Institute of Applied Analysis and Numerical Simulation

Research

List of publications.

Research highlights, all publications, and successes of the individual groups are available on the group pages.

Selected Publications

  1. 2019

    1. M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon,” vol. 39, no. 1, pp. 423–453, 2019.
    2. M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures,” vol. 10, no. 7, 2019.
    3. F. Meyer, C. Rohde, and J. Giesselmann, “A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method,” vol. 00, pp. 1–28, 2019.
    4. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in Numerical Mathematics and Advanced Applications ENUMATH 2017, Bergen, 2019, vol. 126.
  2. 2018

    1. B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” pp. 1–23, 2018.
    2. M. Alkämper, F. Gaspoz, and R. Klöfkorn, “A weak compatibility condition for newest vertex bisection in any dimension,” vol. 40, no. 6, pp. A3853–A3872, 2018.
    3. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” University of Stuttgart, 2018.
    4. A. Armiti-Juber and C. Rohde, “On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains,” pp. 1–19, 2018.
    5. A. Barth and A. Stein, “A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients,” vol. 6, no. 4, pp. 1707–1743, 2018.
    6. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise,” vol. 143, pp. 215–225, 2018.
    7. A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS,” in Advancement in mathematical sciences, Noida, Uttar Pradesh, 2018, no. 1897.
    8. A. Bhatt, J. Fehr, and B. Hassdonk, “Model Order Reduction of an Elastic Body under Large Rigid Motion,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Bergen, 2018, no. 126.
    9. A. Bhatt and R. A. Van Gorder, “Chaos in a non-autonomous nonlinear system describing asymmetric water wheels,” NONLINEAR DYNAMICS, vol. 93, no. 4, pp. 1977–1988, 2018.
    10. A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction.” Department of Mathematics, IIT Roorkee, 2018.
    11. C. P. Bradley et al., “Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems,” FRONTIERS IN PHYSIOLOGY, vol. 9, 2018.
    12. M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs,” in Signal Processing in Photonic Communications, Zürich, 2018.
    13. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Bergen, 2018, vol. Proceedings of ENUMATH 2017, no. 126.
    14. P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” Masterarbeit, 2018.
    15. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” in Theory, Numerics and Applications of Hyperbolic Problems, Aachen, 2018, vol. 236, no. 1, pp. 309–322.
    16. S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive definite kernel functions,” vol. 55, no. 1, pp. 1–24, 2018.
    17. C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, and K. Rothermel, “Enabling interactive mobile simulations through distributed reduced models,” PERVASIVE AND MOBILE COMPUTING, vol. 45, pp. 19–34, 2018.
    18. N.-A. Dreier, M. Altenbernd, C. Engwer, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application,” in 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, Cambridge, 2018.
    19. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension,” vol. 169, pp. 169–185, 2018.
    20. J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,” in 9th Vienna International Conference on Mathematical Modelling, Vienna, 2018, vol. 51, no. 2, pp. 202–207.
    21. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,” vol. 23, no. 1, p. 8, 2018.
    22. J. Giesselmann, N. Kolbe, M. Medviďová-Lukáčová, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model,” vol. 23, no. 10, pp. 4397–4431, 2018.
    23. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” vol. 333, pp. 147–175, 2018.
    24. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation,” vol. 39, no. 4, pp. 867–912, 2018.
    25. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-order modeling (ROM) for simulation and optimization, W. Keiper, A. Milde, and S. Volkwein, Eds. Cham: Springer International Publishing, 2018, pp. 21–45.
    26. H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” vol. 291, no. 1, pp. 55–85, 2018.
    27. M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data,” in Imaging, Vision and Learning Based on Optimization and PDEs, Bergen, 2018.
    28. B. Kane, “Adaptive higher order discontinuous Galerkin methods for porous-media multi-phase flow with strong heterogeneities,” Dissertation, Stuttgart, 2018.
    29. M. Koeppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” pp. 1–16, 2018.
    30. T. Koeppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,” International Journal for Numerical Methods in Biomedical Engineering, vol. 34, no. 8, p. e3095, 2018.
    31. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows,” 2018.
    32. M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow in porous media,” 2018.
    33. M. Köppel, “Flow in heterogeneous porous media : fractures and uncertainty quantification,” Dissertation, Verlag Dr. Hut, München, 2018.
    34. A. Langer, “Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method,” vol. 4, no. 1, 2018.
    35. A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse noise,” vol. 96, no. 2, pp. 298–316, 2018.
    36. A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018.
    37. J. Magiera and C. Rohde, “A particle-based multiscale solver for Ccmpressible liquid–vapor flow,” in Theory, Numerics and Applications of Hyperbolic Problems, Aachen, 2018, vol. 237, no. 2, pp. 291–304.
    38. I. Martini, B. Haasdonk, and G. Rozza, “Certified reduced basis approximation for the coupling of viscous and inviscid parametrized flow models,” vol. 74, no. 1, pp. 197–219, 2018.
    39. F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations,” 2018.
    40. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number,” 2018.
    41. C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension,” vol. 69, no. 3, pp. 76, 1–40, 2018.
    42. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181.
    43. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” vol. 24, no. 1, pp. 129–151, 2018.
    44. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” vol. 51, no. 2, pp. 307–312, 2018.
    45. A. Schmidt, “Feedback control for parametric partial differential equations using reduced basis surrogate models,” Dissertation, Verlag Dr. Hut, München, 2018.
    46. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow in porous media,” vol. 333, pp. 331–355, 2018.
    47. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018.
  3. 2017

    1. M. Alkämper and R. Klofkorn, “Distributed Newest Vertex Bisection,” JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, vol. 104, pp. 1–11, 2017.
    2. M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions,” vol. 5, no. 1, pp. 3–19, 2017.
    3. A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation,” in Model Reduction of Parametrized Systems, vol. 17, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds. Cham: Springer, 2017, pp. 333–347.
    4. M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” Feb. 2017.
    5. A. Armiti, “Modeling and analysis of almost unidirectional flows in porous media,” Dissertation, Verlag Dr. Hut, München, 2017.
    6. A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations with    stochastic process or random field coefficients,” APPLIED NUMERICAL MATHEMATICS, vol. 121, pp. 38–51, 2017.
    7. A. Barth, B. Harrach, N. Hyvoenen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” INVERSE PROBLEMS, vol. 33, no. 11, 2017.
    8. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture    Method for the Simulation of Nonlinear Signal Propagation in Multimode    Fibers,” JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 35, no. 17, pp. 3622–3628, 2017.
    9. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Lille, 2017, vol. 200, pp. 189–197.
    10. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” APPLIED NUMERICAL MATHEMATICS, vol. 116, no. SI, pp. 95–107, 2017.
    11. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local stabilization,” in Computational and mathematical methods in science and engineering CMMSE-2015, Amsterdam, 2017, no. 318, pp. 317–326.
    12. C. Chalons, C. Rohde, and M. Wiebe, “A FINITE VOLUME METHOD FOR UNDERCOMPRESSIVE SHOCK WAVES IN TWO SPACE    DIMENSIONS,” ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION    MATHEMATIQUE ET ANALYSE NUMERIQUE, vol. 51, no. 5, pp. 1987–2015, 2017.
    13. A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 335, pp. 387–403, 2017.
    14. S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, San Antonio, 2017, vol. 201, pp. 39–59.
    15. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-Assisted Interactive Mobile Simulations for Pervasive Applications,” in 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, USA, 2017.
    16. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase    transition and surface tension,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 336, pp. 347–374, 2017.
    17. M. Feistauer, O. Bartoš, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition,” in Proceedings Of Equadiff 2017 Conference, Bratislava, 2017, pp. 127–136.
    18. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints : Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, (ALENEX) 2017, Barcelona, 2017, pp. 185–196.
    19. F. D. Gaspoz and P. Morin, “APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT    APPROXIMATION (vol 83, pg 2127, 2014),” MATHEMATICS OF COMPUTATION, vol. 86, no. 305, pp. 1525–1526, 2017.
    20. F. D. Gaspoz, P. Morin, and A. Veeser, “A posteriori error estimates with point sources in fractional sobolev spaces,” NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, vol. 33, no. 4, pp. 1018–1042, 2017.
    21. J. Giesselmann and T. Pryer, “Goal-Oriented Error Analysis of a DG Scheme for a Second Gradient Elastodynamics Model,” in Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects, Lille, 2017, vol. 199, pp. 457–466.
    22. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone pressures,” APPLICABLE ANALYSIS, vol. 96, no. 9, SI, pp. 1528–1546, 2017.
    23. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,” MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, vol. 27, no. 13, pp. 2381–2423, 2017.
    24. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 223, no. 3, pp. 1427–1484, 2017.
    25. R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE    system in Besov spaces on creased Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 18, pp. 7780–7829, 2017.
    26. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs : A Tutorial Introduction for Stationary and Instationary Problems,” in Model reduction and approximation, no. 15, P. Benner, Ed. Philadelphia: Society for Industrial and Applied Mathematics, 2017, pp. 65–136.
    27. M. Hintermueller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total    Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” JOURNAL OF MATHEMATICAL IMAGING AND VISION, vol. 59, no. 3, SI, pp. 515–533, 2017.
    28. B. Kane, R. Klöfkorn, and C. Gersbacher, “hp–adaptive discontinuous Galerkin methods for porous media flow,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, Lille, 2017, vol. 200, pp. 447–456.
    29. B. Kane, “Using Dune-Fem for adaptive higher order discontinuous Galerkin methods for two-phase flow in porous media,” vol. 5, no. 1, pp. 129–149, 2017.
    30. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission Problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman Systems in Lipschitz Domains on Compact Riemannian Manifolds,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 19, no. 2, pp. 203–238, 2017.
    31. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an -dimensional solid obstacle,” MONATSHEFTE FUR MATHEMATIK, vol. 183, no. 2, pp. 269–302, 2017.
    32. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two-scale model for liquid phase epitaxy with elasticity,” CONTINUUM MECHANICS AND THERMODYNAMICS, vol. 29, no. 4, pp. 989–1016, 2017.
    33. M. Köppel, I. Kroeker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” COMPUTATIONAL GEOSCIENCES, vol. 21, no. 4, pp. 807–832, 2017.
    34. A. Langer, “Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise,” vol. 33, no. 7, p. 41, 2017.
    35. A. Langer, “Automated Parameter Selection for Total Variation Minimization in Image Restoration,” JOURNAL OF MATHEMATICAL IMAGING AND VISION, vol. 57, no. 2, pp. 239–268, 2017.
    36. I. Martini, “Reduced basis approximation for heterogeneous domain decomposition problems,” Dissertation, Verlag Dr. Hut, München, 2017.
    37. V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds., Recent trends in operator theory and partial differential equations : the Roland Duduchava anniversary volume, no. 258. Basel: Birkhäuser, 2017.
    38. H. Minbashian, H. Adibi, and M. Denghan, “An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations,” vol. 28, no. 12, pp. 2842–2861, 2017.
    39. H. Minbashian, H. Adibi, and M. Denghan, “On resolution of boundary layers of exponential profile with small thickness using an upwind method in IGA.” 2017.
    40. H. Minbashian, “Wavelet-based multiscale methods for numerical solution of hyperbolic conservation laws,” Dissertation, Tehran, 2017.
    41. H. Minbashian, H. Adibi, and M. Denghan, “An adaptive wavelet space-time SUPG method for hyperbolic conservation laws,” vol. 33, no. 6, pp. 2062–2089, 2017.
    42. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions,” vol. 304, no. C, pp. 65–82, 2017.
    43. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” vol. 10, pp. 68–78, 2017.
    44. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element method to the simulation of cable-driven parallel robots,” in Computational Kinematics, Poitiers, 2017, vol. 50, pp. 198–205.
    45. W. L. Wendland and L. Wolfgang, “Martin Costabel’s version of the trace theorem revisited,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 2, SI, pp. 329–334, 2017.
    46. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” vol. 40, no. 2, pp. 329–334, 2017.
    47. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced basis approximation for the discrete-time parametric algebraic Riccati equation,” University of Stuttgart, Institute for Applied Analysis and Numerical Simulation, 2017.
  4. 2016

    1. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGRID Module,” vol. 4, no. 1, pp. 1–28, 2016.
    2. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” vol. 3, no. 6, pp. 1–25, Mar. 2016.
    3. A. C. Antoulas, B. Haasdonk, and B. Peherstorfer, Book of Abstracts : MORML ’16 : Workshop on Data-driven Model Order Reduction and Machine Learning. University of Stuttgart, 2016.
    4. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: A hybrid stochastic Galerkin approach,” vol. 89, pp. 11–26, 2016.
    5. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Levi processes,” vol. 6, no. 2, pp. 286–334, 2016.
    6. A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations with spatial noise,” in Theory, Numerics and Applications of Hyperbolic Problems I, Aachen, 2016, no. 236, pp. 125–135.
    7. A. Barth, C. Schwab, and J. Šukys, “Multilevel Monte Carlo simulation of statistical solutions to the Navier-Stokes equations,” in Monte Carlo and Quasi-Monte Carlo methods, Leuven, Belgium, 2016, vol. 163, no. 163, pp. 209–227.
    8. P. Bastian et al., “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in Software for Exascale Computing - SPPEXA 2013-2015, Cham, 2016, no. 113, pp. 3–23.
    9. P. Bastian et al., “Advances Concerning Multiscale Methods and Uncertainty Quantification in EXA-DUNE,” in Software for Exascale Computing - SPPEXA 2013-2015, Cham, 2016, no. 113, pp. 25–43.
    10. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary problems,” in Max Planck Institute Magdeburg Preprints, no. 15–01, Magdeburg: Max Planck Institute for Dynamics of Complex Technical Systems, 2016, pp. 1–37.
    11. F. Betancourt and C. Rohde, “Finite-volume schemes for Friedrichs systems with involutions,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, pp. 420–439, 2016.
    12. A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” vol. 39, no. 2, pp. A593–A612, 2016.
    13. A. Bhatt, D. Floyd, and B. E. Moore, “Second order conformal symplectic schemes for damped Hamiltonian systems,” vol. 66, no. 3, pp. 1234–1259, 2016.
    14. A. Bhatt, “Structure-preserving finite difference methods for linearly damped differential equations,” University of Central Florida, Orlando, Florida, 2016.
    15. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” 2016.
    16. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable radial bases,” in AIP conference proceedings, 2016, no. 1738, 1.
    17. R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 219, no. 2, pp. 701–718, 2016.
    18. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the non-smooth case,” vol. 219, no. 2, pp. 701–718, 2016.
    19. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” presented at the Hyperbolic techniques in Modelling, Analysis and Numerics, Workshop 1625, Oberwolfach, 2016, vol. 13, no. 2, pp. 1683–1751.
    20. A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,” SIAM JOURNAL ON NUMERICAL ANALYSIS, vol. 54, no. 6, pp. 3523–3549, 2016.
    21. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws,” vol. 54, no. 6, pp. 3523–3549, 2016.
    22. D. Diehl, J. Kremser, D. Kroener, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local    Discontinuous Galerkin methods in multiple space dimensions,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, pp. 309–335, 2016.
    23. M. Dihlmann and B. Haasdonk, “A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL DIFFERENTIAL    EQUATIONS,” ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, vol. 22, no. 3, pp. 625–669, 2016.
    24. F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, vol. 104, pp. 386–395, 2016.
    25. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical Methods for    Hyperbolic Partial Differential Equations’’,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, pp. 235–236, 2016.
    26. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced basis Landweber method for nonlinear inverse problems,” INVERSE PROBLEMS, vol. 32, no. 3, 2016.
    27. F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal grading of the newest vertex bisection and H-1-stability of the    L-2-projection,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 3, pp. 1217–1241, 2016.
    28. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors - A case study based on the Haswell and Cortex-A15 microarchitectures,” Computer science - research and development, vol. 31, no. 4, pp. 225–234, 2016.
    29. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, pp. 1685–1714, 2016.
    30. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin    schemes,” BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, vol. 47, no. 1, pp. 359–372, 2016.
    31. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase    problems in elastodynamics,” BIT NUMERICAL MATHEMATICS, vol. 56, no. 1, pp. 99–127, 2016.
    32. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary,” 2016.
    33. G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the 1D    p-system in the non smooth case,” BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, vol. 47, no. 1, pp. 381–396, 2016.
    34. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on    Lipschitz domains in compact Riemannian manifolds,” MATHEMATISCHE NACHRICHTEN, vol. 289, no. 4, pp. 471–484, 2016.
    35. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid Solution of Minimal Riesz Energy Problems,” NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, vol. 32, no. 6, pp. 1535–1552, 2016.
    36. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler    equations including configurational forces and surface tension,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 39, no. 18, pp. 5409–5426, 2016.
    37. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, pp. 293–329, 2016.
    38. M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for a transmission problem with Lipschitz    interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE    systems,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 67, no. 5, 2016.
    39. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes system,” Journal of Mathematical Fluid Mechanics, vol. 18, no. 2, pp. 293–329, 2016.
    40. M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED systems,” vol. 67, pp. 116; 1–30, 2016.
    41. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” COMPUTATIONAL GEOSCIENCES, vol. 20, no. 2, pp. 341–353, 2016.
    42. J. Magiera, C. Rohde, and I. Rybak, “A Hyperbolic-Elliptic Model Problem for Coupled Surface-Subsurface Flow,” TRANSPORT IN POROUS MEDIA, vol. 114, no. 2, SI, pp. 425–455, 2016.
    43. M. Redeker, C. Rohde, and I. S. Pop, “Upscaling of a tri-phase phase-field model for precipitation in porous    media,” IMA JOURNAL OF APPLIED MATHEMATICS, vol. 81, no. 5, pp. 898–939, 2016.
    44. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, vol. 20, no. 4, pp. 323–344, 2016.
    45. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions,” vol. 50, no. 2, pp. 475–497, 2016.
    46. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, Cham, 2016, vol. 104, no. 104, pp. 613–621.
    47. G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximationof eigenfunction,” 2016.
    48. G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” ADVANCES IN COMPUTATIONAL MATHEMATICS, vol. 42, no. 4, pp. 973–993, 2016.
    49. V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces and    phase transitions,” APPLIED NUMERICAL MATHEMATICS, vol. 108, pp. 256–270, 2016.
    50. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” in IFAC-PapersOnLine, Bertinoro, Italy, 2016, no. 49, 8, pp. 327–332.
    51. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary    effects,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 67, no. 4, 2016.
    52. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter stochastischer Volatilität,” Masterarbeit, 2016.
  5. 2015

    1. D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, pp. 931–932, 2015.
    2. D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special issue on modelling reduction,” vol. 102, no. 5, pp. 931–932, 2015.
    3. A. Bhatt, D. Floyd, and B. E. Moore, “Second order conformal symplectic integrators for damped Hamiltonian systems.” SciCADE, Universität Potsdam, 2015.
    4. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced Basis Methods for Pricing Options with the Black-Scholes and    Heston Models,” SIAM JOURNAL ON FINANCIAL MATHEMATICS, vol. 6, no. 1, pp. 685–712, 2015.
    5. S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov space methods,” vol. 55, no. 4, pp. 949–966, 2015.
    6. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis    surrogate models for evolution problems,” COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, vol. 60, no. 3, pp. 753–787, 2015.
    7. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” Habilitationsschrift, Stuttgart, 2015.
    8. J. Giesselmann and T. Pryer, “ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL,” ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION    MATHEMATIQUE ET ANALYSE NUMERIQUE, vol. 49, no. 1, pp. 275–301, 2015.
    9. J. Giesselmann, “Low Mach asymptotic-preserving scheme for the Euler-Korteweg model,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 802–833, 2015.
    10. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model,” vol. 258, no. 10, pp. 3589–3606, 2015.
    11. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws,” vol. 53, no. 3, pp. 1280–1303, 2015.
    12. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains,” vol. 38, no. 17, pp. 3615–3628, 2015.
    13. M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011),” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 5, pp. 1001–1004, 2015.
    14. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically    compressed asynchronous checkpointing,” PARALLEL COMPUTING, vol. 49, pp. 117–135, 2015.
    15. M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation based image denoising,” vol. 62, no. 2, pp. 456–481, 2015.
    16. S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in    porous media,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, pp. 1018–1040, 2015.
    17. F. Kissling and C. Rohde, “THE COMPUTATION OF NONCLASSICAL SHOCK WAVES IN POROUS MEDIA WITH A    HETEROGENEOUS MULTISCALE METHOD: THE MULTIDIMENSIONAL CASE,” MULTISCALE MODELING & SIMULATION, vol. 13, no. 4, pp. 1507–1541, 2015.
    18. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, pp. 823–839, 2015.
    19. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, pp. 833–864, 2015.
    20. I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, pp. 269–284, 2015.
    21. I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lausanne, 2015, no. 103, pp. 437–445.
    22. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for the    coupled Stokes-Darcy system,” ADVANCES IN COMPUTATIONAL MATHEMATICS, vol. 41, no. 5, SI, pp. 1131–1157, 2015.
    23. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 834–858, 2015.
    24. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems in doubly connected domains,” vol. 35, no. 2, pp. 834–858, 2015.
    25. S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, Lausanne, 2015, no. 103, pp. 601–609.
    26. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg equations for compressible    two-phase flow with phase transition,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, vol. 79, no. 12, pp. 615–639, 2015.
    27. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase flow with phase transition,” vol. 79, no. 12, pp. 615–639, 2015.
    28. G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol Oscillators with Time-Delayed Displacement and Velocity Feedback: Hopf Bifurcations and Amplitude Death,” vol. 26, no. 1, pp. 31–59, 2015.
    29. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” ADVANCES IN COMPUTATIONAL MATHEMATICS, vol. 41, no. 5, SI, pp. 987–1013, 2015.
    30. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with phase    transition and surface tension,” APPLIED NUMERICAL MATHEMATICS, vol. 95, no. SI, pp. 267–279, 2015.
    31. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous    medium and free flow systems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, pp. 299–309, 2015.
    32. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” JOURNAL OF HYDROLOGY, vol. 521, pp. 565–581, 2015.
    33. V. Schleper, “A HYBRID MODEL FOR TRAFFIC FLOW AND CROWD DYNAMICS WITH RANDOM    INDIVIDUAL PROPERTIES,” MATHEMATICAL BIOSCIENCES AND ENGINEERING, vol. 12, no. 2, pp. 393–413, 2015.
    34. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” in 8th Vienna International Conference on Mathematical Modelling (MATHMOD 2015), Vienna, Austria, 2015, no. 48, 1, pp. 713–718.
    35. S. Turek and D. Göddeke, “Hardware-Oriented Numerics for PDE,” in Encyclopedia of Applied and Computational Mathematics, B. Engquist, Ed. Berlin: Springer, 2015, pp. 627–630.
    36. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 101, no. 1, pp. 1–28, 2015.
    37. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,” International Journal of Numerical Methods in Engineering, vol. 101, no. 1, pp. 1–28, 2015.
  6. 2014

    1. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible difuse interface model with phase transition,” vol. 24, no. 5, pp. 827–861, 2014.
    2. A. Armiti-Juber and C. Rohde, “Almost parallel flows in porous media,” in Finite volumes for complex applications VII - elliptic, parabolic and hyperbolic problems, Berlin, 2014, no. 78, pp. 873–881.
    3. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” vol. 57, pp. 31–45, 2014.
    4. A. Barth and F. E. Benth, “The forward dynamics in energy markets - infinite-dimensional modelling and simulation,” vol. 86, no. 6, pp. 932–966, 2014.
    5. P. Bastian et al., “EXA-DUNE: Flexible PDE solvers, numerical methods and applications,” in Lecture notes in computer science, Porto, 2014, vol. 2, no. 8806, pp. 530–541.
    6. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” pp. 1–25, 2014.
    7. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quanitification applied to a conservation law modelling a clarifier-thickener unit,” vol. 94, no. 10, pp. 793–817, 2014.
    8. C. Chalons, P. Engel, and C. Rohde, “A conservative and convergent scheme for undercompressive shock waves,” vol. 52, no. 1, pp. 554–579, 2014.
    9. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-disperse equations,” vol. 414, no. 2, pp. 773–798, 2014.
    10. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” vol. 273/274, pp. 1–13, 2014.
    11. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” pp. 1–34, 2014.
    12. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” vol. 94, no. 7/8, p. 559, 2014.
    13. R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous media,” vol. 30, no. 3, pp. 723–748, 2014.
    14. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” in 26th European Conference Liquid Atomization and Spray Systems, Bremen, 2014, pp. 335–345.
    15. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite volumes for complex applications VII - elliptic, parabolic and hyperbolic problems : FVCA 7, Berlin, June 2014, no. 78. Springer International Publishing, 2014.
    16. H. Garikapati, “A PGD based preconditioner for scalar elliptic problems,” Masterarbeit, 2014.
    17. F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” vol. 83, no. 289, pp. 2127–2160, 2014.
    18. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem of Dynamic Cavitation,” vol. 212, no. 1, pp. 241–281, 2014.
    19. J. Giesselmann, “Relative Entropy Approach to Convergence of a Low Order Approximation to a Nonlinear Elasticity Model with Viscosity and Capillarity,” vol. 46, no. 5, pp. 3518–3539, 2014.
    20. J. Giesselmann and T. Müller, “Geometric error of finite volume schemes for conservation laws on evolving surfaces,” vol. 128, no. 3, pp. 489–516, 2014.
    21. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system,” vol. 83, no. 289, pp. 2071–2099, 2014.
    22. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic problems, Padova, 2014, no. 8, pp. 599–606.
    23. J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation Laws on Surfaces for Generic Numerical Flux Functions,” in Finite volumes for complex applications VII, Berlin, 2014, no. 77, pp. 323–331.
    24. J. Giesselmann and T. Pryer, “On Aposteriori Error Analysis of DG Schemes Approximating Hyperbolic Conservation Laws,” in Finite volumes for complex applications VII, Berlin, 2014, no. 77, pp. 313–321.
    25. D. Göddeke, D. Komatitsch, and M. Möller, “Finite and spectral element methods on unstructured grids for flow and wave propagation problems,” in Numerical computations with GPUs, V. Kindratenko, Ed. Cham: Springer, 2014, pp. 183–206.
    26. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Methoden für effiziente und gesicherte numerische Simulation,” vol. 2014, no. 1, pp. 6–13, 2014.
    27. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on Ck-1,1 manifolds,” vol. 287, no. 1, pp. 48–69, 2014.
    28. M. Hintermüller and A. Langer, Adaptive Regularization for Parseval Frames in Image Processing, vol. 2014–014, no. 2014–014. Graz, 2014.
    29. M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image Processing,” in Domain decomposition methods in science and engineering XXI, Rennes, 2014, vol. 98, no. 98, pp. 829–837.
    30. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the stability of liquid–vapor interfaces,” vol. 107, pp. 63–75, 2014.
    31. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows in porous media,” pp. 1–30, 2014.
    32. L. Kazaz, “Black box model order reduction of nonlinear systems with kernel and discrete empirical interpolation,” Bachelorarbeit, Universität Stuttgart, Stuttgart, 2014.
    33. F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure,” vol. 94, no. 7–8, pp. 678–689, 2014.
    34. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control Constraints,” vol. 52, no. 3, pp. 1832–1861, 2014.
    35. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds,” vol. 13, no. 1, pp. 172–202, 2014.
    36. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains,” vol. 16, no. 3, pp. 595–630, 2014.
    37. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, Kraków, 2014, pp. 111–124.
    38. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite volumes for complex applications VII, Berlin, 2014, no. 77, pp. 353–361.
    39. I. Maier and B. Haasdonk, “A Dirichlet–Neumann reduced basis method for homogeneous domain decomposition problems,” vol. 78, pp. 31–48, 2014.
    40. S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven porous media flow solver,” in 3rd Workshop on Computational Engineering 2014, Stuttgart, 2014, pp. 109–113.
    41. M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” Dissertation, Universität Stuttgart, Stuttgart, 2014.
    42. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface and transition region concepts,” in Finite volumes for complex applications VII, Berlin, 2014, no. 78, pp. 703–711.
    43. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium systems,” vol. 272, pp. 327–342, 2014.
    44. M. Stähle, “Anisotrope Diffusion zur Bildfilterung,” Masterarbeit, Stuttgart, 2014.
    45. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems,” vol. 36, no. 2, pp. A311–A338, 2014.
    46. D. Wittwar, “Empirische Interpolation und Anwendung zur Numerischen Integration,” Bachelorarbeit, Stuttgart, 2014.
  7. 2013

    1. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs,” vol. 11, no. 4, pp. 1033–1070, 2013.
    2. D. Amsallem, B. Haasdonk, and G. Rozza, “A conference within a Conference for MOR Researchers,” vol. 46, no. 6, p. 8+6, 2013.
    3. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial differential equations,” vol. 53, no. 1, pp. 3–27, 2013.
    4. A. Barth and A. Lang, “LP  and almost sure convergence of a Milstein scheme for stochastic partial differential equations,” vol. 123, no. 5, pp. 1563–1587, 2013.
    5. T. Bissinger, “Verfahren zur stabilen Kerninterpolation,” Projektarbeit, Universität Stuttgart, Stuttgart, 2013.
    6. S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” vol. 253, pp. 1–13, 2013.
    7. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” Universität Stuttgart, Stuttgart, 2013.
    8. M. A. Dihlmann and B. Haasdonk, “Certified nonlinear parameter optimization with reduced basis surrogate models,” vol. 13, no. 1, pp. 3–6, 2013.
    9. C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity : an iterative procedure,” vol. 93, no. 10/11, pp. 745–761, 2013.
    10. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid scale,” in ILASS 2013, Chania, 2013, pp. 39–46.
    11. P. Engel, A. Viorel, and C. Rohde, “A low-order approximation for viscous-capillary phase transition dynamics,” vol. 70, no. 4, pp. 319–344, 2013.
    12. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics,” vol. 93, no. 8, pp. 501–519, 2013.
    13. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for the Stokes and Brinkman systems on n-dimensional Lipschitz domains : applications,” vol. 36, no. 12, pp. 1631–1648, 2013.
    14. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in Lipschitz domains in Rn,” vol. 93, no. 10–11, pp. 762–776, 2013.
    15. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs : Unstructured grid finite element geometric multigrid solvers with strong smoothers based on sparse approximate inverses,” vol. 80, pp. 327–332, 2013.
    16. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in Proceedings in applied mathematics and mechanics, Novi Sad, 2013, no. 13,1, pp. 363–364.
    17. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in Séminaire Laurent Schwartz — EDP et applications, 2013, no. 2012/2013,14, pp. 1–17.
    18. D. Göddeke et al., “Energy efficiency vs. performance of the numerical solution of PDEs : an application study on a low-power ARM-based cluster,” vol. 237, pp. 132–150, 2013.
    19. B. Haasdonk, K. Urban, and B. Wieland, “Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion,” vol. 1, no. 1, pp. 79–105, 2013.
    20. B. Haasdonk, “Convergence Rates of the POD–Greedy Method,” vol. 47, no. 3, pp. 859–873, 2013.
    21. C.-J. Heine, C. A. Möller, M. A. Peter, and K. G. Siebert, “Multiscale Adaptive Simulations of Concrete Carbonation Taking into Account the Evolution of the Microstructure,” in Poromechanics V, Wien, 2013, pp. 1964–1972.
    22. M. Hintermüller and A. Langer, “Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1/L2 data-fidelity in image processing,” vol. 6, no. 4, pp. 2134–2173, 2013.
    23. S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction Using Dictionaries,” in Adaptive modeling and simulation 2013, Lisbon, 2013, pp. 97–98.
    24. F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” Dissertation, Dr. Hut, München, 2013.
    25. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann–Transmission Problems for Stokes and Brinkman Equations on Euclidean Lipschitz Domains,” vol. 38, pp. 1123–1171, 2013.
    26. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds,” vol. 93, no. 6–7, pp. 446–458, 2013.
    27. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators in Lipschitz Domains on Compact Riemannian Manifolds: Applications to Pseudodifferential Brinkman Operators,” vol. 19, pp. 4499–4588, 2013.
    28. I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” Dissertation, Verl. Dr. Hut, München, 2013.
    29. M. Köppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with a Two Mesh Concept,” Diplomarbeit, 2013.
    30. A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized Domain Decomposition for Image Restoration,” vol. 54, no. 2–3, pp. 549–576, 2013.
    31. S. Moutari, M. Herty, A. Klein, M. Oeser, B. Steinauer, and V. Schleper, “Modelling road traffic accidents using macroscopic second-order models of traffic flow,” vol. 78, no. 5, pp. 1087–1108, 2013.
    32. F. Nitsch, “Stability Analysis of Linear Time-periodic Systems,” Bachelorarbeit, 2013.
    33. V. Ortmann, “Empirische Matrixinterpolation,” Bachelorarbeit, 2013.
    34. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers,” Bachelorarbeit, 2013.
    35. M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies,” vol. 240, pp. 268–283, 2013.
    36. C. Rohde, W. Wang, and F. Xie, “Decay rates to viscous contact waves for a 1D compressible radiation hydrodynamics model,” vol. 23, no. 3, pp. 441–469, 2013.
    37. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves,” vol. 12, no. 5, pp. 2145–2171, 2013.
    38. A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle Differentialgleichungen,” Masterarbeit, 2013.
    39. A. Schmidt, “Galerkin-Radiosity,” Bachelorarbeit, 2013.
    40. A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” Masterarbeit, 2013.
    41. D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” Masterarbeit, 2013.
    42. A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” Masterarbeit, 2013.
    43. T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System,” Bachelorarbeit, 2013.
    44. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” vol. 6, pp. 83–100, 2013.
    45. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” presented at the 7th Vienna International Conference on Mathematical Modelling, MATHMOD 2012, Vienna, 2013, vol. 2, pp. 763–768.
    46. D. Wirtz, D. C. Sorensen, and B. Haasdonk, A-posteriori error estimation for DEIM reduced nonlinear dynamical systems. Stuttgart: SimTech - Cluster of Excellence, 2013.
    47. J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries,” Projektarbeit, 2013.
    48. B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape design,” vol. 14, pp. 1–22, 2013.
  8. 2012

    1. G. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp interface limits and numerics,” in European series in applied and industrial mathematics, Marseille, France, 2012, no. 38, pp. 54–77.
    2. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” in Algoritmy 2012, Vysoké Tatry, Slovakia, 2012, pp. 393–403.
    3. E. Audusse et al., “Sediment transport modelling: Relaxation schemes for Saint-Venant - Exner and three layer models,” in European series in applied and industrial mathematics, Marseille, France, 2012, no. 38, pp. 78–98.
    4. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite element methods,” vol. 84, no. 2–3, pp. 217–231, 2012.
    5. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises,” vol. 66, no. 3, pp. 387–413, 2012.
    6. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic partial differential equations,” vol. 89, no. 18, pp. 2479–2498, 2012.
    7. J. Bernlöhr, “Online Reduzierte Basis Generierung für Parameterabhängige Elliptische Partielle Differentialgleichungen.” Universität Stuttgart, 2012.
    8. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion problems,” vol. 34, no. 1, pp. 263–282, 2012.
    9. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO and Dune,” vol. 27, no. 3/4, pp. 1–20, 2012.
    10. S. Brdar, A. Dedner, and R. Klöfkorn, “CDG Method for Navier-Stokes Equations,” in Hyperbolic problems, Beijing, China, 2012, no. 17, pp. 320–327.
    11. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1753–A1776, 2012.
    12. F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes and Stimulate Designer’s Creativity,” vol. 25, no. 7, pp. 1413–1424, 2012.
    13. R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to incompressible limit,” vol. 13, no. 5, pp. 2195–2213, 2012.
    14. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS’11, Multiscale Coupling of Complex Models in Scientific Computing, no. 38. ESAIM Proceedings, 2012.
    15. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” vol. 253, no. 5, pp. 1399–1421, 2012.
    16. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing,” in Advances in DUNE, Berlin, 2012, pp. 17–31.
    17. A. Dedner, B. Flemisch, and R. Klöfkorn, Eds., Advances in DUNE : proceedings of the DUNE User Meeting, held in October 6th-8th 2010 in Stuttgart, Germany. Springer, 2012.
    18. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of Parametrized Evolution Systems,” in IFAC-PapersOnLine, Wien, 2012, no. 45, 2, pp. 112–117.
    19. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” vol. 14, pp. 105–143, 2012.
    20. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous Media,” in IFAC-PapersOnLine, Wien, 2012, no. 45, 2.
    21. M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and RBMATLAB,” in Advances in DUNE, Stuttgart, 2012, pp. 7–88.
    22. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” vol. 34, no. 2, pp. A937–A969, 2012.
    23. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Series in contemporary applied mathematics CAM, Peking, 2012, vol. 2, no. 18, pp. 406–414.
    24. M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons,” vol. 28, no. 4, pp. 1124–1151, 2012.
    25. M. Fornasier, Y. Kim, A. Langer, and C.-B. Schönlieb, “Wavelet Decomposition Method for L2-TV-Image Deblurring,” vol. 5, no. 3, pp. 857–885, 2012.
    26. D. Garmatter, “Reduzierte Basis Methoden für lineare Evolutionsprobleme am Beispiel von European Option Pricing,” Diplomarbeit, 2012.
    27. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, Santiago de Compostela, 2012.
    28. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, Peking, 2012, vol. 2, no. 18, pp. 422–430.
    29. M. Gugat, M. Herty, A. Klar, G. Leugering, and V. Schleper, “Well-posedness of networked hyperbolic systems of balance laws,” in Constrained optimization and optimal control for partial differential equations, Basel, 2012, vol. 160, no. 160, pp. 123–146.
    30. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” vol. 50, no. 5, pp. 2656–2676, 2012.
    31. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” vol. 393, no. 2, pp. 397–412, 2012.
    32. S. Hoher, P. Schindler, S. Göttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material Flow Systems,” in Enabling Manufacturing Competitiveness and Economic Sustainability, Montreal, Canada, 2012, pp. 316–321.
    33. A. Häcker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” vol. 64, pp. 361–401, 2012.
    34. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models,” vol. 42, pp. 71–90, 2012.
    35. F. Jägle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface tension,” in European series in applied and industrial mathematics. Proceedings and Surveys, Marseille, France, 2012, no. 38, pp. 387–408.
    36. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” vol. 22, no. 3, pp. 1150017, 1–25, 2012.
    37. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, Peking, 2012, no. 18, pp. 469–478.
    38. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone Using a Multi-Scale Approach,” vol. 11, no. 3, p. vzj2011.0193, 2012.
    39. R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods for Compressible Flow Problems,” in Proceedings of the ALGORITMY 2012, Vysoke Tatry, Podbanske, 2012, pp. 11–21.
    40. R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in Advances in DUNE, Stuttgart, 2012, pp. 45–58.
    41. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control Problems,” in Constrained Optimiziation and Optimal Control for Partial Differential Equations, 2012, no. 160, pp. 431–443.
    42. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz domains on Riemannian manifolds: Applications to Brinkman operators,” Mathematica / Académie Roumaine, Filiale de Cluj-Napoca, vol. 77, no. 2, pp. 159–176, 2012.
    43. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model - a boundary integral formulation,” vol. 91, no. 2, pp. 251–275, 2012.
    44. C. Kreuzer, C. A. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation,” vol. 32, no. 4, pp. 1375–1403, 2012.
    45. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative noise,” vol. 62, no. 4, pp. 441–456, 2012.
    46. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., Fast boundary element methods in engineering and industrial applications, no. 63. Berlin: Springer, 2012, p. 269.
    47. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” vol. 9, pp. 246–262, 2012.
    48. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics model problem,” vol. 35, no. 5, pp. 564–573, 2012.
    49. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” vol. 28, no. 3, pp. 854–862, 2012.
    50. V. Schleper, “On the coupling of compressible and incompressible fluids,” in Numerical Methods for Hyperbolic Equations, Santiago de Compostela, 2012.
    51. K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in Multiscale and Adaptivity, Cetraro, 2012, vol. 2040, no. 2040, pp. 227–309.
    52. P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic elastic material,” vol. 28, no. 8, pp. 085010, 1–24, 2012.
    53. S. Waldherr and B. Haasdonk, “Efficient Parametric Analysis of the Chemical Master Equation through Model Order Reduction,” vol. 6, p. 81, 2012.
    54. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions of death receptor signalling,” vol. 9, no. 3, pp. 663–683, 2012.
    55. D. Wirtz, N. Karajan, and B. Haasdonk, Model order reduction of multiscale models using kernel methods. Stuttgart: SimTech - Cluster of Excellence, 2012.
    56. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems,” vol. 61, no. 1, pp. 203–211, 2012.
  9. 2011

    1. A. Barth, C. Schwab, and N. Zollinger, “Multi-level Monte Carlo finite element method for elliptic PDEs  with stochastic coefficients,” Numer. Math., vol. 119, no. 1, pp. 123--161, 2011.
    2. A. Barth, F. E. Benth, and J. Potthoff, “Hedging of spatial temperature risk with market-traded futures,” Appl. Math. Finance, vol. 18, no. 2, pp. 93--117, 2011.
    3. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and Stable Discontinuous Galerkin Methods with Application  to Atmospheric Flows,” in Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT, I. K. et al., Ed. KIT Scientific Publishing, 2011, pp. 109–116.
    4. S. Brdar, A. Dedner, R. Klöfkorn, M. Kränkel, and D. Kröner, “Simulation of Geophysical Problems with DUNE-FEM,” in Computational Science and High Performance Computing IV, vol. 115, E. K. et al., Ed. Springer, 2011, pp. 93–106.
    5. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives.  Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
    6. A. Dedner et al., “On the computation of slow manifolds in chemical kinetics via optimization  and their use as reduced models in reactive flow systems.,” 2011.
    7. A. Dedner and R. Klöfkorn, “A Generic Stabilization Approach for Higher Order Discontinuous  Galerkin Methods for Convection Dominated Problems,” J. Sci. Comput., vol. 47, no. 3, pp. 365–388, 2011.
    8. M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model Reduction of Parametrized Evolution Problems using the Reduced  basis Method with Adaptive Time-Partitioning,” in Proc. of ADMOS 2011, 2011.
    9. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion  Equations,” in In Proc. FVCA6, 2011.
    10. C. Eck and M. Kutter, “On the solvability of a two scale model for liquid phase epitaxy  with elasticity,” Bericht 2011/001 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011.
    11. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, “3D Benchmark on Discretization Schemes for Anisotropic Diffusion  Problems on General Grids,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 895–930.
    12. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Geometric  multigrid solvers,” in 23rd International Conference on Parallel Computational Fluid Dynamics  (ParCFD’11), 2011.
    13. M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, and S. Turek, “A Simulation Suite for Lattice-Boltzmann based Real-Time CFD  Applications Exploiting Multi-Level Parallelism on modern Multi-  and Many-Core Architectures,” Journal of Computational Science, vol. 2, pp. 113--123, 2011.
    14. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Efficient Finite Element Geometric Multigrid Solvers for Unstructured  Grids on GPUs,” in Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering, 2011.
    15. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” Universität Stuttgart, 2011.
    16. D. Goöddeke and R. Strzodka, “Mixed Precision GPU-Multigrid Solvers with Strong Smoothers,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. Boca Raton, Fla.: CRC Press, 2011, pp. 131–147.
    17. M. Gugat, M. Herty, and V. Schleper, “Flow control in gas networks: exact controllability to a given demand,” Math. Methods Appl. Sci., vol. 34, no. 7, pp. 745--757, 2011.
    18. D. Göddeke and R. Strzodka, “Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision  Multigrid,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 22--32, 2011.
    19. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Basis Generation Approach for Parametrized  Model Reduction Based on Adaptive Grids in Parameter Space,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 423--442, 2011.
    20. B. Haasdonk, “Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011,” University of Stuttgart, IANS-Report 2011–004, 2011.
    21. B. Haasdonk and B. Lohmann, “Special Issue on ‘“Model Order Reduction of Parametrized Problems,”’” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, pp. 295--296, 2011.
    22. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” in Numerical Mathematics and Advanced Applications 2011, Leicester, 2011, pp. 821–829.
    23. B. Haasdonk and M. Ohlberger, “Efficient reduced models and a posteriori error estimation  for parametrized dynamical systems by offline/online decomposition,” Math. Comput. Model. Dyn. Syst., vol. 17, no. 2, pp. 145--161, 2011.
    24. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction  FIR Filters,” in Proceedings of the 19th Seminar on Mathematical Analysis and Its  Applications, Mazandaran University, Babolsar, Iran, 2011.
    25. M. Herty and V. Schleper, “Traffic flow with unobservant drivers,” ZAMM Z. Angew. Math. Mech., vol. 91, no. 10, pp. 763--776, 2011.
    26. M. Herty and V. Schleper, “Time discretizations for numerical optimisation of hyperbolic problems,” Appl. Math. Comput., vol. 218, no. 1, pp. 183--194, 2011.
    27. N. Jung, A. T. Patera, B. Haasdonk, and B. Lohmann, “Model Order Reduction and Error Estimation with an Application to  the Parameter-Dependent Eddy Current Equation,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, pp. 561--582, 2011.
    28. B. Kabil, “On the asymptotics of solutions to resonator equations,” Hyperbolic Problems: Theory, Numerics, Applications, vol. 8, pp. 373–380, 2011.
    29. S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous  multiscale problems,” Comptes Rendus Mathematique, vol. 349, no. 23–24, pp. 1233--1238, 2011.
    30. S. Kaulmann, “A Localized Reduced Basis Approach for Heterogenous Multiscale Problems,” Westfälische Wilhelms Universität Münster, Einsteinstrasse 62, 48149 Münster, 2011.
    31. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Mathematical Biosciences and Engineering, vol. 8, no. 2, pp. 575--589, 2011.
    32. J. Kelkel, “A Multiscale Approach to Cell Migration in Tissue Networks,” Universität Stuttgart, 2011.
    33. R. Klöfkorn, “Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 1023–1033.
    34. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, pp. 999--1018, 2011.
    35. C. Kreuzer and K. G. Siebert, “Decay Rates of Adaptive Finite Elements with Dörfler Marking,” Numerische Mathematik, vol. 117, no. 4, pp. 679–716, 2011.
    36. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” GAMM-Mitteilungen, vol. 34, no. 1, pp. 84--89, 2011.
    37. A. Lalegname and A. Sändig, “Wave-crack interaction in finite elastic bodies,” International Journal of Fracture, vol. 172, no. 2, pp. 131--149, 2011.
    38. A. Lalegname and A.-M. Sändig, “Wave-crack interaction in finite elastic bodies,” Bericht 2011/002 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011.
    39. Maier, “Ein iteratives Gebietszerlegungsverfahren für die Reduzierte-Basis-Methode,” diploma thesis, 2011.
    40. T. A. Mel’nyk, Iu. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, pp. 758--775, 2011.
    41. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011.
    42. Th. Richter et al., “ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering,” in Proceedings of the 2011 IEEE International Symposium on Multimedia, Washington, DC, USA, 2011, pp. 537--542.
    43. T. Ruiner, “A-posteriori Fehlerschätzer für Reduzierte Mechanische Systeme zweiter  Ordnung,” Diploma thesis, 2011.
    44. A. Rössle and A.-M. Sändig, “Corner Singularities and Regularity Results for the Reissner/Mindlin  Plate Model,” Journal of Elasticity, vol. 103, no. 2, pp. 113--135, 2011.
    45. G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,” Applied Mathematics and Computation, vol. 217, no. 24, pp. 10003--10015, 2011.
    46. D. Schuster, “SVD-basierte Modellreduktion für Elastische Mehrkörpersysteme,” Diploma thesis, 2011.
    47. K. G. Siebert, “A Convergence Proof for Adaptive Finite Elements without Lower Bound,” IMA Journal of Numerical Analysis, vol. 31, no. 3, pp. 947–970, 2011.
    48. S. Turek, D. Göddeke, S. H. M. Buijssen, and H. Wobker, “Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. Dongarra, Eds. Boca Raton, Fla.: CRC Press, 2011, pp. 113–130.
    49. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” in 19th Intern. Conf. on Computer Methods in Mechanics, Warsaw, 2011.
    50. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” SRC SimTech, 2011.
    51. O. Zeeb, “Reduzierte Basis Modelle für Formoptimierung unter Verwendung des  SQP-Algorithmus,” Diploma thesis, 2011.
  10. 2010

    1. A. Barth, “A finite element method for martingale-driven stochastic partial differential equations,” vol. 4, no. 3, pp. 355–375, 2010.
    2. K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, “An h-narrow band finite-element method for elliptic equations on implicit surfaces,” vol. 30, no. 2, pp. 351–376, 2010.
    3. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module,” vol. 90, no. 3/4, pp. 165–196, 2010.
    4. A. Dedner, R. Klöfkorn, and D. Kröner, “Higher Order Adaptive and Parallel Simulations Including Dynamic Load Balancing with the Software Package DUNE,” in High performance computing in science and engineering ’ 09, Stuttgart, 2010, pp. 229–239.
    5. M. Feistauer and A.-M. Sändig, Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons, no. 2010, 005. Stuttgart: Inst. für Angewandte Analysis und Numerische Simulation, 2010.
    6. M. Fornasier, A. Langer, and C.-B. Schönlieb, “A convergent overlapping domain decomposition method for total variation minimization,” vol. 116, no. 4, pp. 645–685, 2010.
    7. M. Fornasier, A. Langer, and C.-B. Schönlieb, “Domain decomposition methods for compressed sensing,” in SAMPTA’09, International Conference on Sampling Theory and Applications, Marseille, 2010.
    8. M. Geveler, D. Ribbrock, D. Goeddeke, and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors,” in Lecture Notes in Computer Science, vol. 1, no. 6310, R. Keller, D. Kramer, and J.-P. Weiss, Eds. Berlin: Springer, 2010, pp. 92–104.
    9. D. Göddeke, “Fast and accurate finite-element multigrid solvers for PDE simulations on GPU clusters,” Dissertation, Stuttgart, 2010.
    10. B. Haasdonk and E. Pękalska, “Classification with Kernel Mahalanobis Distances,” in Advances in data analysis, data handling and business intelligence, Hamburg, 2010.
    11. B. Haasdonk, “Effiziente und Gesicherte Modellreduktion für Parametrisierte Dynamische Systeme,” vol. 58, no. 8, pp. 468–474, 2010.
    12. B. Haasdonk and M. Ohlberger, “Efficient a-posteriori Error Estimation for Parametrized Reduced Dynamical Systems,” in Tagungsband, Workshops in Anif/Salzburg / GMA-Fachausschuss 1.30 “Modellbildung, Identifikation und Simulation in der Automatisierungstechnik,” Anif/Salzburg, 2010.
    13. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Approximating Functions by Using Daubechies Wavelets and comparison with Other Approximation Methods,” presented at the 4th Iranian Conference on Applied Mathematics, Zahedan/Sistan & Baluchistan, Iran, 2010.
    14. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Numerical Solution of Linear Fredholm Integral Equations by Using Daubechies Wavelets,” in Proceedings of the 23rd International Conference of the Jangjeon Mathematical Society, Ahvaz, Iran, 2010.
    15. M. Herty, J. Mohring, and V. Sachers, “A new model for gas flow in pipe networks,” vol. 33, no. 7, pp. 845–855, 2010.
    16. M. Kargar, H. Minbashian, and M. Mashinchi, “Solving Delay Differential Equation with Fuzzy Coefficients,” presented at the 10th Iranian Conference on Fuzzy Systems, Theran, Iran, 2010.
    17. M. Kargar, H. Minbashian, and M. A. Yaghoobi, “Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification,” presented at the 4th International Conference on Fuzzy Information & Engineering (ICFIE), Amol, Iran, 2010.
    18. J. Kelkel and C. Surulescu, “On a stochastic reaction–diffusion system modeling pattern formation on seashells,” vol. 60, no. 6, pp. 765–796, 2010.
    19. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous Multiscale Method,” vol. 5, no. 3, pp. 661–674, 2010.
    20. K. Kohls, A. Rösch, and K. G. Siebert, “Analysis of Adaptive Finite Elements for Constrained Optimal Control Problems,” no. 7, 2, pp. 308–311, 2010.
    21. D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, “Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs,” presented at the ISC ’10, International Supercomputing Conference, Hamburg, 2010, vol. 25, no. 1/2, pp. 75–82.
    22. D. Komatitsch, D. Michéa, G. Erlebacher, and D. Göddeke, “Running 3D finite-difference or spectral-element wave propagation codes 25x to 50x faster using a GPU cluster,” presented at the 72nd European Association of Geoscientists and Engineers conference and exhibition, Barcelona, Spain, 2010, vol. 4, pp. 2920–2924.
    23. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster,” vol. 229, pp. 7692–7714, 2010.
    24. M. Kutter and A.-M. Sändig, Modeling of ferroelectric hysteresis as variational inequality, no. 2010, 008. Stuttgart: IANS, 2010.
    25. H. Li, “Modellreduktion für Stochastische Modelle Biochemischer Netzwerke,” 2010.
    26. E. Pekalska and B. Haasdonk, “Indefinite Kernel Discriminant Analysis,” in Proceedings of COMPSTAT’ 2010, Paris, France, 2010.
    27. D. Ribbrock, M. Geveler, D. Göddeke, and S. Turek, “Performance and Accuracy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures,” in Procedia computer science, Amsterdam, 2010, vol. 1, no. 1, pp. 239–247.
    28. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, no. 526, H. Holden and K. H. Karlsen, Eds. Providence, RI: American Mathematical Society, 2010, pp. 315–337.
    29. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study,” vol. 7, no. 3, pp. 520–534, 2010.
    30. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “FEAST – Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements,” in Concurrency and Computation: Practice and Experience, 2010, no. 22, 16, pp. 2247–2265.
    31. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “UCHPC - Unconventional High-Performance Computing for Finite Element Simulations,” in International Supercomputing Conference, Dresden, 2010.
  11. 2009

    1. A. Barth, “Stochastic Partial Differential Equations: Approximations and Applications,” 2009.
    2. T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, “Solvability and regularity results to boundary-transmission problems for metallic and piezoelectric elastic materials,” vol. 282, no. 8, pp. 1079–1110, 2009.
    3. S. H. M. Buijssen, H. Wobker, D. Göddeke, and S. Turek, “FEASTSolid and FEASTFlow: FEM Applications Exploiting FEAST’s HPC Technologies,” in High performance computing in science and engineering ’ 08, Stuttgart, 2009, vol. 2008, pp. 425–440.
    4. R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, “Optimal control in networks of pipes and canals,” vol. 48, no. 3, pp. 2032–2050, 2009.
    5. A. Dedner and R. Klöfkorn, “Stabilization for Discontinuous Galerkin Methods Applied to Systems of Conservation Laws,” in Plenary and invited talks, College Park, Md., 2009, no. 67, 1, pp. 253–268.
    6. M. Drohmann, “Reduzierte Basis Methode für die Richards Gleichung,” Masterarbeit, 2009.
    7. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” in ALGORITMY 2009, Podbanské, Slovakia, 2009, pp. 111–120.
    8. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast of the conductivity,” vol. 31, no. 4, pp. 2568–2586, 2009.
    9. M. Fischer, “Einfluss der Snapshot-Wahl bei der POD basierten Reduktion,” Studienarbeit, 2009.
    10. F. D. Gaspoz and P. Morin, “Convergence rates for adaptive finite elements,” vol. 29, no. 4, pp. 917–936, 2009.
    11. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” vol. 43, no. 5, pp. 929–955, 2009.
    12. G. Guerra, F. Marcellini, and V. Schleper, “Balance laws with integrable unbounded sources,” vol. 41, no. 3, pp. 1164–1189, 2009.
    13. D. Göddeke, S. H. M. Buijssen, H. Wobker, and S. Turek, “GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes Solver,” in Proceedings of the 2009 International Conference on High Performance Computing & Simulation (HPCS 2009), Leipzig, 2009, pp. 12–21.
    14. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics Code with FEASTGPU,” vol. 4, no. 4, pp. 254–269, 2009.
    15. B. Haasdonk, M. Ohlberger, T. Tonn, and K. Urban, MoRePaS 2009 Book of Abstracts. University of Münster, 2009.
    16. B. Haasdonk and M. Ohlberger, “Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems,” in Proceedings / MATHMOD 09, Wien, 2009, no. 35.
    17. B. Haasdonk and M. Ohlberger, “Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online Decomposition,” in Proceedings / MATHMOD 09, Wien, 2009, no. 35.
    18. B. Haasdonk and M. Ohlberger, “Reduced basis method for explicit finite volume approximations of nonlinear conservation laws,” in Proceedings of Symposia in Applied Mathematics, College Park, Md., 2009, no. 67, pp. 605–614.
    19. N. Jung, B. Haasdonk, and D. Kröner, “Reduced Basis Method for Quadratically Nonlinear Transport Equations,” vol. 2, no. 4, pp. 334–353, 2009.
    20. J. Kelkel and C. Surulescu, “A weak solution approach to a reaction-diffusion system modeling pattern formation on seashells,” vol. 32, no. 17, pp. 2267–2286, 2009.
    21. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local Conservation Laws,” vol. 247, no. 12, pp. 3338–3356, 2009.
    22. R. Klöfkorn, “Numerics for evolution equations : a general interface based design concept,” Dissertation, 2009.
    23. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Theory of Adaptive Finite Element Methods: An Introduction,” in Multiscale, Nonlinear and Adaptive Approximation, R. A. DeVore and A. Kunoth, Eds. Springer, 2009, pp. 409–542.
    24. E. Pekalska and B. Haasdonk, “Kernel Discriminant Analysis with Positive Definite and Indefinite Kernels,” vol. 31, no. 6, pp. 1017–1032, 2009.
    25. V. Schleper, “Modeling, analysis and optimal control of gas pipeline networks,” Dissertation, Dr. Hut, München, 2009.
    26. A.-M. Sändig, Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen, Vorlesung im Wintersemester 2008/09, no. 2009, 009. Stuttgart: IANS, 2009.
    27. L. Tobiska and C. Winkel, The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study, no. 2009, 18. Magdeburg: Univ., Fak. für Informatik, 2009.
    28. D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C. Gutwenger, “HONEI: A collection of libraries for numerical computations targeting multiple processor architectures,” vol. 180, no. 12, pp. 2534–2543, 2009.
    29. D. Wirtz, “SegMedix - Development and Application of a Medical Imaging Framework,” Diplomarbeit, 2009.
  12. 2008

    1. H. Antil, A. Gantner, R. H. W. Hoppe, D. Köster, K. G. Siebert, and A. Wixforth, “Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Biochips,” in Domain decomposition methods in science and engineering XVII, St. Wolfgang and Strobl, Austria, 2008, no. 60, pp. 305–312.
    2. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE,” vol. 82, no. 2–3, pp. 121–138, 2008.
    3. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework,” Computing, vol. 82, no. 2–3, pp. 103–119, 2008.
    4. J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method,” vol. 46, no. 5, pp. 2524–2550, 2008.
    5. R. M. Colombo, M. Herty, and V. Sachers, “On 2 x 2 conservation laws at a junction,” vol. 40, no. 2, pp. 605–622, 2008.
    6. A. Dedner and R. Klöfkorn, “The compact discontinuous Galerkin method for elliptic problems,” in Finite volumes for complex applications V, Aussois, France, 2008, pp. 761–776.
    7. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, Aussois, France, 2008, pp. 53–68.
    8. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase model,” vol. 57, no. 2, pp. 717–755, 2008.
    9. J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger, “Guest Editorial - Modeling and Simulation of PEM Fuel Cells,” vol. 5, no. 2, p. 020301, 2008.
    10. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation Laws on Riemannian Manifolds,” in Finite volumes for complex applications V, Aussois, France, 2008.
    11. D. Göddeke et al., “Using GPUs to Improve Multigrid Solver Performance on a Cluster,” vol. 4, no. 1, pp. 36–55, 2008.
    12. D. Göddeke and R. Strzodka, Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations (Prt 2: double precision GPUs), no. 370. Dortmund: Technische Universität, Fakultät für Mathematik, 2008.
    13. B. Haasdonk and M. Ohlberger, “Adaptive basis enrichment for the reduced basis method applied to finite volume schemes,” in Finite volumes for complex applications V, Aussois, France, 2008, pp. 471–478.
    14. B. Haasdonk and E. Pękalska, “Indefinite Kernel Fisher Discriminant,” in 19th International Conference on Pattern Recognition, 2008, Tampa, Florida, USA, 2008.
    15. B. Haasdonk and M. Ohlberger, “Reduced basis method for finite volume approximations of parametrized linear evolution equations,” vol. 42, no. 2, pp. 277–302, 2008.
    16. B. Haasdonk, M. Ohlberger, and G. Rozza, “A reduced basis method for evolution schemes with parameter-dependent explicit operators,” in Electronic transactions on numerical analysis, Chemnitz, 2008, no. 32, pp. 145–161.
    17. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase transition theory,” vol. 4, no. 4, pp. 860–893, 2008.
    18. C.-J. Heine, “Finite element methods on unfitted meshes,” Preprint Series of the Department of Mathematics / Albert Ludwigs University of Freiburg, vol. 08–09, 2008.
    19. G. C. Hsiao and W. L. Wendland, Boundary integral equations, no. 164. Berlin: Springer, 2008.
    20. O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” vol. 8, no. 1, pp. 60–76, 2008.
    21. N. Jung, “Anwendung der Reduzierten Basis Methode auf quadratisch nichtlineare Transportgleichungen,” Diplomarbeit, 2008.
    22. R. Klöfkorn, D. Kröner, and M. Ohlberger, “Parallel Adaptive Simulation of PEM Fuel Cells,” in Mathematics - Key Technology for the Future, H.-J. Krebs and W. Jäger, Eds. Berlin: Springer, 2008, pp. 235–249.
    23. I. Kröker, “Finite volume methods for conservation laws with noise,” in Finite volumes for complex applications V, Aussois, France, 2008, pp. 527–534.
    24. D. Köster, O. Kriessl, and K. G. Siebert, “Design of Finite Element Tools for Coupled Surface and Volume Meshes,” vol. 1, no. 3, pp. 245–274, 2008.
    25. M. Köster, D. Göddeke, H. Wobker, and S. Turek, How to gain speedups of 1000 on single processor with fast FEM solvers benchmarking numerical and computational efficiency, no. 382. Dortmund: Technische Universität, Fakultät für Mathematik, 2008.
    26. P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Elements,” vol. 18, no. 5, pp. 707–737, 2008.
    27. P. Märkl and A.-M. Sändig, Singularities of the Stokes System in Polygons, no. 2008, 009. Stuttgart: IANS, 2008.
    28. H. Perfahl and A.-M. Sändig, A Continuum-Mechanical Approach to Avascular Solid Tumor Growth, no. 2008, 001. Stuttgart: IANS, 2008.
    29. E. Pękalska and B. Haasdonk, Kernel quadratic discriminant analysis for positive definite and indefinite kernels, no. 2008, 06. Münster: Univ., 2008.
    30. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Lyon, 2008, pp. 891–899.
    31. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics and magnetohydrodynamics,” vol. 18, no. 12, pp. 2151–2174, 2008.
  13. 2007

    1. M. J. Cascon, R. H. Nochetto, and K. G. Siebert, “Design and convergence of AFEM in H(DIV),” vol. 17, no. 11, pp. 1849–1881, 2007.
    2. R. Ewing, O. Iliev, R. Lazarov, and I. Rybak, On two-level preconditioners for flow in porous media, no. 121. Kaiserslautern: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer (ITWM), 2007.
    3. A. Gantner, R. H. W. Hoppe, D. Köster, K. Siebert, and A. Wixforth, “Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips,” vol. 10, no. 3, pp. 145–161, 2007.
    4. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and S. Turek, “Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU,” vol. 4, no. 4, pp. 254–269, 2007.
    5. D. Göddeke, R. Strzodka, and S. Turek, “Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations,” vol. 22, no. 4, pp. 221–256, 2007.
    6. D. Göddeke et al., “Exploring weak scalability for FEM calculations on a GPU-enhanced cluster,” vol. 33, no. 10–11, pp. 685–699, 2007.
    7. B. Haasdonk and M. Ohlberger, “Basis construction for reduced basis methods by adaptive parameter grids,” in Adaptive modeling and simulation 2007, Göteborg, 2007, pp. 116–119.
    8. B. Haasdonk and H. Burkhardt, “Invariant kernel functions for pattern analysis and machine learning,” vol. 68, no. 1, pp. 35–61, 2007.
    9. B. Haasdonk and H. Burkhardt, “Classification with Invariant Distance Substitution Kernels,” in Data analysis, machine learning and applications, Freiburg, 2007, no. 31, pp. 37–44.
    10. M. Herty and V. Sachers, “Adjoint calculus for optimization of gas networks,” vol. 2, no. 4, pp. 733–750, 2007.
    11. O. Iliev, I. Rybak, and J. Willems, On upscaling heat conductivity for a class of industrial problems, no. 120. Kaiserslautern: ITWM, 2007.
    12. O. Iliev and I. Rybak, On approximation property of multipoint flux approximation method, no. 119. Kaiserslautern: ITWM, 2007.
    13. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change : Riemann problems and ghost fluid techniques,” vol. 41, no. 6, pp. 1089–1123, 2007.
    14. P. Morin, K. G. Siebert, and A. Veeser, “Basic convergence results for conforming adaptive finite elements,” in Proceedings in applied mathematics and mechanics, Zürich, 2007, no. 7,1, pp. 1026001–1026002.
    15. P. Morin, K. G. Siebert, and A. Veeser, “Convergence of Finite Elements Adapted for Weak Norms,” in Applied and industrial mathematics in italy II, Baia Samuele, 2007, no. 75, pp. 468–479.
    16. P. Morin, K. G. Siebert, and A. Veeser, “A basic convergence result for conforming adaptive finite element methods,” in Oberwolfach Reports, Oberwolfach, 2007, no. 29, pp. 1705–1708.
    17. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics : I. Weak entropy solutions for a model problem,” vol. 234, no. 1, pp. 91–109, 2007.
    18. H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” vol. 91, no. 23, 2007.
    19. K. G. Siebert and A. Veeser, “A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements,” vol. 18, no. 1, pp. 260–289, 2007.
    20. K. G. Siebert, J. M. Cascon, C. Kreuzer, and R. H. Nochetto, “Optimal cardinality of an adaptive finite element method,” in Oberwolfach Reports, Oberwolfach, 2007, no. 29, pp. 1719–1722.
  14. 2006

    1. R. Backofen et al., “A Bottom-up approach to Grid-Computing at a University: the Black-Forest-Grid Initiative,” vol. 29, no. 2, pp. 81–87, 2006.
    2. A. Barth, “Distribution of the First Rendezvous Time of Two Geometric Brownian Motions,” Masterarbeit, 2006.
    3. P. Bastian et al., “The Distributed and Unified Numerics Environment (DUNE),” in ASIM 2006, Hannover, 2006, no. 16.
    4. A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger, “An efficient implementation of an adaptive and parallel grid in DUNE,” in Computational Science and High Performance Computing II, Stuttgart, 2006, vol. 91, no. 91, pp. 67–82.
    5. D. Göddeke, C. Becker, and S. Turek, “Integrating GPUs as fast co-processors into the parallel FE package FEAST,” in ASIM 2006, Hannover, 2006, no. 16, pp. 277–282.
    6. B. Haasdonk and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations,” no. 12/2006, 2006.
    7. J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” presented at the 10. International Conference on Hyperbolic Problems, Hyp2004, Osaka, 2006, vol. 1, pp. 147–154.
    8. C.-J. Heine, “Computations of form and stability of rotating drops with finite elements,” vol. 26, no. 4, pp. 723–751, 2006.
    9. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws,” vol. 43, no. 6, pp. 2423–2449, 2006.
    10. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” vol. 56, no. 10–11, pp. 1450–1463, 2006.
    11. R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations,” vol. 104, no. 4, pp. 515–538, 2006.
    12. K.-D. Peschke et al., “Using Transformation Knowledge for the Classification of Raman Spectra of Biological Samples,” in Proceedings of the Fourth IASTED International Conference on Biomedical Engineering, Innsbruck, Austria, 2006, pp. 288–293.
    13. R. Strzodka and D. Göddeke, “Mixed Precision Methods for Convergent Iterative Schemes,” in Proceedings of the Workshop on Edge Computing Using New Commodity Architectures, Chapel Hill, North Carolina, 2006, p. D-59-60.
    14. R. Strzodka and D. Göddeke, “Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components,” in 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2006, Napa, CA, USA, 2006, pp. 259–270.
  15. 2005

    1. P. Bastian et al., “Towards a Unified Framework for Scientific Computing,” in Domain decomposition methods in science and engineering, Berlin, 2005, no. 40, pp. 167–174.
    2. F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, Marseille, 2005, vol. 7, pp. 239–270.
    3. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation magnetohydrodynamics: analysis for model problems and efficient 3d-simulations for the full system,” in Analysis and numerics for conservation laws, G. Warnecke, Ed. Berlin: Springer, 2005, pp. 163–202.
    4. M. J. Gander and C. Rohde, “Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws,” vol. 27, no. 2, pp. 415–439, 2005.
    5. M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, Berlin, 2005, no. 40, pp. 251–258.
    6. D. Göddeke, GPGPU-Basic Math Tutorial, no. 300. Dortmund: Univ., 2005.
    7. D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision FEM Simulations with GPUs,” in Proceedings / 18. Symposium Simulationstechnique, Erlangen, 2005, no. 15, pp. 139–144.
    8. B. Haasdonk, “Transformation knowledge in pattern analysis with kernel methods : distance and integration kernels,” Dissertation, Shaker, Aachen, 2005.
    9. B. Haasdonk, “Feature Space Interpretation of SVMs with Indefinite Kernels,” vol. 27, no. 4, pp. 482–492, 2005.
    10. B. Haasdonk, A. Vossen, and H. Burkhardt, “Invariance in Kernel Methods by Haar-Integration Kernels,” in Image analysis, Joensuu, Finland, 2005, no. 3540, pp. 841–851.
    11. O. Iliev and I. Rybak, “On numerical upscaling of flow in anisotropic porous media,” in Oberwolfach reports, Oberwolfach, 2005, no. 2, 2, pp. 20/2005; 1162–1165.
    12. V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates,” vol. 21, no. 1, pp. 104–131, 2005.
    13. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems,” vol. 42, no. 5, pp. 2118–2135, 2005.
    14. C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion terms,” vol. 37, no. 1, pp. 103–129, 2005.
    15. C. Rohde, “On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions,” vol. 85, no. 12, pp. 839–857, 2005.
    16. C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity system with non-local energy,” Interfaces Free Bound, vol. 7, no. 1, pp. 107–129, 2005.
    17. A. Schmidt and K. G. Siebert, Design of adaptive finite element software : the finite element toolbox ALBERTA, no. 42. Berlin: Springer, 2005.
    18. K. G. Siebert and A. Veeser, “Convergence of the Equidistribution Strategy,” in Oberwolfach reports, Oberwolfach, 2005, no. 2, 3, pp. 37/2005; 2129–2131.
  16. 2004

    1. A. Bamberger, E. Bänsch, and K. G. Siebert, “Experimental and numerical investigation of edge tones,” vol. 84, no. 9, pp. 632–646, 2004.
    2. A. Bamberger, E. Bänsch, and K. G. Siebert, “Experimental and numerical investigation of edge tones,” ZAMM Journal of Applied Mathematics and Mechanics, vol. 84, no. 9, pp. 632–646, 2004.
    3. A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg, “A parallel, load-balanced MHD code on locally-adapted unstructured  grids in 3d,” Comput. Vis. Sci., vol. 7, no. 2, pp. 79--96, 2004.
    4. A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential equations,” vol. 97, no. 3, pp. 441–471, 2004.
    5. B. Haasdonk and C. Bahlmann, “Learning with Distance Substitution Kernels,” in Pattern Recognition - Proceedings of the 26th DAGM Symposium, 2004, pp. 220–227.
    6. B. Haasdonk, A. Halawani, and H. Burkhardt, “Adjustable invariant features by partial Haar-integration,” presented at the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, United Kingdom, 2004, vol. 2, pp. 769–774.
    7. C.-J. Heine, “Isoparametric finite element approximation of curvature on hypersurfaces,” Preprint Fak. f. Math. Phys. Univ. Freiburg, no. 26, 2004.
    8. K. Kühn, M. Ohlberger, J. Schumacher, C. Ziegler, and R. Klöfkorn, “A dynamic two-phase flow model of proton exchange membrane fuel cells,” in The fuel cell world (2004), Lucerne, Switzerland, 2004, pp. 283–296.
    9. P. Matus and I. Rybak, “Difference schemes for elliptic equations with mixed derivatives,” Comput. Methods Appl. Math., vol. 4, no. 4, pp. 494--505, 2004.
    10. P. Matus, R. Melnik, L. Wang, and I. Rybak, “Applications of fully conservative schemes in nonlinear thermoelasticity:  modelling shape memory materials,” Math. Comp. Simulation, vol. 65, pp. 489--509, 2004.
    11. M. Reisert, “Entwicklung von Algorithmen zur Lageinvarianten Merkmalsgewinnung  für Drahtgittermodelle,” Diploma Thesis, 2004.
    12. C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational scheme,” vol. 1, no. 4, pp. 747–768, 2004.
    13. I. Rybak, “Computational dynamics of shape memory alloys,” in Proc. of Lobachevski Mathematical Center, 2004, pp. 209--218.
    14. I. Rybak, “Monotone and conservative difference schemes for nonlinear nonstationary  equations and equations with mixed derivatives,” Institute of Mathematics of the National Academy of Sciences of Belarus, 2004.
    15. I. Rybak, “Monotone difference schemes for equations with mixed derivatives  in the case of boundary conditions of the third type,” Proceedings of the National Academy of Sciences of Belarus, Series  of Physical-Mathematical Sciences, vol. 40, no. 1, pp. 37--42, 2004.
    16. I. Rybak, “Monotone and conservative difference schemes for equations with mixed  derivatives,” Dokl. Akad. Navuk Belarusi, vol. 48, no. 1, pp. 45--48, 2004.
    17. I. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives,” vol. 9, no. 2, pp. 169–178, 2004.
    18. A. Vossen, “Invariante Kernfunktionen Basierend auf Integration über Transformationen,” Diploma Thesis, 2004.
  17. 2003

    1. S. Boschert et al., “Simulation of Industrial Crystal Growth by the Vertical Bridgman Method,” in Mathematics - Key Technology for the Future, W. Jäger and H. J. Krebs, Eds. Berlin: Springer, 2003, pp. 315–330.
    2. S. Boschert et al., “Simulation of Industrial Crystal Growth by the Vertical Bridgman  Method.” 2003.
    3. H. Burkhardt and B. Haasdonk, “Mustererkennung WS 02/03, ein multimedialer Grundlagenkurs im  Hauptstudium Informatik.” 2003.
    4. A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods  of higher order for systems of conservation laws in multiple space  dimensions,” in Geometric analysis and nonlinear partial differential equations, Berlin: Springer, 2003, pp. 573--589.
    5. A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods of higher order for systems of conservation laws in multiple space dimensions,” in Geometric analysis and nonlinear partial differential equations, S. Hildebrandt and H. Karcher, Eds. Berlin: Springer, 2003, pp. 573–589.
    6. A. Dedner, C. Rohde, and M. Wesenberg, “Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, Pasadena, USA, 2003, pp. 499–508.
    7. A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
    8. W. Dörfler and K. G. Siebert, “An Adaptive Finite Element Method for Minimal Surfaces,” in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp. 146–175.
    9. W. Dörfler and K. G. Siebert, “An Adaptive Finite Element Method for Minimal Surfaces,” in Geometric Analysis and Nonlinear Partial Differential Equations, S. Hildebrandt and H. Karcher, Eds. Berlin: Springer, 2003, pp. 146–175.
    10. J. Fehr, “Automatisierte Modellselektion für Supportvektor-Maschinen.” 2003.
    11. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,” vol. 185, no. 2, pp. 78–96, 2003.
    12. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations  for a perfect gas,” Phys. D, vol. 185, no. 2, pp. 78--96, 2003.
    13. B. Haasdonk, B. R. Poluru, and A. Teynor, “Presto-Box 1.1 Library Documentation,” Institut für Informatik, Lehrstuhl für Mustererkennung und Bildverarbeitung, Universität Freiburg, 2003.
    14. B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, “Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations,” vol. 70, no. 3, pp. 181–204, 2003.
    15. C.-J. Heine, “Computations of form and stability of rotating drops with finite  elements,” RWTH Aachen, 2003.
    16. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
    17. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Erste., M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi, Eds. Berlin: Springer, 2003, pp. 289–306.
    18. K. Kühn, M. Ohlberger, J. O. Schumacher, C. Ziegler, and R. Klöfkorn, “A dynamic two-phase flow model of proton exchange membrane fuel  cells,” CSCAMM, University of Maryland, College Park, Report 03-07, 2003.
    19. N. Mallig, “Transformationswissen in Kernfunktionen für Supportvektor-Maschinen,” Master’s Thesis, 2003.
    20. P. Matus, R. Melnik, and I. Rybak, “Fully conservative difference schemes for nonlinear models describing  dynamics of materials with shape memory,” Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003., vol. 47, no. 1, pp. 15--17, 2003.
    21. P. P. Matus and I. Rybak, “Monotone difference schemes for nonlinear parabolic equations,” vol. 39, no. 7, pp. 1013–1022, 2003.
    22. R. Melnik, L. Wang, P. P. Matus, and I. Rybak, “Computational aspects of conservative difference schemes for shape memory alloys applications,” in Lecture notes in computer science, Montréal, Canada, 2003, vol. 2, no. 2668, pp. 791–800.
    23. P. Morin, R. H. Nochetto, and K. G. Siebert, “Local Problems on Stars: A Posteriori Error Estimators, Convergence,  and Performance,” Mathematics of Computation, vol. 72, no. 243, pp. 1067–1097, 2003.
    24. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Control for Elliptic Obstacle Problems,” vol. 95, no. 1, pp. 163–195, 2003.
    25. C. Rohde and W. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD  fluids with radiation,” Appl. Math., vol. 48, no. 4, pp. 257--277, 2003.
    26. C. Rohde and W. M. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD fluids with radiation,” vol. 48, no. 4, pp. 257–277, 2003.
    27. I. Rybak, “Difference schemes for nonlinear models describing dynamic behaviour of shape memory alloys,” presented at the Condensed State Physics: XI Republican Scientific Conference, Grodno, Belarus, 2003.
    28. H. Stepputtis, “Distanz-Substitutions-Kerne für Supportvektor-Maschinen,” Studienarbeit, 2003.
  18. 2002

    1. C. Bahlmann, B. Haasdonk, and H. Burkhardt, “On-line Handwriting Recognition with Support Vector Machines - A Kernel Approach,” in Proceedings / Eighth International Workshop on Frontiers in Handwriting Recognition, Ontario, Canada, 2002, pp. 49–54.
    2. A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications III, Porquerolles, France, 2002, pp. 165–172.
    3. H. Freistühler and C. Rohde, “Numerical computation of viscous profiles for hyperbolic conservation laws,” vol. 71, no. 239, pp. 1021–1042, 2002.
    4. B. Haasdonk and D. Keysers, “Tangent Distance Kernels for Support Vector Machines,” presented at the 16. International Conference on Pattern Recognition, ICPR 2002, Québec, 2002, vol. 2, pp. 864–868.
    5. R. Klöfkorn, D. Kröner, and M. Ohlberger, “Local adaptive methods for convection dominated problems,” vol. 40, no. 1–2, pp. 79–91, 2002.
    6. P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” vol. 40, no. 5, pp. 1968–1992, 2002.
    7. K. Lin et al., “Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te,” in Journal of Crystal Growth, Kyōto, 2002, no. 237/239, 3, pp. 1736–1740.
    8. P. Morin, R. H. Nochetto, and K. G. Siebert, “Convergence of Adaptive Finite Element Methods,” vol. 44, no. 4, pp. 631–658, 2002.
    9. M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems,” vol. 22, no. 2, pp. 253–280, 2002.
  19. 2001

    1. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods, Oxford, U.K., 2001, pp. 209–216.
    2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in International series of numerical mathematics, Magdeburg, 2001, vol. 1, no. 140, pp. 277–286.
    3. H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in International Series of Numerical Mathematics, Magdeburg, 2001, vol. 1, no. 140, pp. 399–408.
    4. H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and non-classical shock waves,” in Ergodic theory, analysis and efficient simulation of dynamical systems, B. Fiedler, Ed. Berlin: Springer, 2001, pp. 287–309.
    5. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids,” vol. 88, no. 3, pp. 459–484, 2001.
    6. B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, h-p-Multiresolution Visualization of Adaptive Finite Element Simulations, no. 01–26. Freiburg: Mathematics Department, University of Freiburg, 2001.
    7. B. Haasdonk, “Convergence of a Staggered Lax-Friedrichs Scheme on Unstructured 2D-grids,” in Hyperbolic Problems: Theory, Numerics, Applications, Magdeburg, Germany, 2001, no. 141, pp. 475–483.
    8. T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive movement,” vol. 260, no. 1, pp. 173–199, 2001.
    9. R. Klöfkorn, “Simulation von Abbau- und Transportprozessen gelöster Schadstoffe im Grundwasser,” Diplomarbeit, 2001.
    10. P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,” vol. 50, no. 4, pp. 1707–1743, 2001.
    11. A. Schmidt and K. G. Siebert, “ALBERT - Software for Scientific Computations and Applications,” in Acta mathematica Universitatis Comenianae, Podbanské, 2001, no. 70, 1, pp. 105–122.
  20. 2000

    1. S. Boschert, A. Schmidt, and K. G. Siebert, “Numerical Simulation of Crystal Growth by the Vertical Bridgman Method,” in Modelling of Transport Phenomena in Crystal Growth, no. 6, J. S. Szmyd and K. Suzuki, Eds. Southampton: WIT Press, 2000, pp. 315–330.
    2. K. Deckelnick and K. G. Siebert, “$W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle  Problems,” IMA Journal of Numerical Analysis, vol. 20, no. 3, pp. 481–498, 2000.
    3. K. Deckelnick and K. G. Siebert, “W1∞-convergence of the discrete free boundary for obstacle problems,” vol. 20, no. 3, pp. 481–498, 2000.
    4. B. Haasdonk, “Convergence of a Staggered Lax-Friedrichs Scheme on Unstructured  2D-Grids,” in HYP 2000, Proceedings of the 8th International Conference on Hyperbolic  Problems, 2000, vol. 2, pp. 475--484.
    5. P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” vol. 37, no. 6, pp. 2023–2060, 2000.
    6. P. Morin, R. H. Nochetto, and K. G. Siebert, “Data Oscillation and Convergence of Adaptive FEM,” SIAM Journal on Numerical Analysis, vol. 38, no. 2, pp. 466–488, 2000.
    7. A. Schmidt and K. G. Siebert, “A Posteriori Estimators for the $h$-$p$ Version of the Finite Element  Method in 1d,” Applied Numerical Mathematics, vol. 35, no. 1, pp. 43–66, 2000.
  21. 1999

    1. A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II : problems and perspectives, Duisburg, Germany, 1999, pp. 491–498.
    2. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic Problems : Theory, Numerics, Applications, Zürich, Switzerland, 1999, no. 129, pp. 333–342.
    3. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998), vol. 129, Basel: Birkhäuser, 1999, pp. 333--342.
    4. T. Gessner et al., A Procedural Interface for Multiresolutional Visualization of General Numerical Data, no. 28. 1999.
    5. T. Geßner et al., “A Procedural Interface for Multiresolutional Visualization of General  Numerical Data,” University of Bonn, SFB 256 Report 28, 1999.
    6. B. Haasdonk, “Konvergenz eines Staggered-Lax-Friedrichs-Verfahrens auf unstrukturierten 2D-Gittern,” Diplomarbeit, 1999.
    7. A. Schmidt and K. G. Siebert, “Abstract Data Structures for a Finite Element Package: Design Principles  of ALBERT,” Journal of Applied Mathematics and Mechanics, vol. 79, no. 1, pp. 49–52, 1999.
    8. A. Schmidt and K. G. Siebert, “Abstract data structures for a finite element package : Design principles of ALBERTA,” vol. 79, no. 1, pp. 49–52, 1999.
  22. 1998

    1. S. Boschert, T. Kaiser, A. Schmidt, K. G. Siebert, K.-W. Benz, and G. Dziuk, “Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical  Bridgman Technique,” in Modeling and Simulation Based Engineering, 1998.
    2. C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D,” vol. 81, no. 1, pp. 85–123, 1998.
    3. C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, pp. 470--499, 1998.
    4. A. Schmidt and K. G. Siebert, “Concepts of the Finite Element Toolbox ALBERT.” 1998.
    5. A. Schmidt and K. G. Siebert, Concepts of the finite element toolbox ALBERT, no. 98–17. 1998.
    6. K. G. Siebert, “Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.” Universität Augsburg, 1998.
    7. K. G. Siebert, “Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.” 1998.
  23. 1996

    1. M. Rumpf, A. Schmidt, and K. G. Siebert, “Functions Defining Arbitrary Meshes - A Flexible Interface Between Numerical Data and Visualization Routines,” vol. 15, no. 2, pp. 129–141, 1996.
    2. A. Schmidt and K. G. Siebert, “Numerical Aspects of Parabolic Free Boundary Problems : Adaptive Finite Element Methods.” Institut für Angewandte Mathematik, Jyväskylä, Finland, 1996.
    3. K. G. Siebert, “An a posteriori error estimator for anisotropic refinement,” vol. 73, no. 3, pp. 373–398, 1996.
  24. 1995

    1. E. Bänsch and K. G. Siebert, A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques, no. 95–30. Freiburg: Mathematics Department, University of Freiburg, 1995.
    2. M. Rumpf, A. Schmidt, and K. G. Siebert, “On a Unified Visualization Approach for Data from Advanced Numerical Methods,” in Visualization in scientific computing ’95, Chia, Italy, 1995, pp. 35–44.
  25. 1993

    1. K. G. Siebert, “Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure,” Impact of computing in science and engineering, vol. 5, no. 4, pp. 271–284, 1993.
    2. K. G. Siebert, “An A Posteriori Error Estimator for Anisotropic Refinement,” Dissertation, 1993.
  26. 1990

    1. K. G. Siebert, “Ein Finite-Elemente-Verfahren zur Loesung der inkompressiblen Euler-Gleichungen auf der Sphaere mit der Stromlinien-Diffusions-Methode,” Masterarbeit, 1990.
Dominik Göddeke
Prof. Dr. rer. nat.

Dominik Göddeke

Head of Institute and Head of Group

Britta Lenz
 

Britta Lenz

Secretary's Office

To the top of the page