    14. B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler, and T. Wenzel, “A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs.” arXiv, 2022. doi: 10.48550/ARXIV.2204.13454.
    15. M. Hassan et al., “Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework,” Journal of chemical theory and computation, vol. 18, no. 10, Art. no. 10, 2022, doi: 10.1021/acs.jctc.2c00008.
    16. M. T. Horsch and B. Schembera, “Documentation of epistemic metadata by a mid-level ontology of cognitive processes,” Proc. JOWO 2022, 2022.
    17. G. C. Hsiao, T. Sánchez-Vizuet, and W. L. Wendland, “A Boundary-Field Formulation for Elastodynamic Scattering,” Journal of Elasticity, 2022, doi: https://doi.org/10.1007/s10659-022-09964-7.
    18. D. Hägele et al., “Uncertainty Visualization: Fundamentals and Recent Developments,” it - Information Technology, vol. 64, no. 4–5, Art. no. 4–5, 2022, doi: 10.1515/itit-2022-0033.
    19. K. Jung, B. Schembera, and M. Gärtner, “Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering,” Metadata and Semantic Research, pp. 199--205, 2022, doi: 10.1007/978-3-030-98876-0_17.
    20. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces,” JMAA, vol. 516, no. 1, 126464, Art. no. 1, 126464, 2022, [Online]. Available: https://doi.org/10.1016/j.jmaa.2022.126464
    21. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces,” Calc. Var. Partial Differential Equations, vol. 61, p. Paper No. 198 (2022) 47 pp., 2022.
    22. J. Magiera and C. Rohde, “Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics,” in Droplet Dynamics under Extreme Ambient Conditions, K. Schulte, C. Tropea, and B. Weigand, Eds., in Droplet Dynamics under Extreme Ambient Conditions. , Springer International Publishing, 2022. doi: 10.1007/978-3-031-09008-0_4.
    23. B. Maier, D. Göddeke, F. Huber, T. Klotz, O. Röhrle, and M. Schulte, “OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.” 2022.
    24. F. Massa, L. Ostrowski, F. Bassi, and C. Rohde, “An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations,” J. Comput. Phys., p. 110705, 2022, doi: https://doi.org/10.1016/j.jcp.2021.110705.
    25. L. Mehl, C. Beschle, A. Barth, and A. Bruhn, “Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation,” 2022, doi: 10.18419/darus-2890.
    26. T. Mel’nyk and A. V. Klevtsovskiy, “Asymptotic expansion for the solution of a convection-diffusion problem in a thin graph-like junction,” Asymptotic Analysis, vol. 130, no. 3–4, Art. no. 3–4, 2022, doi: 10.3233/ASY-221761.
    27. R. Merkle and A. Barth, “Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations,” Stoch PDE: Anal Comp, 2022, [Online]. Available: https://doi.org/10.1007/s40072-022-00246-w
    28. R. Merkle and A. Barth, “On some distributional properties of subordinated Gaussian random fields,” Methodol Comput Appl Probab, 2022.
    29. R. Merkle and A. Barth, “Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient,” BIT Numer Math, 2022, [Online]. Available: https://doi.org/10.1007/s10543-022-00912-4
    30. A. Mikhalev, M. Nottoli, and B. Stamm, “Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method,” The Journal of Chemical Physics, vol. 157, no. 11, Art. no. 11, Sep. 2022, doi: 10.1063/5.0104536.
    31. M. Nottoli, A. Mikhalev, B. Stamm, and F. Lipparini, “Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library,” The Journal of Physical Chemistry B, vol. 126, no. 43, Art. no. 43, Oct. 2022, doi: 10.1021/acs.jpcb.2c04579.
    32. J. Rettberg et al., “Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar.” 2022. doi: https://doi.org/10.48550/arXiv.2203.10061.
    33. G. Santin, T. Karvonen, and B. Haasdonk, “Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces,” BIT Numerical Mathematics, vol. 62, no. 1, Art. no. 1, Mar. 2022, doi: 10.1007/s10543-021-00870-3.
    34. S. Shuva, P. Buchfink, O. Röhrle, and B. Haasdonk, “Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Springer International Publishing, 2022, pp. 402--409.
    35. B. Stamm and L. Theisen, “A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains,” SIAM Journal on Numerical Analysis, vol. 60, no. 5, Art. no. 5, Sep. 2022, doi: 10.1137/21m1456005.
    36. L. von Wolff and I. S. Pop, “Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip,” Journal of Fluid Mechanics, vol. 941, pp. A49--, 2022, doi: DOI: 10.1017/jfm.2022.308.
    37. T. Wenzel, M. Kurz, A. Beck, G. Santin, and B. Haasdonk, “Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows,” in Large-Scale Scientific Computing, I. Lirkov and S. Margenov, Eds., in Large-Scale Scientific Computing. Cham: Springer International Publishing, 2022, pp. 410--418.
    38. T. Wenzel, G. Santin, and B. Haasdonk, “Stability of convergence rates: Kernel interpolation on non-Lipschitz domains.” arXiv, 2022. doi: 10.48550/ARXIV.2203.12532.
    39. T. Wenzel, G. Santin, and B. Haasdonk, “Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy,” Constructive Approximation, Oct. 2022, doi: 10.1007/s00365-022-09592-3.
    40. M. Zinßer et al., “Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules,” MRS Advances, Aug. 2022, doi: 10.1557/s43580-022-00321-3.
  5. 2021

    1. D. Wittwar and B. Haasdonk, “Convergence rates for matrix P-greedy variants,” in Numerical mathematics and advanced applications---ENUMATH              2019, vol. 139, in Numerical mathematics and advanced applications---ENUMATH              2019, vol. 139. , Springer, Cham, pp. 1195--1203. doi: 10.1007/978-3-030-55874-1\_119.
    2. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” J. Nonlinear Sci., vol. 31, no. 6, Art. no. 6, 2021, doi: doi.org/10.1007/s00332-021-09755-9.
    3. M. Altenbernd, N.-A. Dreier, C. Engwer, and D. Göddeke, “Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers,” in High Performance Computing in Science and Engineering -- HPCSE 2019, T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, and P. Tichý, Eds., in High Performance Computing in Science and Engineering -- HPCSE 2019, vol. 12456. Springer, Jan. 2021, pp. 17--38. doi: 10.1007/978-3-030-67077-1_2.
    4. A. Barth and R. Merkle, “Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient,” ArXiv e-prints, arXiv:2108.05604 math.NA, 2021.
    5. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “Uncertainty Quantification in High Performance Computational Fluid Dynamics,” in High Performance Computing in Science and Engineering ’19, W. E. Nagel, D. H. Kröner, and M. M. Resch, Eds., in High Performance Computing in Science and Engineering ’19. Cham: Springer International Publishing, 2021, pp. 355--371.
    6. T. Benacchio et al., “Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction,” The International Journal of High Performance Computing Applications, vol. 35, no. 4, Art. no. 4, Feb. 2021, doi: 10.1177/1094342021990433.
    7. L. Brencher and A. Barth, “Stochastic conservation laws with discontinuous flux functions: The multidimensional case,” 2021.
    8. L. Brencher and A. Barth, “Scalar conservation laws with stochastic discontinuous flux function,” ArXiv e-prints, arXiv:2107.00549 math.NA, 2021.
    9. P. Buchfink, S. Glas, and B. Haasdonk, “Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds.” 2021. doi: https://doi.org/10.48550/arXiv.2112.10815.
    10. P. Buchfink and B. Haasdonk, “Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem,” in Numerical Mathematics and Advanced Applications ENUMATH 2019, F. J. Vermolen and C. Vuik, Eds., in Numerical Mathematics and Advanced Applications ENUMATH 2019, vol. 139. Springer International Publishing, 2021. doi: 10.1007/978-3-030-55874-1.
    11. J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations,” Computers & Fluids, vol. 228, pp. 1850044, 20, 2021, doi: 10.1016/j.compfluid.2021.105039.
    12. E. Eggenweiler and I. Rybak, “Effective coupling conditions for arbitrary flows in Stokes-Darcy systems,” Multiscale Model. Simul., vol. 19, pp. 731–757, 2021, doi: 10.1137/20M1346638.
    13. T. Ehring and B. Haasdonk, “Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems,” 2021.
    14. T. Ehring and B. Haasdonk, “Feedback control for a coupled soft tissue system by kernel surrogates,” in Coupled Problems 2021, in Coupled Problems 2021. 2021. doi: 10.23967/coupled.2021.026.
    15. M. Gander, S. Lunowa, and C. Rohde, “Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations,” in Domain Decomposition Methods in Science and Engineering XXVI, in Domain Decomposition Methods in Science and Engineering XXVI. Lect. Notes Comput. Sci. Eng.,  Springer, Cham, 2021. [Online]. Available: http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    16. J. Giesselmann, F. Meyer, and C. Rohde, “Error control for statistical solutions of hyperbolic systems of conservation laws,” Calcolo, vol. 58, no. 2, Art. no. 2, 2021, doi: 10.1007/s10092-021-00417-6.
    17. B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar, “Kernel methods for center manifold approximation and a weak              data-based version of the center manifold theorem,” Phys. D, vol. 427, p. Paper No. 133007, 14, 2021, doi: 10.1016/j.physd.2021.133007.
    18. B. Haasdonk, “Model Order Reduction, Applications, MOR Software,” vol. 3, D. Gruyter, Ed., De Gruyter, 2021. doi: 10.1515/9783110499001.
    19. B. Haasdonk, M. Ohlberger, and F. Schindler, “An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.” arXiv, 2021. doi: 10.48550/ARXIV.2110.12388.
    20. B. Haasdonk, T. Wenzel, G. Santin, and S. Schmitt, “Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods,” 2021.
    21. G. C. Hsiao and W. L. Wendland, “On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid,” Applicable Analysis, vol. 101 (2022), no. 0, Art. no. 0, 2021, doi: 10.1080/00036811.2021.1986027.
    22. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici,” Math. Methods Appl. Sci., vol. 44, no. 12, Art. no. 12, 2021, doi: 10.1002/mma.7167.
    23. A. Krämer et al., “Multi-physics multi-scale HPC simulations of skeletal muscles,” High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020, 2021, doi: 10.1007/978-3-030-80602-6_13.
    24. J. Kühnert, D. Göddeke, and M. Herschel, “Provenance-integrated parameter selection and optimization in numerical simulations,” in 13th International Workshop on Theory and Practice ofProvenance (TaPP 2021), in 13th International Workshop on Theory and Practice ofProvenance (TaPP 2021). USENIX Association, Jul. 2021. [Online]. Available: https://www.usenix.org/conference/tapp2021/presentation/kühnert
    25. R. Leiteritz, P. Buchfink, B. Haasdonk, and D. Pflüger, “Surrogate-data-enriched Physics-Aware Neural Networks.” 2021.
    26. J. Magiera, “A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow,” in Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), in Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), vol. 41. 2021. doi: 10.14760/OWR-2021-41.
    27. J. Magiera, “A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation,” Ph.D. Thesis, 2021. doi: 10.18419/opus-11797.
    28. L. Mehl, C. Beschle, A. Barth, and A. Bruhn, “An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation,” Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), pp. 140--152, 2021, doi: 10.1007/978-3-030-75549-2_12.
    29. T. Mel’nyk, “Asymptotic approximations for eigenvalues and eigenfunctions of a spectral problem in a thin graph-like junction with a concentrated mass in the node,” Analysis and Applications, vol. 19, no. 05, Art. no. 05, 2021, doi: 10.1142/S0219530520500219.
    30. M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke, “A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media,” Computer Physics Communications, vol. 267, no. 108059, Art. no. 108059, Oct. 2021, doi: 10.1016/j.cpc.2021.108059.
    31. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” NoDEA Nonlinear Differential Equations Appl., vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
    32. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” J. Dynam. Differential Equations, vol. 33, pp. 1823–1852, 2021, doi: https://doi.org/10.1007/s10884-020-09872-1.
    33. C. Rohde and L. Von Wolff, “A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution,” Mathematical Models and Methods in Applied Sciences, vol. 31, no. 01, Art. no. 01, 2021, doi: 10.1142/S0218202521500019.
    34. I. Rybak, C. Schwarzmeier, E. Eggenweiler, and U. Rüde, “Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models,” Comput. Geosci., vol. 25, pp. 621–635, 2021, doi: 10.1007/s10596-020-09994-x.
    35. A. Rörich, T. A. Werthmann, D. Göddeke, and L. Grasedyck, “Bayesian inversion for electromyography using low-rank tensor formats,” Inverse Problems, vol. 37, no. 5, Art. no. 5, Mar. 2021, doi: 10.1088/1361-6420/abd85a.
    36. G. Santin and B. Haasdonk, “Kernel methods for surrogate modeling,” in Model Order Reduction, vol. 1: System-and Data-Driven Methods and Algorithms, P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, and L. M. Silveira, Eds., in Model Order Reduction, vol. 1: System-and Data-Driven Methods and Algorithms. , de Gruyter, 2021, pp. 311–354.
    37. J. Schmalfuss, C. Riethmüller, M. Altenbernd, K. Weishaupt, and D. Göddeke, “Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems,” in Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS), in Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). 2021. doi: 10.23967/coupled.2021.043.
    38. L. von Wolff, “The Dune-Phasefield Module release 1.0,” DaRUS, 2021, doi: 10.18419/darus-1634.
    39. L. Von Wolff, F. Weinhardt, H. Class, J. Hommel, and C. Rohde, “Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling,” Transport in Porous Media, vol. 137, no. 2, Art. no. 2, Mar. 2021, doi: 10.1007/s11242-021-01560-y.
    40. A. Wagner et al., “Permeability estimation of regular porous structures: a benchmark for comparison of methods,” Transp. Porous Med., vol. 138, pp. 1–23, 2021, doi: 10.1007/s11242-021-01586-2.
    41. T. Wenzel, G. Santin, and B. Haasdonk, “A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution,” 2021.
    42. T. Wenzel, G. Santin, and B. Haasdonk, “Universality and Optimality of Structured Deep Kernel Networks.” arXiv, 2021. doi: 10.48550/ARXIV.2105.07228.
    43. T. Wenzel, G. Santin, and B. Haasdonk, “Analysis of target data-dependent greedy kernel algorithms: Convergence rates for $f$-, $f P$- and $f/P$-greedy.” arXiv, 2021. doi: 10.48550/ARXIV.2105.07411.
    44. T. Wenzel, G. Santin, and B. Haasdonk, “Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f P- and f/P-greedy.” arXiv, 2021. doi: 10.48550/ARXIV.2105.07411.
  6. 2020

    1. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order              reduction and dynamic programming principle,” Adv. Comput. Math., vol. 46, no. 1, Art. no. 1, 2020, doi: 10.1007/s10444-020-09744-8.
    2. A. Armiti-Juber and C. Rohde, “On the well-posedness of a nonlinear fourth-order extension of Richards’ equation,” J. Math. Anal. Appl., vol. 487, no. 2, Art. no. 2, 2020, doi: https://doi.org/10.1016/j.jmaa.2020.124005.
    3. A. Barth and R. Merkle, “Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations,” ArXiv e-prints, arXiv:2011.09311 math.NA, 2020.
    4. A. Barth and R. Merkle, “Subordinated Gaussian Random Fields,” ArXiv e-prints, arXiv:2012.06353 math.PR, 2020.
    5. P. Bastian et al., “Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications,” in Software for Exascale Computing -- SPPEXA 2016--2019, H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, and W. E. Nagel, Eds., in Software for Exascale Computing -- SPPEXA 2016--2019. , Springer, 2020, pp. 225--269. doi: 10.1007/978-3-030-47956-5_9.
    6. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows,” SIAM J. Sci. Comput., vol. 42, no. 4, Art. no. 4, 2020, doi: https://doi.org/10.1137/18M1210575.
    7. I. Berre et al., “Verification benchmarks for single-phase flow in three-dimensional fractured porous media.” 2020.
    8. M. Brehler, M. Schirwon, P. M. Krummrich, and D. Göddeke, “Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 84, p. 105150, May 2020, doi: 10.1016/j.cnsns.2019.105150.
    9. L. Brencher and A. Barth, “Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions,” in International Conference on Finite Volumes for Complex Applications, in International Conference on Finite Volumes for Complex Applications. Springer, 2020, pp. 265--273.
    10. C. Bringedal, L. Von Wolff, and I. S. Pop, “Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments,” Multiscale Modeling &amp$\mathsemicolon$ Simulation, vol. 18, no. 2, Art. no. 2, Jan. 2020, doi: 10.1137/19m1239003.
    11. P. Buchfink, B. Haasdonk, and S. Rave, “PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems,” in Proceedings of the Conference Algoritmy 2020, P. Frolkovič, K. Mikula, and D. Ševčovič, Eds., in Proceedings of the Conference Algoritmy 2020. Vydavateľstvo SPEKTRUM, Aug. 2020, pp. 151--160. [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
    12. S. Burbulla and C. Rohde, “A fully conforming finite volume approach to two-phase flow in fractured porous media,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, R. Klöfkorn, E. Keilegavlen, F. A. Radu, and J. Fuhrmann, Eds., in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. Cham: Springer International Publishing, 2020, pp. 547–555. doi: https://doi.org/10.1007/978-3-030-43651-3_51.
    13. E. Eggenweiler and I. Rybak, “Unsuitability of the Beavers-Joseph interface condition for filtration problems,” J. Fluid Mech., vol. 892, p. A10, 2020, doi: http://dx.doi.org/10.1017/jfm.2020.194.
    14. E. Eggenweiler and I. Rybak, “Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, R. Klöfkorn, E. Keilegavlen, F. Radu, and J. Fuhrmann, Eds., in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, vol. 323. Springer International Publishing, 2020, pp. 345--353. doi: 10.1007/978-3-030-43651-3_31.
    15. J. Fehr and B. Haasdonk, Eds., IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart,  Germany, May 22-25, 2018: MORCOS 2018. in IUTAM Bookseries. Springer, 2020.
    16. J. T. Gerstenberger, S. Burbulla, and D. Kröner, “Discontinuous Galerkin method for incompressible two-phase flows,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, R. Klöfkorn, E. Keilegavlen, F. A. Radu, and J. Fuhrmann, Eds., in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. Cham: Springer International Publishing, 2020, pp. 675–683.
    17. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, A. Bressan, M. Lewicka, D. Wang, and Y. Zheng, Eds., in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, vol. 10. AIMS Series on Applied Mathematics, 2020, pp. 449–456. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    18. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” BIT Numer. Math., 2020, [Online]. Available: https://doi.org/10.1007/s10543-019-00794-z
    19. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method,” IMA J. Numer. Anal., vol. 40, no. 2, Art. no. 2, 2020, doi: 10.1093/imanum/drz004.
    20. L. Giraud, U. Rüde, and L. Stals, “Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101),” Dagstuhl Reports, vol. 10, no. 3, Art. no. 3, 2020, doi: 10.4230/DagRep.10.3.1.
    21. D. Grunert, J. Fehr, and B. Haasdonk, “Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems,” ZAMM, vol. 100, no. 8, Art. no. 8, 2020, doi: 10.1002/zamm.201900186.
    22. D. Göddeke, M. Schirwon, and N. Borg, “Smartphone-Apps im Mathematikstudium,” 2020, doi: 10.18419/darus-1147.
    23. B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar, “Greedy kernel methods for center manifold approximation,” in Spectral and high order methods for partial differential              equations---ICOSAHOM 2018, vol. 134, in Spectral and high order methods for partial differential              equations---ICOSAHOM 2018, vol. 134. , Springer, Cham, 2020, pp. 95--106. doi: 10.1007/978-3-030-39647-3\_6.
    24. T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” J. Comput. Phys., vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
    25. T. Koch et al., “DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling,” Computers & Mathematics with Applications, 2020, doi: https://doi.org/10.1016/j.camwa.2020.02.012.
    26. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor,” Complex Variables and Elliptic Equations, vol. 65, no. 1, Art. no. 1, 2020, doi: 10.1080/17476933.2019.1631293.
    27. J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-aware neural networks for Riemann problems,” J. Comput. Phys., vol. 409, no. 109345, Art. no. 109345, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109345.
    28. S. Oladyshkin, F. Mohammadi, I. Kroeker, and W. Nowak, “Bayesian(3)Active Learning for the Gaussian Process Emulator Using    Information Theory,” ENTROPY, vol. 22, no. 8, Art. no. 8, Aug. 2020, doi: 10.3390/e22080890.
    29. L. Ostrowski, F. C. Massa, and C. Rohde, “A phase field approach to compressible droplet impingement,” in Droplet Interactions and Spray Processes, G. Lamanna, S. Tonini, G. E. Cossali, and B. Weigand, Eds., in Droplet Interactions and Spray Processes. Cham: Springer International Publishing, 2020, pp. 113–126. [Online]. Available: https://doi.org/10.1007/978-3-030-33338-6_9
    30. L. Ostrowski and C. Rohde, “Compressible multi-component flow in porous media with Maxwell-Stefan diffusion,” Math. Meth. Appl. Sci., pp. 1–22, 2020, [Online]. Available: https://doi.org/10.1002/mma.6185
    31. L. Ostrowski and C. Rohde, “Phase field modelling for compressible droplet impingement,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, A. Bressan, M. Lewicka, D. Wang, and Y. Zheng, Eds., in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, vol. 10. AIMS Series on Applied Mathematics, 2020, pp. 586–593. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    32. C. Rohde and L. von Wolff, “Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media,” SIAM J. Math. Anal., vol. 52, no. 6, Art. no. 6, 2020, doi: 10.1137/19M1242434.
    33. I. Rybak and S. Metzger, “A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media,” Appl. Math. Comp., vol. 384, 2020, doi: 10.1016/j.amc.2020.125260.
    34. R. Tielen, M. Möller, D. Göddeke, and C. Vuik, “p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis,” Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113347, Dec. 2020, doi: 10.1016/j.cma.2020.113347.
  7. 2019

    1. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains,” Comput. Geosci., vol. 23, no. 2, Art. no. 2, 2019, doi: https://doi.org/10.1007/s10596-018-9756-2.
    2. A. Bhatt, J. Fehr, D. Grunert, and B. Haasdonk, “A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion,” in IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018, J. Fehr and B. Haasdonk, Eds., in IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer, 2019. doi: DOI:10.1007/978-3-030-21013-7_7.
    3. A. Bhatt, J. Fehr, and B. Haasdonk, “Model order reduction of an elastic body under large rigid motion,” Proceedings of ENUMATH 2017, vol. Lect. Notes Comput. Sci. Eng., no. 126, Art. no. 126, 2019, doi: 10.1007/978-3-319-96415-7\_23.
    4. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, and I. S. Pop, Eds., in Numerical Mathematics and Advanced Applications - ENUMATH 2017. Cham: Springer International Publishing, 2019, pp. 889--896.
    5. P. Buchfink, A. Bhatt, and B. Haasdonk, “Symplectic Model Order Reduction with Non-Orthonormal Bases,” Mathematical and Computational Applications, vol. 24, no. 2, Art. no. 2, 2019, doi: 10.3390/mca24020043.
    6. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-Driven Time Parallelism via Forecasting,” SIAM Journal on Scientific Computing, vol. 41, no. 3, Art. no. 3, 2019, doi: 10.1137/18M1174362.
    7. R. M. Colombo, P. G. LeFloch, C. Rohde, and K. Trivisa, “Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics,” Oberwohlfach Rep., no. 16, Art. no. 16, 2019, [Online]. Available: https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    8. A. Denzel, B. Haasdonk, and J. Kästner, “Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search,” J. Phys. Chem. A, vol. 123, no. 44, Art. no. 44, 2019, [Online]. Available: https://doi.org/10.1021/acs.jpca.9b08239
    9. R. Föll, B. Haasdonk, M. Hanselmann, and H. Ulmer, “Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation.” 2019. [Online]. Available: https://openreview.net/forum?id=BkgosiRcKm
    10. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem,” in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday, S. Rogosin and A. O. Celebi, Eds., in Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday. , Cham: Springer International Publishing, 2019, pp. 237--260. doi: 10.1007/978-3-030-02650-9_12.
    11. M. Kohr and W. L. Wendland, “Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach,” Journal de Mathématiques Pures et Appliquées, no. 131, Art. no. 131, Nov. 2019, doi: https://doi.org/10.1016/j.matpur.2019.04.002.
    12. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, Art. no. 1, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    13. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario,” Comput. Geosci., vol. 2, no. 23, Art. no. 23, 2019, doi: https://doi.org/10.1007/s10596-018-9785-x.
    14. C. T. Miller, W. G. Gray, C. E. Kees, I. V. Rybak, and B. J. Shepherd, “Modeling sediment transport in three-phase surface water systems,” J. Hydraul. Res., vol. 57, 2019, doi: 10.1080/00221686.2019.1581673.
    15. L. Ostrowski and F. Massa, “An incompressible-compressible approach for droplet impact,” in Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019, G. Cossali and S. Tonini, Eds., in Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019. Università degli studi di Bergamo, 2019, pp. 18–21. doi: 10.6092/DIPSI2019_pp18-21.
    16. G. Santin and B. Haasdonk, “Kernel Methods for Surrogate Modelling,” University of Stuttgart, 2019.
    17. G. Santin and B. Haasdonk, “Kernel Methods for Surrogate Modeling,” ArXiv 1907.10556, 2019. [Online]. Available: https://arxiv.org/abs/1907.10556
    18. G. Santin, D. Wittwar, and B. Haasdonk, “Sparse approximation of regularized kernel interpolation by greedy algorithms,” 2019.
    19. A. Schmidt, D. Wittwar, and B. Haasdonk, “Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods,” Advances in Computational Mathematics, 2019, doi: 10.1007/s10444-019-09730-9.
    20. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, in Numerical Mathematics and Advanced Applications ENUMATH 2017. Springer International Publishing, 2019, pp. 603–614. doi: 10.1007/978-3-319-96415-7_55.
    21. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow,” Physics of Fluids, vol. 31, no. 1, Art. no. 1, 2019, doi: 10.1063/1.5064694.
    22. T. Wenzel, G. Santin, and B. Haasdonk, “A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.” 2019.
    23. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, and I. S. Pop, Eds., in Numerical Mathematics and Advanced Applications ENUMATH 2017. Cham: Springer International Publishing, 2019, pp. 113--121.
    24. D. Wittwar, G. Santin, and B. Haasdonk, “Part II on matrix valued kernels including analysis,” 2019.
  8. 2018

    1. B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” 2018.
    2. M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, vol. 32, no. 6, Art. no. 6, Nov. 2018, doi: 10.1177/1094342016684006.
    3. A. Barth and A. Stein, “A Study of Elliptic Partial Differential Equations with Jump Diffusion    Coefficients,” SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, vol. 6, no. 4, Art. no. 4, 2018, doi: 10.1137/17M1148888.
    4. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Levy processes,” STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, vol. 6, no. 2, Art. no. 2, Jun. 2018, doi: 10.1007/s40072-017-0109-2.
    5. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise,” Math. Comput. Simulation, vol. 143, pp. 215--225, 2018, [Online]. Available: https://doi.org/10.1016/j.matcom.2017.03.007
    6. A. Bhatt, J. Fehr, D. Grunert, and B. Haasdonk, “A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion,” in IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018, J. Fehr and B. Haasdonk, Eds., in IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer, 2018. doi: DOI:10.1007/978-3-030-21013-7_7.
    7. A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS,” RAMSA 2017, New Delhi. in RAMSA 2017, New Delhi. 2018.
    8. A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction,” Invited online talk in Department of Mathematics, IIT Roorkee. in Invited online talk in Department of Mathematics, IIT Roorkee. 2018.
    9. C. P. Bradley et al., “Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems,” Frontiers in Physiology, vol. 9, no. 816, Art. no. 816, Jul. 2018, doi: 10.3389/fphys.2018.00816.
    10. M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs,” in Proceedings of Advanced Photonics 2018, in Proceedings of Advanced Photonics 2018. Jul. 2018.
    11. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” in Proc. ENUMATH 2017, in Proc. ENUMATH 2017. 2018.
    12. P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” Diploma thesis, 2018.
    13. S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive  definite kernel functions,” Calcolo, vol. 55, no. 1, Art. no. 1, Feb. 2018, doi: 10.1007/s10092-018-0247-6.
    14. C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, and K. Rothermel, “Enabling interactive mobile simulations through distributed reduced models,” Pervasive and Mobile Computing, Elsevier BV, vol. 45, pp. 19--34, 2018, doi: https://doi.org/10.1016/j.pmcj.2018.02.002.
    15. J. Dürrwächter, T. Kuhn, F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations,” Journal of Computational and Applied Mathematics, p. 112602, 2018, doi: https://doi.org/10.1016/j.cam.2019.112602.
    16. C. Engwer, M. Altenbernd, N.-A. Dreier, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application,” in Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018), in Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018). Mar. 2018.
    17. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018, doi: http://dx.doi.org/10.1016/j.compfluid.2017.03.026.
    18. J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,” in Proceedings of MATHMOD 2018, Vienna, Austria, in Proceedings of MATHMOD 2018, Vienna, Austria. 2018.
    19. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem,” Math. Comput. Appl. 2018, vol. 23, no. 1, Art. no. 1, 2018, doi: doi:10.3390/mca23010008.
    20. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018, [Online]. Available: https://arxiv.org/abs/1704.08208
    21. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation.,” Numer. Math., vol. 139, no. 4, Art. no. 4, Aug. 2018, doi: https://doi.org/10.1007/s00211-018-0954-6.
    22. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 147–175, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.025.
    23. B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar, “Greedy Kernel Methods for Center Manifold Approximation,” ArXiv 1810.11329, 2018.
    24. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, W. Keiper, A. Milde, and S. Volkwein, Eds., in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing. , Cham: Springer International Publishing, 2018, pp. 21--45. doi: 10.1007/978-3-319-75319-5_2.
    25. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” Math. Nachr., no. 291, Art. no. 291, 2018, doi: https://doi.org/10.1002/mana.201600024.
    26. G. C. Hsiao, O. Steinbach, and W. L. Wendland, “Boundary Element Methods: Foundation and Error Analysis,” vol. Encyclopedia of Computational Mechanics Second Edition, p. 62, 2018, doi: https://doi.org/10.1002/9781119176817.ecm2007.
    27. M. Kohr and W. L. Wendland, “Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds,” Calculus of Variations and Partial Differential Equations, p. 57:165, 2018, doi: https://doi.org/10.1007/s00526-018-1426-7.
    28. M. Kohr and W. L. Wendland, “Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces,” Journal of Mathematical Fluid Mechanics, vol. 4, no. 20, Art. no. 20, 2018, doi: https://doi.org/10.1007/s00021-018-0394-1.
    29. M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow  in porous media,” (submitted), 2018, [Online]. Available: https://hal.archives-ouvertes.fr/hal-01700663v2
    30. M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures,” (submitted), 2018, [Online]. Available: https://hal.archives-ouvertes.fr/hal-01761591
    31. T. Köppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally  reduced models and kernel methods,” International Journal for Numerical Methods in Biomedical Engineering, vol. 0, no. ja, Art. no. ja, 2018, doi: 10.1002/cnm.3095.
    32. A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018. [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    33. A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse  noise,” International Journal of Computer Mathematics, p. 19, 2018, [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    34. A. Langer, “Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method,” Journal of Imaging, vol. 4, p. 1, 2018, [Online]. Available: http://www.mdpi.com/2313-433X/4/1/12
    35. B. Maboudi Afkham and J. S. Hesthaven, “Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems,” Journal of Scientific Computing, pp. 1–19, Feb. 2018, doi: 10.1007/s10915-018-0653-6.
    36. J. Magiera and C. Rohde, “A particle-based multiscale solver for compressible liquid-vapor flow,” Springer Proc. Math. Stat., pp. 291--304, 2018, doi: 10.1007/978-3-319-91548-7_23.
    37. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number,” International Journal of Multiphase Flow, vol. 107, pp. 82–103, 2018, [Online]. Available: http://arxiv.org/abs/1609.03410
    38. C. Rohde and C. Zeiler, “On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension,” Z. Angew. Math. Phys., no. 3, Art. no. 3, 2018, doi: https://doi.org/10.1007/s00033-018-0958-1.
    39. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds., in New trends and results in mathematical description of fluid flows. , Basel: Birkhäuser, 2018, pp. 115–181. doi: 10.1007/978-3-319-94343-5.
    40. G. Santin, D. Wittwar, and B. Haasdonk, “Greedy regularized kernel interpolation,” University of Stuttgart, ArXiv preprint 1807.09575, 2018.
    41. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
    42. A. Schmidt, D. Wittwar, and B. Haasdonk, “Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods,” University of Stuttgart, SimTech Preprint, 2018.
    43. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 24, no. 1, Art. no. 1, Jan. 2018, doi: 10.1051/cocv/2017011.
    44. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow  in porous media,” Comp. Methods Appl. Mech. Eng., vol. 333, pp. 331--355, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.029.
    45. D. Wittwar, G. Santin, and B. Haasdonk, “Interpolation with uncoupled separable matrix-valued kernels,” ArXiv e-prints, Jul. 2018.
    46. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
  9. 2017

    1. M. Alkämper and R. Klöfkorn, “Distributed Newest Vertex Bisection,” Journal of Parallel and Distributed Computing, vol. 104, pp. 1–11, 2017, doi: http://dx.doi.org/10.1016/j.jpdc.2016.12.003.
    2. M. Alkämper, R. Klöfkorn, and F. Gaspoz, “A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension,” 2017. [Online]. Available: http://arxiv.org/abs/1711.03141
    3. M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions,” Archive of Numerical Software, vol. 5, no. 1, Art. no. 1, 2017, [Online]. Available: https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    4. A. Alla, M. Gunzburger, B. Haasdonk, and A. Schmidt, “Model order reduction for the control of parametrized partial differential equations via dynamic programming principle,” University of Stuttgart, 2017.
    5. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
    6. A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation,” in Model Reduction of Parametrized Systems, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds., in Model Reduction of Parametrized Systems. , Cham: Springer International Publishing, 2017, pp. 333--347. doi: 10.1007/978-3-319-58786-8_21.
    7. A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations with    stochastic process or random field coefficients,” APPLIED NUMERICAL MATHEMATICS, vol. 121, pp. 38–51, Nov. 2017, doi: 10.1016/j.apnum.2017.06.009.
    8. A. Barth, B. Harrach, N. Hyvoenen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” INVERSE PROBLEMS, vol. 33, no. 11, Art. no. 11, Nov. 2017, doi: 10.1088/1361-6420/aa8f5c.
    9. A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” Inv. Prob., vol. 33, no. 11, Art. no. 11, 2017, [Online]. Available: http://arxiv.org/abs/1706.03962
    10. A. Barth and A. Stein, “A study of elliptic partial differential equations with jump diffusion  coefficients,” 2017.
    11. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary problems,” in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds., in Model Reduction and Approximation: Theory and Algorithms. , SIAM Philadelphia, 2017. [Online]. Available: https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    12. A. Bhatt and R. VanGorder, “Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels,” 2017.
    13. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers,” Journal of Lightwave Technology, vol. 35, no. 17, Art. no. 17, Sep. 2017, doi: 10.1109/JLT.2017.2715358.
    14. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    15. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds., in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017. , Cham: Springer International Publishing, 2017, pp. 189--197. doi: 10.1007/978-3-319-57394-6_21.
    16. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” APPLIED NUMERICAL MATHEMATICS, vol. 116, no. SI, Art. no. SI, Jun. 2017, doi: 10.1016/j.apnum.2016.07.005.
    17. C. Chalons, C. Rohde, and M. Wiebe, “A finite volume method for undercompressive shock waves in two space dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, Art. no. 5, Sep. 2017, doi: https://doi.org/10.1051/m2an/2017027.
    18. A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 335, pp. 387–403, Apr. 2017, doi: 10.1016/j.jcp.2017.01.030.
    19. S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds., in Approximation Theory XV: San Antonio 2016. , Cham: Springer International Publishing, 2017, pp. 39--59. doi: 10.1007/978-3-319-59912-0_3.
    20. S. De Marchi, A. Iske, and G. Santin, “Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions,” 2017.
    21. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-assisted interactive mobile simulations for pervasive applications,” in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom). Mar. 2017, pp. 111--120. doi: 10.1109/PERCOM.2017.7917857.
    22. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, May 2017, doi: 10.1016/j.jcp.2017.02.001.
    23. J. Fehr, D. Grunert, A. Bhatt, and B. Hassdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems,” in Proceedings of MATHMOD 2018, Vienna, Austria, in Proceedings of MATHMOD 2018, Vienna, Austria. 2017.
    24. M. Feistauer, O. Bartos, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition,” Proceeding of the EQUADIFF 17, pp. 127–136, 2017, [Online]. Available: http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    25. M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon,” IMA, vol. 00, pp. 1–31, 2017, doi: https://doi.org/10.1093/imanum/drx070.
    26. M. Fetzer and C. W. Scherer, “Absolute stability analysis of discrete time feedback interconnections,” IFAC-PapersOnLine, no. 1, Art. no. 1, 2017, doi: 10.1016/j.ifacol.2017.08.757.
    27. M. Fetzer and C. W. Scherer, “Zames-Falb Multipliers for Invariance,” IEEE Control Systems Letters, vol. 1, no. 2, Art. no. 2, 2017, doi: 10.1109/LCSYS.2017.2718556.
    28. M. Fetzer and C. W. Scherer, “Full-block multipliers for repeated, slope restricted scalar nonlinearities,” Int. J. Robust Nonlin., 2017, doi: 10.1002/rnc.3751.
    29. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints: Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017. 2017, pp. 185--196. doi: 10.1137/1.9781611974768.15.
    30. F. D. Gaspoz, C. Kreuzer, K. Siebert, and D. Ziegler, “A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution,” Submitted, 2017. [Online]. Available: https://arxiv.org/abs/1610.06814
    31. F. D. Gaspoz, P. Morin, and A. Veeser, “A posteriori error estimates with point sources in fractional sobolev  spaces,” Numerical Methods for Partial Differential Equations, vol. 33, no. 4, Art. no. 4, 2017, doi: 10.1002/num.22065.
    32. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 223, no. 3, Art. no. 3, Mar. 2017, doi: 10.1007/s00205-016-1063-2.
    33. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, C. Cances and P. Omnes, Eds., in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, vol. 199. 2017. [Online]. Available: http://www.springer.com/de/book/9783319573960
    34. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,” MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, vol. 27, no. 13, Art. no. 13, Dec. 2017, doi: 10.1142/S0218202517500476.
    35. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, Art. no. 9, 2017, doi: 10.1080/00036811.2016.1276175.
    36. R. Gutt, M. Kohr, S. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains,” Math. Meth. Appl. Sci., vol. 18, pp. 7780–7829, 2017, doi: 10.1002/mma.4562.
    37. R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 18, Art. no. 18, Dec. 2017, doi: 10.1002/mma.4562.
    38. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems,” in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds., in Model Reduction and Approximation: Theory and Algorithms. , SIAM, Philadelphia, 2017, pp. 65--136. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    39. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz energy problems for strongly singular kernels,” Math. Nachr., 2017, doi: 10.1002/mana.201600024.
    40. M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data.” WIAS Preprint No. 2379, 2017. [Online]. Available: http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    41. M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” Journal of Mathematical Imaging and Vision, pp. 1--19, 2017, [Online]. Available: https://link.springer.com/article/10.1007/s10851-017-0736-2
    42. B. Kane, “Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media,” Archive of Numerical Software, vol. 5, no. 1, Art. no. 1, 2017.
    43. B. Kane, R. Klöfkorn, and C. Gersbacher, “hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow,” in International Conference on Finite Volumes for Complex Applications, in International Conference on Finite Volumes for Complex Applications. Springer, 2017, pp. 447--456.
    44. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle,” Monatshefte für Mathematik, vol. 483, pp. 269–302, 2017, doi: MOFM-D16-00078.
    45. M. Kohr, S. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani,” J of Mathematical Fluid Mechanics, vol. 19, pp. 203–238, 2017.
    46. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two scale model for liquid phase epitaxy with elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, Art. no. 4, 2017, doi: 10.1007/s00161-015-0462-1.
    47. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    48. M. Köppel et al., “Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage.” Nov. 2017. doi: 10.5281/zenodo.933827.
    49. M. Köppel, I. Kröker, and C. Rohde, “Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media,” Comput. Geosci., vol. 21, pp. 807–832, 2017, doi: 10.1007/s10596-017-9662-z.
    50. T. Köppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,” University of Stuttgart, 2017.
    51. A. Langer, “Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise,” Inverse Problems, vol. 33, p. 41, 2017, [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    52. A. Langer, “Automated Parameter Selection for Total Variation Minimization in  Image Restoration,” Journal of Mathematical Imaging and Vision, vol. 57, pp. 239--268, 2017, doi: 10.1007/s10851-016-0676-2.
    53. B. Maboudi Afkham and J. Hesthaven, “Structure Preserving Model Reduction of Parametric Hamiltonian Systems,” SIAM Journal on Scientific Computing, vol. 39, no. 6, Art. no. 6, 2017, doi: 10.1137/17M1111991.
    54. I. Martini, G. Rozza, and B. Haasdonk, “Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models,” Journal of Scientific Computing, 2017, doi: 10.1007/s10915-017-0430-y.
    55. V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds., Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume, no. 258. Birkhäuser/Springer International, 2017.
    56. H. Minbashian, “Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws,” Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran., 2017.
    57. H. Minbashian, H. Adibi, and M. Dehghan, “On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.” 2017.
    58. H. Minbashian, H. Adibi, and M. Dehghan, “An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws,” Numerical Methods for Partial Differential Equations, vol. 33, no. 6, Art. no. 6, 2017, doi: 10.1002/num.22180.
    59. H. Minbashian, H. Adibi, and M. Dehghan, “An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations,” International Journal of Numerical Methods for Heat & Fluid Flow, 2017.
    60. C. A. Rösinger and C. W. Scherer, “Structured Controller Design With Applications to Networked Systems,” in Proc. 56th IEEE Conf. Decision and Control, in Proc. 56th IEEE Conf. Decision and Control. 2017. doi: 10.1109/CDC.2017.8264365.
    61. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation,” Dolomites Research Notes on Approximation, vol. 10, pp. 68--78, 2017, [Online]. Available: http://www.emis.de/journals/DRNA/9-2.html
    62. G. Santin and B. Haasdonk, “Non-symmetric kernel greedy interpolation.,” 2017.
    63. G. Santin and B. Haasdonk, “Greedy Kernel Approximation for Sparse Surrogate Modelling,” University of Stuttgart, 2017.
    64. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback  control for dynamical systems,” University of Stuttgart, 2017. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
    65. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati  equations,” ESAIM: Control, Optimisation and Calculus of Variations, Feb. 2017, doi: 10.1051/cocv/2017011.
    66. I. Steinwart, “A Short Note on the Comparison of Interpolation Widths, Wntropy Numbers, and Kolmogorov Widths,” J. Approx. Theory, vol. 215, pp. 13--27, 2017.
    67. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element Method to the Simulation of Cable-Driven Parallel Robots,” University of Stuttgart, 2017.
    68. D. Wittwar and B. Haasdonk, “On uncoupled separable matrix-valued kernels,” University of Stuttgart, 2017.
    69. D. Wittwar, G. Santin, and B. Haasdonk, “Interpolation with uncoupled separable matrix-valued kernels.,” ArXiv preprint 1807.09111, Accepted for publications in Dolomites Res. Notes Approx., 2017.
    70. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation,” University of Stuttgart, 2017.
  10. 2016

    1. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid Module.,” Archive of Numerical Software, vol. 4, no. 1, Art. no. 1, 2016, doi: 10.11588/ans.2016.1.23252.
    2. A. Alla, A. Schmidt, and B. Haasdonk, “Model order reduction approaches for infinite horizon optimal control problems via the HJB equation,” University of Stuttgart, Jul. 2016. [Online]. Available: https://arxiv.org/abs/1607.02337
    3. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” AMSES, Advanced Modeling and Simulation in Engineering Sciences, vol. 3, no. 6, Art. no. 6, 2016, doi: 10.1186/s40323-016-0059-7.
    4. A. C. Antoulas, B. Haasdonk, and B. Peherstorfer, MORML 2016 Book of Abstracts. University of Stuttgart, 2016.
    5. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach,” Computers & Chemical Engineering, vol. 89, pp. 11-- 26, 2016, doi: http://dx.doi.org/10.1016/j.compchemeng.2016.02.016.
    6. A. Barth and F. G. Fuchs, “Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields,” SIAM J. Sci. Comput., vol. 38, no. 4, Art. no. 4, 2016, doi: 10.1137/15M1027723.
    7. A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations  with spatial noise,” in Springer Proceedings in Mathematics and Statistics, vol. submitted, in Springer Proceedings in Mathematics and Statistics, vol. submitted. , Springer International Publishing, 2016.
    8. A. Barth, S. Moreno-Bromberg, and O. Reichmann, “A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting,” Comp. Economics, vol. 47, no. 3, Art. no. 3, 2016, doi: 10.1007/s10614-015-9502-y.
    9. A. Barth, C. Schwab, and J. Sukys, “Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations,” in Monte Carlo and quasi-Monte Carlo methods, vol. 163, in Monte Carlo and quasi-Monte Carlo methods, vol. 163. , Springer, Cham, 2016, pp. 209--227. doi: 10.1007/978-3-319-33507-0_8.
    10. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Lévy processes,” 2016. [Online]. Available: http://arxiv.org/abs/1612.05541
    11. P. Bastian et al., “Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds., in Software for Exascale Computing -- SPPEXA 2013--2015. , Springer, 2016, pp. 25--43. doi: 10.1007/978-3-319-40528-5_2.
    12. P. Bastian et al., “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds., in Software for Exascale Computing -- SPPEXA 2013--2015. , Springer, 2016, pp. 3--23. doi: 10.1007/978-3-319-40528-5_1.
    13. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary  problems,” in Model Reduction and Approximation for Complex Systems, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds., in Model Reduction and Approximation for Complex Systems. , Birkhäuser Publishing, 2016. [Online]. Available: https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    14. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016, doi: 10.1016/j.amc.2015.03.050.
    15. A. Bhatt, “Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations,” University of Central Florida, 2016.
    16. A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” SIAM J. Sci Comp, 2016.
    17. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable  radial bases,” in AIP Conf. Proc., in AIP Conf. Proc. 2016. doi: 10.1063/1.4952177.
    18. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016, doi: 10.1016/j.apnum.2016.07.005.
    19. A. Chertock, P. Degond, and J. Neusser, “An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations,” Journal of Computational Physics, vol. 335, pp. 387–403, 2016, [Online]. Available: http://arxiv.org/abs/1512.04228
    20. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the  non-smooth case,” Archive for Rational Mechanics and Analysis, vol. 219, no. 2, Art. no. 2, Feb. 2016, doi: 10.1007/s00205-015-0904-8.
    21. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016, doi: 10.4171/OWR/2016/30.
    22. R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 219, no. 2, Art. no. 2, Feb. 2016, doi: 10.1007/s00205-015-0904-8.
    23. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, Art. no. 6, 2016, [Online]. Available: http://epubs.siam.org/toc/sjnaam/54/6
    24. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
    25. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
    26. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential equations,” ESAIM: COCV, vol. 22, no. 3, Art. no. 3, 2016, doi: 10.1051/cocv/2015019.
    27. F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, vol. 104, pp. 386–395, Jun. 2016, doi: 10.1016/j.ijthermalsci.2016.01.019.
    28. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016, doi: https://doi.org/10.1016/j.ijthermalsci.2016.01.019.
    29. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical Methods for    Hyperbolic Partial Differential Equations’’,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, Art. no. 2, Jan. 2016, doi: 10.1016/j.amc.2015.11.023.
    30. M. Fetzer and C. W. Scherer, “A General Integral Quadratic Constraints Theorem with Applications to a Class of Sampled-Data Systems.,” SIAM J. Contr. Optim., vol. 54, no. 3, Art. no. 3, 2016, doi: 10.1137/140985482.
    31. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,” University of Stuttgart, Arxiv Report, 2016. [Online]. Available: https://arxiv.org/abs/1610.05029
    32. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” Inverse Problems, vol. 32, no. 3, Art. no. 3, 2016, doi: http://dx.doi.org/10.1088/0266-5611/32/3/035001.
    33. F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection,” IMA Journal of Numerical Analysis, vol. 36, no. 3, Art. no. 3, 2016, doi: 10.1093/imanum/drv044.
    34. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science -- Research and Development, vol. 31, no. 4, Art. no. 4, Aug. 2016, doi: 10.1007/s00450-016-0324-5.
    35. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, Art. no. 1, 2016, doi: 10.1007/s00574-016-0144-z.
    36. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016. [Online]. Available: http://arxiv.org/abs/1607.03944
    37. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, Art. no. 4, 2016, [Online]. Available: http://imajna.oxfordjournals.org/content/36/4/1685
    38. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016, doi: 10.1007/s10543-015-0560-2.
    39. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, Art. no. 4, Oct. 2016, doi: 10.1093/imanum/drv052.
    40. G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the  1D p-system in the non smooth case,” Bulletin of the Brazilian Mathematical Society, New Series, vol. 47, no. 1, Art. no. 1, Mar. 2016, doi: 10.1007/s00574-016-0146-x.
    41. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds,” Math. Nachr, vol. 289, pp. 471–484, 2016.
    42. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid solution of minimal Riesz energy problems,” Numer. Methods Partial Diff. Equ., vol. 32, pp. 1535–1552, 2016.
    43. B. Kabil and M. Rodrigues, “Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems,” Journal of Differential Equations, vol. 260, no. 3, Art. no. 3, 2016, doi: 10.1016/j.jde.2015.10.025.
    44. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, Art. no. 18, 2016, doi: 10.1002/mma.3926.
    45. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
    46. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
    47. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
    48. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
    49. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, Art. no. 2, Jun. 2016, doi: 10.1007/s00021-015-0236-3.
    50. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, Art. no. 1, 2016, doi: 10.1002/pamm.201610363.
    51. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” COMPUTATIONAL GEOSCIENCES, vol. 20, no. 2, Art. no. 2, Apr. 2016, doi: 10.1007/s10596-016-9566-3.
    52. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, pp. 425–455, 2016, doi: 10.1007/S11242-015-0548-Z.
    53. L. Ostrowski, B. Ziegler, and G. Rauhut, “Tensor decomposition in potential energy surface representations,” The Journal of Chemical Physics, vol. 145, no. 10, Art. no. 10, 2016, doi: 10.1063/1.4962368.
    54. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MCMDS, Mathematical and Computer Modelling of Dynamical Systems, 2016, doi: 10.1080/13873954.2016.1198384.
    55. M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016, doi: https://doi.org/10.1093/imamat/hxw023.
    56. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” ESAIM Math. Model. Numer. An., vol. 50, no. 2, Art. no. 2, 2016, doi: 10.1051/m2an/2015050.
    57. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, T. D. et al., Ed., in Domain Decomposition Methods in Science and Engineering XXII, vol. 104. Springer, 2016, pp. 613--621. doi: 10.1007/978-3-319-18827-0\_54.
    58. G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction,” Doctoral School in Mathematical Sciences, University of Padova, 2016. [Online]. Available: http://paduaresearch.cab.unipd.it/9186/
    59. G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” ADVANCES IN COMPUTATIONAL MATHEMATICS, vol. 42, no. 4, Art. no. 4, Aug. 2016, doi: 10.1007/s10444-015-9449-5.
    60. V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces  and phase transitions,” Appl. Numer. Math., vol. 108, pp. 256–270, 2016, doi: 10.1016/j.apnum.2015.12.010.
    61. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” IFAC-PapersOnLine, vol. 49, no. 8, Art. no. 8, 2016, doi: http://dx.doi.org/10.1016/j.ifacol.2016.07.462.
    62. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, Art. no. 4, 2016, doi: 10.1007/s00033-016-0699-y.
    63. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität,” Master Thesis, Germany, 2016.
  11. 2015

    1. D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, Art. no. 5, 2015, doi: 10.1002/nme.4889.
    2. D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special Issue on Model Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, Art. no. 5, 2015, doi: 10.1002/nme.4889.
    3. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” University of Stuttgart, SimTech Preprint, Oct. 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1436
    4. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM journal on Financial Mathematics (SIFIN), vol. 6, no. 1, Art. no. 1, 2015, doi: 10.1137/140981216.
    5. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local  stabilization,” in CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering, J. Vigo-Aguiar, Ed., in CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering. 2015, pp. 317--326.
    6. S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov  space methods,” BIT Numerical Mathematics, vol. 55, no. 4, Art. no. 4, 2015, doi: 10.1007/s10543-014-0537-6.
    7. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2015, doi: 10.1051/cocv/2015019.
    8. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced  basis surrogate models for evolution problems,” COAP, Computational Optimization and Applications, vol. 60, no. 3, Art. no. 3, 2015, doi: DOI: 10.1007/s10589-014-9697-1.
    9. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” University of Stuttgart, 2015.
    10. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model,” JOURNAL OF DIFFERENTIAL EQUATIONS, vol. 258, no. 10, Art. no. 10, May 2015, doi: 10.1016/j.jde.2015.01.047.
    11. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, Art. no. 2, 2015, doi: 10.1093/imanum/dru022.
    12. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” Habilitationsschrift, Stuttgart, 2015.
    13. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015, [Online]. Available: http://dx.doi.org/10.1137/140970999
    14. J. Giesselmann and T. Pryer, “ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL,” ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION    MATHEMATIQUE ET ANALYSE NUMERIQUE, vol. 49, no. 1, Art. no. 1, Jan. 2015, doi: 10.1051/m2an/2014033.
    15. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains,” Math. Meth. Appl. Sciences, vol. 38, pp. 3615–3628, 2015, doi: 10.1002/mma3302.
    16. M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011),” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 5, Art. no. 5, Mar. 2015, doi: 10.1002/mma.3122.
    17. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117–135, 2015, doi: 10.1016/j.parco.2015.07.003.
    18. M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation  based image denoising,” Journal of Scientific Computing, vol. 62, no. 2, Art. no. 2, 2015, [Online]. Available: http://link.springer.com/article/10.1007/s10915-014-9863-8
    19. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in    porous media,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, Art. no. 5, SI, May 2015, doi: 10.1002/nme.4773.
    20. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015, doi: 10.1137/120899236.
    21. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    22. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, Art. no. 3, Jun. 2015, doi: 10.1007/s00033-014-0439-0.
    23. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, Art. no. 3–4, Dec. 2015, doi: 10.1007/s10884-014-9359-0.
    24. I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, Art. no. 2, Apr. 2015, doi: 10.1007/s10596-014-9464-5.
    25. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, Art. no. 2, 2015, doi: 10.1007/s10596-014-9464-5.
    26. M. Kutter, “A two scale model for liquid phase epitaxy with elasticity,” University of Stuttgart, 2015. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
    27. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” 2015, [Online]. Available: http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
    28. I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, in Numerical Mathematics and Advanced Applications - ENUMATH 2013, vol. 103. 2015, pp. 437--445. doi: 10.1007/978-3-319-10705-9_43.
    29. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system,” Advances in Computational Mathematics, vol. 41, no. 5, Art. no. 5, 2015, doi: 10.1007/s10444-014-9396-6.
    30. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    31. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, Art. no. 2, Apr. 2015, doi: 10.1093/imanum/dru009.
    32. S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in Numerical Mathematics and Advanced Applications -- ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds., in Numerical Mathematics and Advanced Applications -- ENUMATH 2013, vol. 103. , Springer, 2015, pp. 601--609. doi: 10.1007/978-3-319-10705-9_59.
    33. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition,” J. Numer. Methods Fluids, vol. 79, pp. 615–639, 2015, doi: 10.1002/fld.4065.
    34. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, Art. no. 12, Dec. 2015, doi: 10.1002/fld.4065.
    35. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions,” 2015.
    36. G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death,” Far East Journal of Dynamical Systems, 2015, doi: 10.17654/FJDSMar2015_031_059.
    37. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, vol. 41, no. 5, Art. no. 5, 2015, doi: 10.1007/s10444-014-9367-y.
    38. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” University of Stuttgart, SimTech Preprint, 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=964
    39. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015, doi: 10.1016/j.apnum.2014.05.001.
    40. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015, doi: https://doi.org/10.1016/j.jhydrol.2014.11.051.
    41. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299–309, Apr. 2015, doi: 10.1007/s10596-015-9469-8.
    42. C. W. Scherer, “GAIN-SCHEDULING CONTROL WITH DYNAMIC MULTIPLIERS BY CONVEX OPTIMIZATION,” SIAM J. Contr. Optim., vol. 53, no. 3, Art. no. 3, 2015, doi: 10.1137/140985871.
    43. V. Schleper, “A hybrid model for traffic flow and crowd dynamics with random individual  properties,” Math. Biosci. Eng., vol. 12, no. 2, Art. no. 2, 2015, doi: 10.3934/mbe.2015.12.393.
    44. V. Schleper, “Nonlinear Transport and Coupling of Conservation Laws.” 2015.
    45. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic  regulator,” in Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical  Modelling, in Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical  Modelling. 2015, pp. 713--718. doi: 10.1016/j.ifacol.2015.05.016.
    46. A. Schmidt and B. Haasdonk, “Reduced basis method for $H_2$ optimal feedback control problems,” University of Stuttgart, 2015. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1442
    47. A. Schmidt and B. Haasdonk, “Reduced Basis Approximation of Large Scale Algebraic Riccati Equations,” University of Stuttgart, 2015.
    48. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,” International Journal of Numerical Methods in Engineering, vol. 101, no. 1, Art. no. 1, 2015, doi: 10.1002/nme.4767.
    49. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 101, no. 1, Art. no. 1, Jan. 2015, doi: 10.1002/nme.4767.
    50. C. Zeiler, “Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation,” Verlag Dr. Hut, München, 2015. [Online]. Available: http://elib.uni-stuttgart.de/handle/11682/8919%7D
  12. 2014

    1. H. Adibi and H. Minbashian, Integral Equations (in Persian). Amirkabir University of Technology Press, 2014.
    2. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, Art. no. 5, 2014, doi: 10.1142/S0218202513500693.
    3. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, vol. 78. , Springer International Publishing, 2014, pp. 873–881. doi: 10.1007/978-3-319-05591-6_88.
    4. A. Barth and F. E. Benth, “The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation,” Stochastics, vol. 86, no. 6, Art. no. 6, 2014, doi: 10.1080/17442508.2014.895359.
    5. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014, doi: 10.1016/j.insmatheco.2014.05.001.
    6. P. Bastian et al., “EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8806, L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, Eds., in Euro-Par 2014: Parallel Processing Workshops, vol. 8806. , Springer, 2014, pp. 530--541. doi: 10.1007/978-3-319-14313-2_45.
    7. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” SIAM Journal on Financial Mathematics, vol. 6, pp. 685--712, 2014, doi: 10.1137/140981216.
    8. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, Art. no. 10, 2014, doi: 10.1002/zamm.201200174.
    9. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    10. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.jmaa.2014.01.049
    11. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential equations,” University of Stuttgart, 2014.
    12. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014, doi: http://dx.doi.org/10.1016/j.physd.2014.01.006.
    13. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014. [Online]. Available: http://arxiv.org/abs/1405.6625
    14. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, Art. no. 7–8, 2014, doi: 10.1002/zamm.201400559.
    15. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, Art. no. 4, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    16. R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous  media,” Numer. Meth. Part. D. E., vol. 30, pp. 723–748, 2014, doi: 10.1002/num.21823.
    17. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” in ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems, in ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems. 2014.
    18. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014, vol. Vol. 77/78. in Springer Proceedings in Mathematics & Statistics, vol. Vol. 77/78. 2014.
    19. H. Garikapati, “A PGD Based Preconditioner for Scalar Elliptic Problems,” 2014.
    20. F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” Math. Comp., vol. 83, no. 289, Art. no. 289, 2014, doi: 10.1090/S0025-5718-2013-02777-9.
    21. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, Art. no. 5, 2014, doi: 10.1137/140951710.
    22. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014, doi: http://dx.doi.org/10.1090/S0025-5718-2014-02792-0.
    23. J. Giesselmann and T. M�ller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, Art. no. 3, 2014, doi: 10.1007/s00211-014-0621-5.
    24. J. Giesselmann and T. M�ller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, M. O. J. Fuhrmann and C. Rohde, Eds., in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77. 2014.
    25. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, M. O. J. Fuhrmann and C. Rohde, Eds., in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77. 2014.
    26. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, Art. no. 1, 2014, doi: 10.1007/s00205-013-0677-x.
    27. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, F. Ancona, A. Bressan, P. Marcati, and A. Marson, Eds., in Hyperbolic Problems: Theory, Numerics, Applications. AIMS, 2014, pp. 599–606. [Online]. Available: https://aimsciences.org/books/am/AMVol8.html
    28. D. Göddeke, D. Komatitsch, and M. Möller, “Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods,” in Numerical Computations with GPUs, V. Kindratenko, Ed., in Numerical Computations with GPUs. , Springer, 2014, pp. 183--206. doi: 10.1007/978-3-319-06548-9_9.
    29. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems,” IANS, University of Stuttgart, Germany, SimTech Preprint, 2014. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    30. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, Art. no. 1, 2014.
    31. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden für effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, Art. no. 1, 2014.
    32. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on C^k-1,1 manifolds,” Math. Nachr., vol. 287, pp. 48–69, 2014.
    33. M. Hintermüller and A. Langer, “Adaptive Regularization for Parseval Frames in Image Processing.” SFB-Report No. 2014-014, 2014. [Online]. Available: http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
    34. M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image  Processing,” in Domain Decomposition Methods in Science and Engineering XXI, in Domain Decomposition Methods in Science and Engineering XXI. , Springer, 2014, pp. 829--837. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
    35. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 107, no. 0, Art. no. 0, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.na.2014.04.003
    36. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in porous media,” International Journal for Numerical Methods in Engineering, Sep. 2014, doi: 10.1002/nme.4773.
    37. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flow in porous media,” arXiv preprint arXiv:1405.2810, 2014.
    38. L. Kazaz, “Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.” 2014.
    39. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints,” SIAM J. Control Optim., vol. 52(3), p. 1832�1861. (30 pages), 2014, doi: http://dx.doi.org/10.1137/130909251.
    40. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds., in Complex Analysis and Potential Theory with Applications. , Cambridge Sci. Publ., 2014, pp. 111–124.
    41. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    42. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014, doi: 03934/cpaa.2013.13.
    43. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77. , Springer International Publishing, 2014, pp. 353–361. doi: 10.1007/978-3-319-05684-5_34.
    44. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain  decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014, doi: 10.1016/j.apnum.2013.12.001.
    45. S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven  porous media flow solver,” in 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, in 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany. Oct. 2014, pp. 109--113.
    46. M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” University of Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014. [Online]. Available: http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
    47. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” 2014, [Online]. Available: http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
    48. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., in Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7, vol. 78. Springer, Jun. 2014, pp. 703--711. doi: 10.1007/978-3-319-05591-6_70.
    49. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014, doi: 10.1016/j.jcp.2014.04.036.
    50. M. Staehle, “Anisotrope Diffusion zur Bildfilterung,” 2014.
    51. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
    52. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical  Systems,” SIAM Journal on Scientific Computing, vol. 36, no. 2, Art. no. 2, 2014, doi: 10.1137/120899042.
    53. D. Wittwar, “Empirische Interpolation and Anwendung zur Numerischen Integration.” 2014.
  13. 2013

    1. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs,” Multiscale Model. Simul., vol. 11, no. 4, Art. no. 4, 2013, doi: 10.1137/120894725.
    2. D. Amsallem, B. Haasdonk, and G. Rozza, “A Conference within a Conference for MOR Researchers,” SIAM News, vol. 46, no. 6, Art. no. 6, Jul. 2013, [Online]. Available: http://www.siam.org/news/news.php?id=2089
    3. A. Barth and A. Lang, “L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations,” Stochastic Process. Appl., vol. 123, no. 5, Art. no. 5, 2013, doi: 10.1016/j.spa.2013.01.003.
    4. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial  differential equations,” BIT, vol. 53, no. 1, Art. no. 1, 2013, doi: 10.1007/s10543-012-0401-5.
    5. T. Bissinger, “Verfahren zur Stabilen Kerninterpolation.” 2013.
    6. S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” J. Comput. Appl. Math., vol. 253, pp. 1--13, 2013, doi: 10.1016/j.cam.2013.03.048.
    7. M. Dihlmann and B. Haasdonk, “Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models,” PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting  of the International Association of Applied Mathematics and Mechanics  (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and  V. Kostic, vol. 13, no. 1, Art. no. 1, 2013, doi: doi: 10.1002/pamm.201310002.
    8. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis  surrogate models for evolution problems,” University of Stuttgart (The final publication is available at Springer  via http://dx.doi.org/10.1007/s10589-014-9697-1), SimTech Preprint, 2013.
    9. Ch. Eck, M. Kutter, A.-M. Sändig, and Ch. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, no. 10–11, Art. no. 10–11, 2013, doi: 10.1002/zamm.201200238.
    10. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” in ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems, in ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems. 2013.
    11. S. Fechter, F. Jägle, and V. Schleper, “Exact and approximate Riemann solvers at phase boundaries,” Computers & Fluids, vol. 75, pp. 112--126, 2013, doi: 10.1016/j.compfluid.2013.01.024.
    12. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics,” ZAMM, vol. 93, no. 8, Art. no. 8, 2013, doi: 10.1002/zamm.201200014.
    13. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013, doi: 10.1002/mma.2716.
    14. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013, doi: 10.1002/zamm.20100185.
    15. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses,” Computers & Fluids, vol. 80, pp. 327--332, Jul. 2013, doi: 10.1016/j.compfluid.2012.01.025.
    16. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, in PAMM 13. Wiley, 2013, pp. 363–364. doi: 10.1002/pamm.201310177.
    17. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in S�minaire Laurent Schwartz � EDP et applications, in S�minaire Laurent Schwartz � EDP et applications. 2013. [Online]. Available: http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
    18. D. Göddeke et al., “Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster,” Journal of Computational Physics, vol. 237, pp. 132--150, Mar. 2013, doi: 10.1016/j.jcp.2012.11.031.
    19. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor  belts,” Appl. Math. Modell., vol. 38, no. 13, Art. no. 13, 2013, [Online]. Available: http://dx.doi.org/10.1016/j.apm.2013.11.039
    20. B. Haasdonk, “Convergence Rates of the POD--Greedy Method,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 3, Art. no. 3, 2013, doi: 10.1051/m2an/2012045.
    21. B. Haasdonk, K. Urban, and B. Wieland, “Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion,” SIAM/ASA J. Unc. Quant., vol. 1, pp. 79–105, 2013.
    22. C.-J. Heine, C. A. M�ller, M. A. Peter, and K. G. Siebert, “Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure,” in Poromechanics, C. Hellmich, B. Pichler, and D. Adam, Eds., in Poromechanics, vol. V. ASCE, 2013, p. 1964�1972. doi: http://dx.doi.org/10.1061/9780784412992.232.
    23. M. Hintermüller and A. Langer, “Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing,” SIAM Journal on Imaging Sciences, vol. 6, no. 4, Art. no. 4, 2013, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/120894130
    24. S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction using Dictionaries,” University of Stuttgart, SimTech Preprint, 2013.
    25. F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, p. n/a--n/a, 2013, doi: 10.1002/zamm.201200141.
    26. F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” Universität Stuttgart, 2013. [Online]. Available: http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
    27. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, pp. 446–458, 2013, doi: 10.1002/zamm.201100194.
    28. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains,” Potential Analysis, vol. 38, pp. 1123–1171, 2013, doi: 10.1007/s.11118-012-9310-0.
    29. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013, doi: 10.1093/imnr/run999.
    30. D. Kreplin, “Adaptive Reduzierte Basis Methoden für Evolutionsprobleme.” 2013.
    31. I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” Universität Stuttgart, 2013.
    32. M. Köppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept,” Diplomarbeit, Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit Pomdapi INRIA Rocquencourt . Paris, France., 2013.
    33. A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized domain decomposition for image restoration,” Journal of Scientific Computing, vol. 54, no. 2–3, Art. no. 2–3, 2013, [Online]. Available: http://link.springer.com/article/10.1007/s10915-012-9603-x
    34. S. Moutari, M. Herty, A. Klein, M. Oeser, V. Schleper, and G. Steinaur, “Modeling road traffic accidents using macroscopic second-order models  of traffic flow,” IMA Journal of Applied Mathematics, vol. 78, no. 5, Art. no. 5, 2013, doi: doi: 10.1093/imamat/hxs012.
    35. F. Nitsch, “Stability Analysis of Linear Time-periodic Systems.” 2013.
    36. V. Ortmann, “Empirische Matrixinterpolation.” 2013.
    37. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers.” 2013.
    38. M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies,” Journal of Computational Physics, vol. 240, pp. 268–283, 2013, doi: 10.1016/j.jcp.2012.12.025.
    39. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, Art. no. 5, 2013, doi: 10.3934/cpaa.2013.12.2145.
    40. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, Art. no. 03, 2013, doi: 10.1142/S0218202512500522.
    41. A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen,” 2013.
    42. A. Schmidt, “Galerkin-Radiosity.” 2013.
    43. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” 2013.
    44. A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” 2013.
    45. D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” 2013.
    46. A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” Bachelor Thesis, Germany, 2013.
    47. T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System.” 2013.
    48. S. Turek and D. Göddeke, “Hardware-oriented Numerics for PDE,” in Encyclopedia of Applied and Computational Mathematics, B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, and A. Tveito, Eds., in Encyclopedia of Applied and Computational Mathematics. , Springer, 2013.
    49. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83–100, 2013, [Online]. Available: http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    50. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Res. Notes Approx., vol. 6, pp. 83–100, 2013, [Online]. Available: http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
    51. J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries.” 2013.
    52. B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape  design,” Machanics & Industry, vol. 14, pp. 1–22, 2013.
  14. 2012

    1. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kr�nkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, in ESAIM Proceedings Vol. 38. 2012, pp. 54–77. doi: 10.1051/proc/201238004.
    2. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” in ALGORITMY 2012 - Proceedings of contributed papers and posters, A. Handlovicova, Z. Minarechova, and D. Cevcovic, Eds., in ALGORITMY 2012 - Proceedings of contributed papers and posters, vol. 1. Publishing House of STU, Apr. 2012, pp. 393--403. [Online]. Available: http://www.iam.fmph.uniba.sk/algoritmy2012/zbornik/40Albrecht.pdf
    3. C. Appel, “Mathematische Methoden zur Bestimmung alterungskritischer Parameter  von Lithium-Ionen Zellen,” Diploma thesis, 2012.
    4. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, in ESAIM Proceedings Vol. 38. 2012, pp. 78–98. doi: 10.1051/proc/201238005.
    5. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite  element methods,” Stochastics, vol. 84, no. 2–3, Art. no. 2–3, 2012, doi: 10.1080/17442508.2010.523466.
    6. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises,” Appl. Math. Optim., vol. 66, no. 3, Art. no. 3, 2012, doi: 10.1007/s00245-012-9176-y.
    7. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic  partial differential equations,” Int. J. Comput. Math., vol. 89, no. 18, Art. no. 18, 2012, doi: 10.1080/00207160.2012.701735.
    8. J. Bernl�hr, “Online Reduzierte Basis Generierung f�r Parameterabh�ngige Elliptische  Partielle Differentialgleichungen,” Diploma thesis, 2012.
    9. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO  and Dune,” Theoretical and Computational Fluid Dynamics, pp. 1–20, 2012, doi: 10.1007/s00162-012-0264-z.
    10. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion  problems.,” SIAM J. Sci. Comput., vol. 34, no. 1, Art. no. 1, 2012, doi: 10.1137/100817528.
    11. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, Art. no. 3, 2012, doi: 10.1137/110848815.
    12. F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes  and Stimulate Designer’s Creativity,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7, Art. no. 7, 2012.
    13. R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to  incompressible limit,” Nonlinear Anal. Real World Appl., vol. 13, no. 5, Art. no. 5, 2012, doi: 10.1016/j.nonrwa.2012.01.015.
    14. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS 2011, Multiscale Coupling of Complex Models, vol. 38. ESAIM Proceedings, 2012.
    15. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” J. Differential Equations, vol. 253, no. 5, Art. no. 5, 2012, doi: 10.1016/j.jde.2012.05.006.
    16. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Springer, 2012.
    17. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and  Adaptive Scientific Computing,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds., in Advances in DUNE. , Springer Berlin Heidelberg, 2012, pp. 17–31. doi: 10.1007/978-3-642-28589-9_2.
    18. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of  Parametrized Evolution Systems,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling. 2012.
    19. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012, [Online]. Available: http://www.ems-ph.org/journals/show_pdf.php?issn=1463-9963&vol=14&iss=1&rank=4
    20. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution  Equations based on Empirical Operator Interpolation,” SIAM J. Sci. Comput., vol. 34, no. 2, Art. no. 2, 2012, doi: 10.1137/10081157X.
    21. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous  Media,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling. 2012. doi: https://doi.org/10.3182/20120215-3-AT-3016.00128.
    22. M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and  RBMATLAB,” in Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds., in Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany. , Springer, 2012. [Online]. Available: http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-28588-2
    23. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, T. Li and S. Jiang, Eds., in Hyperbolic Problems: Theory, Numerics and Applications. 2012, pp. 406--414.
    24. M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons,” Numerical Methods for Partial Differential Equations, vol. 28, no. 4, Art. no. 4, 2012, doi: 10.1002/num.20668.
    25. M. Fornasier, Y. Kim, A. Langer, and C.-B. Schönlieb, “Wavelet Decomposition Method for L\_2//TV-Image Deblurring,” SIAM Journal on Imaging Sciences, vol. 5, no. 3, Art. no. 3, 2012, [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/100819801
    26. D. Garmatter, “Reduzierte Basis Methoden für lineare Evolutionsprobleme am Beispiel  von European Option Pricing,” Diploma thesis, 2012.
    27. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, T. Li and S. Jiang, Eds., in Hyperbolic Problems: Theory, Numerics, Applications, vol. 2. 2012, pp. 422–430.
    28. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, E. Vasquez-Cendon, A. Hidalgo, P. Garcia Navarro, and L. Cea, Eds., in Numerical Methods for Hyperbolic Equations. Taylor and Francis Group, 2012.
    29. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” SIAM Journal on Numerical Analysis, vol. 50, no. 5, Art. no. 5, 2012.
    30. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” in ENUMATH 2011 Proceedings, in ENUMATH 2011 Proceedings. 2012. [Online]. Available: http://arxiv.org/pdf/1201.3289v1
    31. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” J. Math. Anal. Appl., vol. 393, no. 2, Art. no. 2, 2012, doi: 10.1016/j.jmaa.2012.04.019.
    32. S. Hoher, P. Schindler, S. G?ttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material  Flow Systems,” in Enabling Manufacturing Competitiveness and Economic Sustainability, H. A. ElMaraghy, Ed., in Enabling Manufacturing Competitiveness and Economic Sustainability. , Springer Berlin Heidelberg, 2012, pp. 316–321. doi: 10.1007/978-3-642-23860-4_52.
    33. A. H�cker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” Journal of mathematical Biology, vol. 64, pp. 361–401, Jan. 2012, doi: 10.1007/s00285-011-0415-7.
    34. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models,” Adv. Water Res., vol. 42, pp. 71--90, 2012, doi: 10.1016/j.advwatres.2012.01.006.
    35. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface  tension,” ESAIM: Proc., vol. 38, pp. 387–408, 2012, doi: 10.1051/proc/201238022.
    36. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” Mathematical Models and Methods in Applied Sciences, vol. 22, no. 03, Art. no. 03, 2012, doi: 10.1142/S0218202511500175.
    37. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, Art. no. 3, 2012, doi: 10.2136/vzj2011.0193.
    38. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, T. Li and S. Jiang, Eds., in Hyperbolic Problems: Theory, Numerics and Applications. 2012, pp. 469--478.
    39. R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods  for Compressible Flow Problems,” in Proceedings of the ALGORITMY 2012, A. H. et al., Ed., in Proceedings of the ALGORITMY 2012. 2012, pp. 11–21.
    40. R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds., in Advances in DUNE. , Springer Berlin Heidelberg, 2012, pp. 45–58. doi: 10.1007/978-3-642-28589-9_4.
    41. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control  Problems,” in Constrained Optimiziation and Optimal Control for Partial Differential  Equations, vol. 160, L. et al., Ed., in Constrained Optimiziation and Optimal Control for Partial Differential  Equations, vol. 160. , Springer, 2012, pp. 431–443. doi: 10.1007/978-3-0348-0133-1_22.
    42. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    43. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, Art. no. 2, 2012, doi: 10.1080/00036811.2011.614604.
    44. C. Kreuzer, C. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of  the Heat Equation,” IMA Journal of Numerical Analysis. [Online]. Available: http://dx.doi.org/10.1093/imanum/drr026
    45. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, Art. no. 4, 2012, doi: 10.1016/j.apnum.2011.01.011.
    46. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., “Fast Boundary Element Methods on Engineering and Industrial Applications.” Springer, p. 269, 2012.
    47. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246–262, 2012, doi: 10.1108/17415651211284039.
    48. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, Art. no. 5, 2012, doi: 10.1002/mma.1593.
    49. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” Acta Mechanica Sinica, vol. 28(3), pp. 854–862, 2012.
    50. V. Schleper, “On the coupling of compressible and incompressible fluids,” in Numerical Methods for Hyperbolic Equations, E. Vazquez-Cendon, A. Hidalgo, P. Garcia-Navarro, and L. Cea, Eds., in Numerical Methods for Hyperbolic Equations. Taylor & Francis Group, 2012. [Online]. Available: http://www.taylorandfrancis.com/books/details/9780415621502/
    51. V. Schleper, M. Gugat, M. Herty, A. Klar, and G. Leugering, “Well-posedness of networked hyperbolic systems of balance laws,” in Constrained Optimization and Optimal Control for Partial Differential  Equations, vol. 160, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds., in Constrained Optimization and Optimal Control for Partial Differential  Equations, vol. 160. , Birkh�user, 2012.
    52. K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in Multiscale and Adaptivity: Modelling, Numerics and Applications, vol. 2040, in Multiscale and Adaptivity: Modelling, Numerics and Applications, vol. 2040. , Berlin: Springer, 2012, pp. 227–309. doi: 10.1007/978-3-642-24079-9_4.
    53. P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic  elastic material,” Inverse Problems, vol. 28, no. 8, Art. no. 8, 2012, [Online]. Available: http://stacks.iop.org/0266-5611/28/i=8/a=085010
    54. S. Waldherr and B. Haasdonk, “Efficient Parametric Analysis of the Chemical Master Equation through  Model Order Reduction,” BMC Systems Biology, vol. 6, p. 81, 2012, [Online]. Available: http://www.biomedcentral.com/1752-0509/6/81
    55. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” Math. Biosci. Eng., vol. 9, pp. 663–683, 2012, doi: 10.3934/mbe.2012.9.663.
    56. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” University of Stuttgart, SimTech Preprint, 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=742
    57. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based  reduced systems,” Systems and Control Letters, vol. 61, no. 1, Art. no. 1, 2012, doi: 10.1016/j.sysconle.2011.10.012.
    58. D. Wirtz, N. Karajan, and B. Haasdonk, “Model order reduction of multiscale models using kernel methods,” SRC SimTech, University of Stuttgart, Germany, Preprint, Jun. 2012.
    59. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems,” University of Stuttgart, SimTech Preprint, Oct. 2012. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=733
    60. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling. 2012. [Online]. Available: http://www.ifac-papersonline.net/
  15. 2011

    1. A. Barth, F. E. Benth, and J. Potthoff, “Hedging of spatial temperature risk with market-traded futures,” Appl. Math. Finance, vol. 18, no. 2, Art. no. 2, 2011, doi: 10.1080/13504861003722385.
    2. A. Barth, C. Schwab, and N. Zollinger, “Multi-level Monte Carlo finite element method for elliptic PDEs  with stochastic coefficients,” Numer. Math., vol. 119, no. 1, Art. no. 1, 2011, doi: 10.1007/s00211-011-0377-0.
    3. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and Stable Discontinuous Galerkin Methods with Application  to Atmospheric Flows,” in Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT, I. K. et al., Ed., in Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT. , KIT Scientific Publishing, 2011, pp. 109–116. doi: 10.5445/KSP/1000023323.
    4. S. Brdar, A. Dedner, R. Klöfkorn, M. Kränkel, and D. Kröner, “Simulation of Geophysical Problems with DUNE-FEM,” in Computational Science and High Performance Computing IV, vol. 115, E. K. et al., Ed., in Computational Science and High Performance Computing IV, vol. 115. , Springer, 2011, pp. 93–106. doi: 10.1007/978-3-642-17770-5_8.
    5. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4, in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4. , Springer, 2011, pp. 195--203. doi: 10.1007/978-3-642-20671-9_21.
    6. A. Dedner et al., “On the computation of slow manifolds in chemical kinetics via optimization  and their use as reduced models in reactive flow systems.,” 2011.
    7. A. Dedner and R. Klöfkorn, “A Generic Stabilization Approach for Higher Order Discontinuous  Galerkin Methods for Convection Dominated Problems,” J. Sci. Comput., vol. 47, no. 3, Art. no. 3, 2011, doi: 10.1007/s10915-010-9448-0.
    8. M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model Reduction of Parametrized Evolution Problems using the Reduced  basis Method with Adaptive Time-Partitioning,” in Proc. of ADMOS 2011, in Proc. of ADMOS 2011. 2011.
    9. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion  Equations,” in In Proc. FVCA6, in In Proc. FVCA6. 2011.
    10. C. Eck and M. Kutter, “On the solvability of a two scale model for liquid phase epitaxy  with elasticity,” Bericht 2011/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-001.pdf
    11. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, “3D Benchmark on Discretization Schemes for Anisotropic Diffusion  Problems on General Grids,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds., in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4. , Springer Berlin Heidelberg, 2011, pp. 895–930. doi: 10.1007/978-3-642-20671-9_89.
    12. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Efficient Finite Element Geometric Multigrid Solvers for Unstructured  Grids on GPUs,” in Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering, P. Iványi and B. H. V. Topping, Eds., in Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering. Apr. 2011. doi: 10.4203/ccp.95.22.
    13. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Geometric  multigrid solvers,” in 23rd International Conference on Parallel Computational Fluid Dynamics  (ParCFD’11), in 23rd International Conference on Parallel Computational Fluid Dynamics  (ParCFD’11). May 2011.
    14. M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, and S. Turek, “A Simulation Suite for Lattice-Boltzmann based Real-Time CFD  Applications Exploiting Multi-Level Parallelism on modern Multi-  and Many-Core Architectures,” Journal of Computational Science, vol. 2, pp. 113--123, Jan. 2011, doi: 10.1016/j.jocs.2011.01.008.
    15. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” Universit�t Stuttgart, 2011.
    16. M. Gugat, M. Herty, and V. Schleper, “Flow control in gas networks: exact controllability to a given demand,” Math. Methods Appl. Sci., vol. 34, no. 7, Art. no. 7, 2011, doi: 10.1002/mma.1394.
    17. D. Göddeke and R. Strzodka, “Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision  Multigrid,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, Art. no. 1, Jan. 2011, doi: 10.1109/TPDS.2010.61.
    18. B. Haasdonk, “Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011,” University of Stuttgart, IANS-Report 2011–004, 2011.
    19. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Basis Generation Approach for Parametrized  Model Reduction Based on Adaptive Grids in Parameter Space,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 423--442, 2011.
    20. B. Haasdonk and B. Lohmann, “Special Issue on ‘“Model Order Reduction of Parametrized Problems,”’” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, Art. no. 4, 2011, doi: 10.1080/13873954.2011.547661.
    21. B. Haasdonk and M. Ohlberger, “Efficient reduced models and a posteriori error estimation  for parametrized dynamical systems by offline/online decomposition,” Math. Comput. Model. Dyn. Syst., vol. 17, no. 2, Art. no. 2, 2011, doi: 10.1080/13873954.2010.514703.
    22. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction  FIR Filters,” in Proceedings of the 19th Seminar on Mathematical Analysis and Its  Applications, in Proceedings of the 19th Seminar on Mathematical Analysis and Its  Applications. Mazandaran University, Babolsar, Iran, Feb. 2011.
    23. M. Herty and V. Schleper, “Traffic flow with unobservant drivers,” ZAMM Z. Angew. Math. Mech., vol. 91, no. 10, Art. no. 10, 2011, doi: 10.1002/zamm.201000122.
    24. M. Herty and V. Schleper, “Time discretizations for numerical optimisation of hyperbolic problems,” Appl. Math. Comput., vol. 218, no. 1, Art. no. 1, 2011, doi: 10.1016/j.amc.2011.05.116.
    25. N. Jung, A. T. Patera, B. Haasdonk, and B. Lohmann, “Model Order Reduction and Error Estimation with an Application to  the Parameter-Dependent Eddy Current Equation,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, Art. no. 4, 2011, doi: 10.1080/13873954.2011.582120.
    26. B. Kabil, “On the asymptotics of solutions to resonator equations,” Hyperbolic Problems: Theory, Numerics, Applications, vol. 8, pp. 373–380, 2011, [Online]. Available: https://aimsciences.org/books/am/AMVol8.html
    27. S. Kaulmann, “A Localized Reduced Basis Approach for Heterogenous Multiscale Problems,” Westfälische Wilhelms Universität Münster, Einsteinstrasse 62, 48149 Münster, 2011.
    28. S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous  multiscale problems,” Comptes Rendus Mathematique, vol. 349, no. 23–24, Art. no. 23–24, Dec. 2011, doi: 10.1016/j.crma.2011.10.024.
    29. J. Kelkel, “A Multiscale Approach to Cell Migration in Tissue Networks,” Universität Stuttgart, 2011.
    30. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Mathematical Biosciences and Engineering, vol. 8, no. 2, Art. no. 2, 2011, doi: 10.3934/mbe.2011.8.575.
    31. R. Klöfkorn, “Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds., in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4. , Springer Berlin Heidelberg, 2011, pp. 1023–1033. doi: 10.1007/978-3-642-20671-9_100.
    32. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, Art. no. 4, 2011, doi: 10.3934/dcdsb.2011.15.999.
    33. C. Kreuzer and K. G. Siebert, “Decay Rates of Adaptive Finite Elements with Dörfler Marking,” Numerische Mathematik, vol. 117, no. 4, Art. no. 4, 2011, doi: 10.1007/s00211-010-0324-5.
    34. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” GAMM-Mitteilungen, vol. 34, no. 1, Art. no. 1, 2011, doi: 10.1002/gamm.201110013.
    35. A. Lalegname and A. Sändig, “Wave-crack interaction in finite elastic bodies,” International Journal of Fracture, vol. 172, no. 2, Art. no. 2, 2011, doi: 10.1007/s10704-011-9650-6.
    36. A. Lalegname and A.-M. Sändig, “Wave-crack interaction in finite elastic bodies,” Bericht 2011/002 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2011. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-002.pdf
    37. Maier, “Ein iteratives Gebietszerlegungsverfahren für die Reduzierte-Basis-Methode,” diploma thesis, 2011.
    38. T. A. Mel’nyk, Iu. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, Art. no. 7, 2011, doi: 10.1002/mma.1395.
    39. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011, doi: 10.1029/2011WR010685.
    40. Th. Richter et al., “ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering,” in Proceedings of the 2011 IEEE International Symposium on Multimedia, in Proceedings of the 2011 IEEE International Symposium on Multimedia. Washington, DC, USA: IEEE Computer Society, 2011, pp. 537--542. doi: 10.1109/ISM.2011.95.
    41. T. Ruiner, “A-posteriori Fehlersch�tzer f�r Reduzierte Mechanische Systeme zweiter  Ordnung,” Diploma thesis, 2011.
    42. A. Rössle and A.-M. Sändig, “Corner Singularities and Regularity Results for the Reissner/Mindlin  Plate Model,” Journal of Elasticity, vol. 103, no. 2, Art. no. 2, 2011, doi: 10.1007/s10659-010-9258-5.
    43. G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,” Applied Mathematics and Computation, vol. 217, no. 24, Art. no. 24, 2011, doi: 10.1016/j.amc.2011.04.071.
    44. D. Schuster, “SVD-basierte Modellreduktion für Elastische Mehrkörpersysteme,” Diploma thesis, 2011.
    45. K. G. Siebert, “A Convergence Proof for Adaptive Finite Elements without Lower Bound,” IMA Journal of Numerical Analysis, vol. 31, no. 3, Art. no. 3, 2011, [Online]. Available: http://imajna.oxfordjournals.org/content/31/3/947.abstract
    46. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” in 19th Intern. Conf. on Computer Methods in Mechanics, in 19th Intern. Conf. on Computer Methods in Mechanics. Warsaw: Publ. House of Warsaw Univ. Technology, 2011.
    47. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” SRC SimTech, 2011. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=486
    48. O. Zeeb, “Reduzierte Basis Modelle f�r Formoptimierung unter Verwendung des  SQP-Algorithmus,” Diploma thesis, 2011.
  16. 2010

    1. A. Barth, “A finite element method for martingale-driven stochastic partial  differential equations,” Commun. Stoch. Anal., vol. 4, no. 3, Art. no. 3, 2010, [Online]. Available: https://www.math.lsu.edu/cosa/4-3-04209.pdf
    2. S. Brdar, A. Dedner, and R. Klöfkorn, “CDG Method for Navier-Stokes Equations,” in Proc. of the 13th International Conference on Hyperbolic Problems:  Theory, Numerics, Applications, in Proc. of the 13th International Conference on Hyperbolic Problems:  Theory, Numerics, Applications. , 2010.
    3. K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, “An $h$-narrow band finite-element method for elliptic equations on  implicit surfaces,” IMA J. Numer. Anal., vol. 30, no. 2, Art. no. 2, 2010.
    4. A. Dedner, R. Klöfkorn, and D. Kröner, “Higher Order Adaptive and Parallel Simulations Including Dynamic  Load Balancing with the Software Package DUNE,” in High Performance Computing in Science and Engineering ’09, W. N. et al., Ed., in High Performance Computing in Science and Engineering ’09. , Springer, 2010, pp. 229–239. doi: 10.1007/978-3-642-04665-0_16.
    5. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “A Generic Interface for Parallel and Adaptive Scientific Computing:  Abstraction Principles and the DUNE-FEM Module,” Computing, vol. 90, no. 3--4, Art. no. 3--4, 2010, [Online]. Available: http://www.springerlink.com/content/vj103u6079861001/
    6. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” University of Münster, Preprint Angewandte Mathematik und Informatik 02/10-N, 2010.
    7. M. Feistauer and A.-M. Sändig, “Graded Mesh Re?nement and Error Estimates of Higher Order for DGFE-solutions  of Elliptic Boundary Value Problems in Polygons,” Bericht 2010/005 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2010. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-005.pdf
    8. M. Fornasier, A. Langer, and C.-B. Schönlieb, “A convergent overlapping domain decomposition method for total variation  minimization,” Numerische Mathematik, vol. 116, no. 4, Art. no. 4, 2010, [Online]. Available: http://link.springer.com/article/10.1007/s00211-010-0314-7
    9. M. Geveler, D. Ribbrock, D. Göddeke, and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-Water Equations with  Fluid-Structure Interaction on Multi- and Manycore Processors,” in Facing the Multicore Challenge, vol. 6310, R. Keller, D. Kramer, and J.-P. Weiß, Eds., in Facing the Multicore Challenge, vol. 6310. , Springer, 2010, pp. 92--104. doi: 10.1007/978-3-642-16233-6_11.
    10. D. Göddeke, “Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations  on GPU Clusters,” Technische Universität Dortmund, Fakultät für Mathematik, 2010. [Online]. Available: http://hdl.handle.net/2003/27243
    11. D. Göddeke and R. Strzodka, “Mixed Precision GPU-Multigrid Solvers with Strong Smoothers,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds., in Scientific Computing with Multicore and Accelerators. , CRC Press, 2010, pp. 131--147. doi: 10.1201/b10376-11.
    12. B. Haasdonk, “Effiziente und Gesicherte Modellreduktion für Parametrisierte Dynamische Systeme.,” at - Automatisierungstechnik, vol. 58, no. 8, Art. no. 8, 2010.
    13. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space.,” University of Stuttgart, 2010.
    14. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Numerical Solution of Linear Fredholm Integral Equations by Using  Daubechies Wavelets,” in Proceedings of the 23rd International Conference of the Jangjeon  Mathematical Society, in Proceedings of the 23rd International Conference of the Jangjeon  Mathematical Society. Shahid Chamran University - Jangjeon Mathematical Society(Iran-S.Korea),  Ahvaz, Iran, Feb. 2010.
    15. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Approximating Functions by Using Daubechies Wavelets and comparison  with Other Approximation Methods,” in Proceedings of the 4th Iranian Conference on Applied Mathematics, in Proceedings of the 4th Iranian Conference on Applied Mathematics. University of Sistan and Baluchestan, Zahedan, Iran, Mar. 2010.
    16. M. Herty, J. Mohring, and V. Sachers, “A new model for gas flow in pipe networks,” Math. Methods Appl. Sci., vol. 33, no. 7, Art. no. 7, 2010, doi: 10.1002/mma.1197.
    17. M. Kargar, H. Minbashian, and M. Mashinchi, “Solving Delay Differential Equation with Fuzzy Coefficients,” in Proceedings of the 10th Iranian Conference on Fuzzy Systems, in Proceedings of the 10th Iranian Conference on Fuzzy Systems. Shahid Beheshti Univ. Of Tehran, Tehran, Iran, Jul. 2010.
    18. M. Kargar, H. Minbashian, and M. A. Yaghoobi., “Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification,” in Proceedings of the 4th International Conference on Fuzzy Information  & Engineering (ICFIE), in Proceedings of the 4th International Conference on Fuzzy Information  & Engineering (ICFIE). Shomal University, Amol, Iran, Oct. 2010.
    19. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Journal of Mathematical Biology, vol. 60, no. 6, Art. no. 6, 2010, doi: 10.1007/s00285-009-0284-5.
    20. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.3934/nhm.2010.5.661.
    21. K. Kohls, A. Rösch, and K. G. Siebert, “Analysis of Adaptive Finite Elements for Constrained Optimal Control  Problems.” pp. 308–311, 2010. doi: 10.4171/OWR/2010/07.
    22. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seismic wave propagation modeling with  MPI on a large GPU cluster,” Journal of Computational Physics, vol. 229, pp. 7692--7714, Oct. 2010, doi: 10.1016/j.jcp.2010.06.024.
    23. D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, “Modeling the propagation of elastic waves using spectral elements  on a cluster of 192 GPUs,” Computer Science -- Research and Development, vol. 25, no. 1--2, Art. no. 1--2, May 2010, doi: 10.1007/s00450-010-0109-1.
    24. D. Komatitsch, Michéa, G. Erlebacher, and D. Göddeke, “Running 3D finite-difference or spectral-element wave propagation  codes 25x to 50x faster using a GPU cluster,” in 72nd European Association of Geoscientists and Engineers Conference  and Exhibition (EAGE’2010), in 72nd European Association of Geoscientists and Engineers Conference  and Exhibition (EAGE’2010), vol. 4. Jun. 2010, pp. 2920--2924.
    25. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” Bericht 2010/008 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2010. [Online]. Available: http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-008.pdf
    26. H. Li, “Modellreduktion f�r Stochastische Modelle Biochemischer Netzwerke.” 2010.
    27. E. Pekalska and B. Haasdonk, “Indefinite Kernel Discriminant Analysis,” in Proc. COMPSTAT 2010, International Conference on Computational Statistics, in Proc. COMPSTAT 2010, International Conference on Computational Statistics. 2010.
    28. D. Ribbrock, M. Geveler, D. Göddeke, and S. Turek, “Performance and Accuracy of Lattice-Boltzmann Kernels on Multi-  and Manycore Architectures,” in International Conference on Computational Science (ICCS’10), P. M. A. Sloot, G. D. van Albada, and J. J. Dongarra, Eds., in International Conference on Computational Science (ICCS’10), vol. 1. 2010, pp. 239--247. doi: 10.1016/j.procs.2010.04.027.
    29. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526. , Providence, RI: Amer. Math. Soc., 2010, pp. 315--337. doi: 10.1090/conm/526/10387.
    30. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Int. J. Numer. Anal. Model., vol. 7, no. 3, Art. no. 3, 2010, [Online]. Available: http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-3-10/2010-03-09.pdf
    31. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “FEAST -- Realisation of hardware-oriented Numerics for HPC  simulations with Finite Elements,” Concurrency and Computation: Practice and Experience, vol. 22, no. 6, Art. no. 6, Nov. 2010, doi: 10.1002/cpe.1584.
    32. S. Turek, D. Göddeke, S. H. M. Buijssen, and H. Wobker, “Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated  Clusters,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds., in Scientific Computing with Multicore and Accelerators. , CRC Press, 2010, pp. 113--130. doi: 10.1201/b10376-10.
  17. 2009

    1. A. Barth, “Stochastic Partial Differential Equations: Approximations  and Applications,” University of Oslo, CMA, 2009. [Online]. Available: https://www.duo.uio.no/handle/10852/10669
    2. T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, “Solvability and regularity results to boundary-transmission problems  for metallic and piezoelectric elastic materials,” Mathematische Nachrichten, vol. 282, no. 8, Art. no. 8, 2009, doi: 10.1002/mana.200610790.
    3. R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, “Optimal control in networks of pipes and canals,” SIAM J. Control Optim., vol. 48, no. 3, Art. no. 3, 2009, doi: 10.1137/080716372.
    4. A. Dedner and R. Klöfkorn, “Stabilization for Discontinuous Galerkin Methods Applied to Systems  of Conservation Laws,” in Proc. of the 12th International Conference on Hyperbolic Problems,  Proceedings of Symposia in Applied Mathematics 67, Part 1, 253-268, E. T. et al., Ed., in Proc. of the 12th International Conference on Hyperbolic Problems,  Proceedings of Symposia in Applied Mathematics 67, Part 1, 253-268. 2009.
    5. M. Drohmann, “Reduzierte Basis Methode für die Richards Gleichung,” Diploma Thesis, 2009.
    6. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” 2009.
    7. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast  of the conductivity,” SIAM J. Sci. Comp., vol. 31, no. 4, Art. no. 4, 2009, doi: 10.1137/080731906.
    8. M. Fischer, “Einfluss der Snapshot-Wahl bei der POD basierten Reduktion.” 2009.
    9. M. Fornasier, A. Langer, and C.-B. Schönlieb, “Domain decomposition methods for compressed sensing,” in Proceedings of the International Conference of SampTA09, in Proceedings of the International Conference of SampTA09. 2009. [Online]. Available: http://arxiv.org/abs/0902.0124
    10. F. D. Gaspoz and P. Morin, “Convergence rates for adaptive finite elements,” IMA J. Numer. Anal., vol. 29, no. 4, Art. no. 4, 2009.
    11. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, Art. no. 5, 2009, [Online]. Available: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8194518
    12. G. Guerra, F. Marcellini, and V. Schleper, “Balance laws with integrable unbounded sources,” SIAM J. Math. Anal., vol. 41, no. 3, Art. no. 3, 2009, doi: 10.1137/080735436.
    13. D. Göddeke, S. H. M. Buijssen, H. Wobker, and S. Turek, “GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes  Solver,” in High Performance Computing & Simulation 2009, W. W. Smari and J. P. McIntire, Eds., in High Performance Computing & Simulation 2009. Jun. 2009, pp. 12--21. doi: 10.1109/HPCSIM.2009.5191718.
    14. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics  Code with FEASTGPU,” International Journal of Computational Science and Engineering, vol. 4, no. 4, Art. no. 4, Oct. 2009, doi: 10.1504/IJCSE.2009.029162.