Institute of Applied Analysis and Numerical Simulation

Research

List of publications.

Research highlights, all publications, and successes of the individual groups are available on the group pages.

Selected Publications

  1. 2018

    1. B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” 2018.
    2. A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise,” Math. Comput. Simulation, vol. 143, pp. 215--225, 2018.
    3. A. Bhatt, J. Fehr, and B. Hassdonk, “Model Order Reduction of an Elastic Body under Large Rigid Motion,” in Proceedings of ENUMATH 2017, Voss, Norway, 2018.
    4. A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS.” 2018.
    5. A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction.” 2018.
    6. M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs,” in Proceedings of Advanced Photonics 2018, 2018.
    7. T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric  ODEs,” 2018, vol. Proceedings of ENUMATH 2017.
    8. P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” Master thesis, IANS, University of Stuttgart, 2018.
    9. S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive  definite kernel functions,” Calcolo, vol. 55, no. 1, p. 2, 2018.
    10. N.-A. Dreier, M. Altenbernd, C. Engwer, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application,” in Proceedings of 26th Euromicro International Conference on Parallel,  Distributed, and Network-Based Processing (PDP 2018), 2018.
    11. C. Engwer, M. Altenbernd, N.-A. Dreier, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application,” in Proceedings of the 26th Euromicro International Conference on Parallel,  Distributed and Network-Based Processing (PDP 2018), 2018.
    12. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018.
    13. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem,” Math. Comput. Appl. 2018, vol. 23, no. 1, 2018.
    14. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018.
    15. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 147–175, 2018.
    16. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation.,” Numer. Math., p. (accepted), 2018.
    17. B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful  Algorithms as Key Enablers for Scientific Computing, W. Keiper, A. Milde, and S. Volkwein, Eds. Cham: Springer International Publishing, 2018, pp. 21--45.
    18. B. Kane, “Adaptive higher order discontinuous Galerkin methods for porous-media multi-phase flow with strong heterogeneities,” PhD dissertation, Stuttgart, 2018.
    19. T. Kuhn, J. Dürrwächter, A. Beck, C.-D. Munz, F. Meyer, and C. Rohde, “Uncertainty Quantification for Direct Aeroacoustic Simulations of  Cavity Flows,” 2018.
    20. M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow  in porous media,” (submitted), 2018.
    21. M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures,” (submitted), 2018.
    22. M. Köppel, “Flow in heterogeneous porous media : fractures and uncertainty quantification,” Verlag Dr. Hut, München, 2018.
    23. T. Köppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally  reduced models and kernel methods,” International Journal for Numerical Methods in Biomedical Engineering, vol. 0, no. ja, p. e3095, 2018.
    24. A. Langer, “Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method,” Journal of Imaging, vol. 4, p. 1, 2018.
    25. A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse  noise,” International Journal of Computer Mathematics, p. 19, 2018.
    26. A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018.
    27. F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations,” 2018.
    28. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number,” erscheint bei Int. J. Multiph. Flow, 2018.
    29. C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase  Flows with Surface Tension,” Z. Angew. Math. Phys., p. 69:76, 2018.
    30. A. Schmidt, “Feedback control for parametric partial differential equations using reduced basis surrogate models,” Verlag Dr. Hut, München, 2018.
    31. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow  in porous media,” Comp. Methods in Appl. Mech. Eng, vol. 333, pp. 331--355, 2018.
    32. D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018.
  2. 2017

    1. M. Alkämper and R. Klöfkorn, “Distributed Newest Vertex Bisection,” Journal of Parallel and Distributed Computing, vol. 104, pp. 1–11, 2017.
    2. M. Alkämper, R. Klöfkorn, and F. Gaspoz, “A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension,” 2017.
    3. M. Alkämper and R. Klofkorn, “Distributed Newest Vertex Bisection,” JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, vol. 104, pp. 1–11, 2017.
    4. M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions,” Archive of Numerical Software, vol. 5, no. 1, pp. 3--19, 2017.
    5. A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and  dynamic programming principle,” University of Stuttgart, 2017.
    6. A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation,” in Model Reduction of Parametrized Systems, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds. Cham: Springer International Publishing, 2017, pp. 333--347.
    7. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically  Flat Domains,” 2017.
    8. A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations with stochastic  process or random field coefficients,” Appl. Numer. Math., vol. 121, pp. 38--51, 2017.
    9. A. Barth, B. Harrach, N. Hyvoenen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” INVERSE PROBLEMS, vol. 33, no. 11, 2017.
    10. A. Barth and A. Stein, “A study of elliptic partial differential equations with jump diffusion  coefficients,” 2017.
    11. A. Barth, B. Harrach, N. Hyvönen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,” Inv. Prob., vol. 33, no. 11, p. 115012, 2017.
    12. A. Bhatt and R. VanGorder, “Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels,” 2017.
    13. A. Bhatt and B. E. Moore, “Structure-preserving ERK methods for non-autonomous DEs.” 2017.
    14. A. Bhatt and B. E. Moore, “Structure-preserving numerical integration of DEs with conformal  invariants.” 2017.
    15. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture    Method for the Simulation of Nonlinear Signal Propagation in Multimode    Fibers,” JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 35, no. 17, pp. 3622–3628, 2017.
    16. M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-accelerated Fourth-Order Runge-Kutta in the Interaction  Picture Method for the Simulation of Nonlinear Signal Propagation  in Multimode Fibers,” Journal of Lightwave Technology, vol. 35, no. 17, pp. 3622--3628, 2017.
    17. R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model,” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017, C. Cancès and P. Omnes, Eds. Cham: Springer International Publishing, 2017, pp. 189--197.
    18. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” APPLIED NUMERICAL MATHEMATICS, vol. 116, no. SI, pp. 95–107, 2017.
    19. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” erscheint bei Springer Proc. Math. Stat., 2017.
    20. C. Chalons, C. Rohde, and M. Wiebe, “A Finite Volume Method for Undercompressive Shock Waves in Two Space  Dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, pp. 1987–2015, 2017.
    21. A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations,” JOURNAL OF COMPUTATIONAL PHYSICS, vol. 335, pp. 387–403, 2017.
    22. S. De Marchi, A. Iske, and G. Santin, “Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions,” 2017.
    23. S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds. Cham: Springer International Publishing, 2017, pp. 39--59.
    24. C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-Assisted Interactive Mobile Simulations for Pervasive Applications,” in Proceedings of the 15th IEEE International Conference on Pervasive  Computing and Communications (PerCom), Kona, Hawaii, USA, 2017, pp. 1--10.
    25. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with  phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017.
    26. J. Fehr, D. Grunert, A. Bhatt, and B. Hassdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems,” in Proceedings of MATHMOD 2018, Vienna, Austria, 2017.
    27. M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon,” IMA, vol. 00, pp. 1–31, 2017.
    28. M. Feistauer, O. Bartos, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition,” Proceeding of the EQUADIFF 17, pp. 127–136, 2017.
    29. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints: Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 2017, pp. 185--196.
    30. F. D. Gaspoz, C. Kreuzer, K. Siebert, and D. Ziegler, “A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution,” Submitted, 2017.
    31. F. D. Gaspoz, P. Morin, and A. Veeser, “A posteriori error estimates with point sources in fractional sobolev  spaces,” Numerical Methods for Partial Differential Equations, vol. 33, no. 4, pp. 1018--1042, 2017.
    32. F. D. Gaspoz and P. Morin, “APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT    APPROXIMATION (vol 83, pg 2127, 2014),” MATHEMATICS OF COMPUTATION, vol. 86, no. 305, pp. 1525–1526, 2017.
    33. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.,” 2017.
    34. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, 2017, vol. 199.
    35. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, pp. 1528–1546, 2017.
    36. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection  dominated problems,” Math. Models Methods Appl. Sci. (M3AS), vol. 27, no. 13, pp. 2381-- 2423, 2017.
    37. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics,” Arch. Ration. Mech. Anal., vol. 223, pp. 1427-- 1484, 2017.
    38. R. Gutt, M. Kohr, S. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains,” Math. Meth. Appl. Sci., vol. 18, pp. 7780–7829, 2017.
    39. R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE    system in Besov spaces on creased Lipschitz domains,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 18, pp. 7780–7829, 2017.
    40. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems,” in Model Reduction and Approximation: Theory and Algorithms, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. SIAM, Philadelphia, 2017, pp. 65--136.
    41. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz energy problems for strongly singular kernels,” Math. Nachr., 2017.
    42. M. Hintermueller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total    Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” JOURNAL OF MATHEMATICAL IMAGING AND VISION, vol. 59, no. 3, SI, pp. 515–533, 2017.
    43. M. Hintermüller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,” Journal of Mathematical Imaging and Vision, pp. 1--19, 2017.
    44. M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data.” WIAS Preprint No. 2379, 2017.
    45. B. Kane, R. Klöfkorn, and C. Gersbacher, “hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow,” in International Conference on Finite Volumes for Complex Applications, 2017, pp. 447--456.
    46. B. Kane, “Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media,” Archive of Numerical Software, vol. 5, no. 1, pp. 129--149, 2017.
    47. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle,” Monatshefte für Mathematik, vol. 483, pp. 269–302, 2017.
    48. M. Kohr, S. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani,” J of Mathematical Fluid Mechanics, vol. 19, pp. 203–238, 2017.
    49. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission Problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman Systems in Lipschitz Domains on Compact Riemannian Manifolds,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 19, no. 2, pp. 203–238, 2017.
    50. M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an -dimensional solid obstacle,” MONATSHEFTE FUR MATHEMATIK, vol. 183, no. 2, pp. 269–302, 2017.
    51. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with  Elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, pp. 989–1016, 2017.
    52. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two-scale model for liquid phase epitaxy with elasticity,” CONTINUUM MECHANICS AND THERMODYNAMICS, vol. 29, no. 4, pp. 989–1016, 2017.
    53. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario,” 2017.
    54. M. Köppel, I. Kroeker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” COMPUTATIONAL GEOSCIENCES, vol. 21, no. 4, pp. 807–832, 2017.
    55. M. Köppel, I. Kröker, and C. Rohde, “Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media,” Comput. Geosci., vol. 21, pp. 807–832, 2017.
    56. A. Langer, “Automated parameter selection in the L-1-L-2-TV model for removing Gaussian plus impulse noise,” INVERSE PROBLEMS, vol. 33, no. 7, 2017.
    57. A. Langer, “Automated Parameter Selection for Total Variation Minimization in Image Restoration,” JOURNAL OF MATHEMATICAL IMAGING AND VISION, vol. 57, no. 2, pp. 239–268, 2017.
    58. J. Magiera and C. Rohde, “A Particle-based Multiscale Solver for Compressible Liquid-Vapor  Flow,” erscheint bei Springer Proc. Math. Stat., 2017.
    59. I. Martini, G. Rozza, and B. Haasdonk, “Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models,” Journal of Scientific Computing, 2017.
    60. I. Martini, “Reduced basis approximation for heterogeneous domain decomposition problems,” Verlag Dr. Hut, München, 2017.
    61. V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds., Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume, no. 258. Birkhäuser/Springer International, 2017.
    62. H. Minbashian, H. Adibi, and M. Dehghan, “On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.” 2017.
    63. H. Minbashian, “Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws,” PhD dissertation, Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran., 2017.
    64. H. Minbashian, H. Adibi, and M. Dehghan, “An adaptive wavelet space‐time SUPG method for hyperbolic conservation  laws,” Numerical Methods for Partial Differential Equations, vol. 33, no. 6, pp. 2062–2089, 2017.
    65. H. Minbashian, H. Adibi, and M. Dehghan, “An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations,” International Journal of Numerical Methods for Heat & Fluid Flow, 2017.
    66. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions,” APPLIED MATHEMATICS AND COMPUTATION, vol. 304, pp. 65–82, 2017.
    67. C. Rohde, “Fully Resolved Compressible Two-Phase Flow: Modelling, Analytical  and Numerical Issues,” 2017.
    68. G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation,” Dolomites Research Notes on Approximation, vol. 10, pp. 68--78, 2017.
    69. A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback  control for dynamical systems,” University of Stuttgart, 2017.
    70. A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2017.
    71. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous  media,” 2017.
    72. P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element Method to the Simulation  of Cable-Driven Parallel Robots,” in Computational Kinematics, Springer International Publishing, 2017, pp. 198--205.
    73. W. L. Wendland and L. Wolfgang, “Martin Costabel’s version of the trace theorem revisited,” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 40, no. 2, SI, pp. 329–334, 2017.
    74. D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation,” University of Stuttgart, 2017.
  3. 2016

    1. M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGrid Module.,” Archive of Numerical Software, vol. 4, no. 1, pp. 1--28, 2016.
    2. M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” The International Journal of High Performance Computing Applications, 2016.
    3. D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” AMSES, Advanced Modeling and Simulation in Engineering Sciences, vol. 3, no. 6, 2016.
    4. A. C. Antoulas, B. Haasdonk, and B. Peherstorfer, MORML 2016 Book of Abstracts. University of Stuttgart, 2016.
    5. A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Lévy processes,” 2016.
    6. A. Barth, C. Schwab, and J. Sukys, “Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations,” in Monte Carlo and quasi-Monte Carlo methods, vol. 163, Springer, Cham, 2016, pp. 209--227.
    7. A. Barth, R. Burger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model    with several random perturbations: A hybrid stochastic Galerkin approach,” COMPUTERS & CHEMICAL ENGINEERING, vol. 89, pp. 11–26, 2016.
    8. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach,” Computers & Chemical Engineering, vol. 89, pp. 11-- 26, 2016.
    9. A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations  with spatial noise,” in Springer Proceedings in Mathematics and Statistics, vol. submitted, Springer International Publishing, 2016.
    10. A. Barth and F. G. Fuchs, “Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields,” SIAM J. Sci. Comput., vol. 38, no. 4, pp. A2209--A2231, 2016.
    11. A. Barth, S. Moreno-Bromberg, and O. Reichmann, “A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting,” Comp. Economics, vol. 47, no. 3, pp. 447--472, 2016.
    12. P. Bastian et al., “Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 25--43.
    13. P. Bastian et al., “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in Software for Exascale Computing -- SPPEXA 2013--2015, H.-J. Bungartz, P. Neumann, and W. E. Nagel, Eds. Springer, 2016, pp. 3--23.
    14. U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary  problems,” in Model Reduction and Approximation for Complex Systems, P. Benner, A. Cohen, M. Ohlberger, and K. Willcox, Eds. Birkhäuser Publishing, 2016.
    15. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016.
    16. A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” SIAM J. Sci Comp, 2016.
    17. A. Bhatt, “Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations,” PhD dissertation, University of Central Florida, 2016.
    18. A. Bhatt and B. E. Moore, “Geometric Integration of a Damped Driven Nonlinear Schrodinger Equation.” 2016.
    19. K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” 2016.
    20. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016.
    21. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable  radial bases,” in AIP Conf. Proc., 2016.
    22. A. Chertock, P. Degond, and J. Neusser, “An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations,” Journal of Computational Physics, vol. 335, pp. 387–403, 2016.
    23. R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the  non-smooth case,” Archive for Rational Mechanics and Analysis, vol. 219, no. 2, pp. 701–718, 2016.
    24. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016.
    25. R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 219, no. 2, pp. 701–718, 2016.
    26. A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,” SIAM JOURNAL ON NUMERICAL ANALYSIS, vol. 54, no. 6, pp. 3523–3549, 2016.
    27. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, pp. 3523–3549, 2016.
    28. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions,” Appl. Math. Comput., vol. 272, Part 2, pp. 309–335, 2016.
    29. D. Diehl, J. Kremser, D. Kroener, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local    Discontinuous Galerkin methods in multiple space dimensions,” APPLIED MATHEMATICS AND COMPUTATION, vol. 272, no. 2, pp. 309–335, 2016.
    30. M. Dihlmann and B. Haasdonk, “A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL DIFFERENTIAL    EQUATIONS,” ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, vol. 22, no. 3, pp. 625–669, 2016.
    31. F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, vol. 104, pp. 386–395, 2016.
    32. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016.
    33. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, pp. 235--236, 2016.
    34. F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem,” University of Stuttgart, 2016.
    35. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” Inverse Problems, vol. 32, no. 3, pp. 1--21, 2016.
    36. D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced basis Landweber method for nonlinear inverse problems,” INVERSE PROBLEMS, vol. 32, no. 3, 2016.
    37. F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection,” IMA Journal of Numerical Analysis, vol. 36, no. 3, pp. 1217--1241, 2016.
    38. M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures,” Computer Science -- Research and Development, vol. 31, no. 4, pp. 225–234, 2016.
    39. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, pp. 1685-- 1714, 2016.
    40. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, pp. 359--372, 2016.
    41. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016.
    42. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016.
    43. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, pp. 1685–1714, 2016.
    44. G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the  1D p-system in the non smooth case,” Bulletin of the Brazilian Mathematical Society, New Series, vol. 47, no. 1, pp. 381–396, 2016.
    45. R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds,” Math. Nachr, vol. 289, pp. 471–484, 2016.
    46. H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid solution of minimal Riesz energy problems,” Numer. Methods Partial Diff. Equ., vol. 32, pp. 1535–1552, 2016.
    47. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler  equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, pp. 5409--5426, 2016.
    48. B. Kabil and M. Rodrigues, “Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems,” Journal of Differential Equations, vol. 260, no. 3, pp. 2994–3028, 2016.
    49. M. Kohr, L. de Cristoforis, S. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz  interface in R3 for the Stokes and Darcy-Forchheimer-Brinkman PED  systems,” ZAMP, vol. 67:116, pp. 1–30, 2016.
    50. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system,” J. Math. Fluid Mechanics, vol. 18, pp. 293–329, 2016.
    51. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds,” J. Dyn. Diff. Equations, vol. DOI 110.1007/s10884-014-9359-0, 2016.
    52. M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds,” Journal of Mathematical Fluid Dynamics, vol. DOI 10.1007/s 00021-16-0273-6, 2016.
    53. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,” JOURNAL OF MATHEMATICAL FLUID MECHANICS, vol. 18, no. 2, pp. 293–329, 2016.
    54. M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for a transmission problem with Lipschitz    interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE    systems,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 67, no. 5, 2016.
    55. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, pp. 749–750, 2016.
    56. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” COMPUTATIONAL GEOSCIENCES, vol. 20, no. 2, pp. 341–353, 2016.
    57. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, no. 2, pp. 425–455, 2016.
    58. L. Ostrowski, B. Ziegler, and G. Rauhut, “Tensor decomposition in potential energy surface representations,” The Journal of Chemical Physics, vol. 145, no. 10, p. 104103, 2016.
    59. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MCMDS, Mathematical and Computer Modelling of Dynamical Systems, 2016.
    60. M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016.
    61. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” ESAIM Math. Model. Numer. An., vol. 50, no. 2, pp. 475–497, 2016.
    62. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621.
    63. G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction,” PhD dissertation, Doctoral School in Mathematical Sciences, University of Padova, 2016.
    64. G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” Adv. Comput. Math., vol. 42, no. 4, pp. 973--993, 2016.
    65. V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces  and phase transitions,” Appl. Numer. Math., vol. 108, pp. 256–270, 2016.
    66. A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” IFAC-PapersOnLine, vol. 49, no. 8, pp. 327–332, 2016.
    67. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, p. 101, 2016.
    68. A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität,” Master thesis, Universität Mannheim, Germany, 2016.
  4. 2015

    1. D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special Issue on Modelling Reduction,” IJNME, International Journal of Numerical Methods in Engineering, vol. 102, no. 5, pp. 931--932, 2015.
    2. D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 102, no. 5, SI, pp. 931–932, 2015.
    3. A. Bhatt, D. Floyd, and B. E. Moore, “Second Order Conformal Symplectic Schemes for Damped Hamiltonian  Systems,” Journal of Scientific Computing, 2015.
    4. A. Bhatt, D. Floyd, and B. E. Moore, “Second Order Conformal Symplectic Integrators for Damped Hamiltonian  Systems.” 2015.
    5. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes  and Heston model,” SIAM journal on Financial Mathematics (SIFIN), no. 1408.1220, 2015.
    6. O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced Basis Methods for Pricing Options with the Black-Scholes and    Heston Models,” SIAM JOURNAL ON FINANCIAL MATHEMATICS, vol. 6, no. 1, pp. 685–712, 2015.
    7. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local  stabilization,” in CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering, 2015, pp. 317--326.
    8. S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov  space methods,” BIT Numerical Mathematics, vol. 55, no. 4, pp. 949--966, 2015.
    9. M. Dihlmann and B. Haasdonk, “A reduced basis Kalman filter for parametrized partial differential  equations,” ESAIM: Control, Optimisation and Calculus of Variations, 2015.
    10. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced  basis surrogate models for evolution problems,” COAP, Computational Optimization and Applications, vol. 60, no. 3, pp. 753--787, 2015.
    11. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” PhD dissertation, Stuttgart, 2015.
    12. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015.
    13. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, pp. 802--832, 2015.
    14. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence  of a non-local to a local model,” J. Differential Equations, vol. 258, pp. 3589–3606, 2015.
    15. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015.
    16. T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman  system in Lipschitz domains,” Math. Meth. Appl. Sciences, vol. 38, pp. 3615–3628, 2015.
    17. M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011),” MATHEMATICAL METHODS IN THE APPLIED SCIENCES, vol. 38, no. 5, pp. 1001–1004, 2015.
    18. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically    compressed asynchronous checkpointing,” PARALLEL COMPUTING, vol. 49, pp. 117–135, 2015.
    19. D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing,” Parallel Computing, vol. 49, pp. 117–135, 2015.
    20. M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation  based image denoising,” Journal of Scientific Computing, vol. 62, no. 2, pp. 456--481, 2015.
    21. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows  in porous media,” Internat. J. Numer. Methods Engrg., vol. 102, pp. 1018--1040, 2015.
    22. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015.
    23. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3,” ZAMP, vol. 66, pp. 833–846, 2015.
    24. M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds,” JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, vol. 27, no. 3–4, pp. 823–839, 2015.
    25. M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n,” ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, vol. 66, no. 3, pp. 833–864, 2015.
    26. I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, pp. 269–284, 2015.
    27. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, pp. 269--284, 2015.
    28. M. Kutter, “A two scale model for liquid phase epitaxy with elasticity,” PhD dissertation, University of Stuttgart, 2015.
    29. F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,” 2015.
    30. I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in Numerical Mathematics and Advanced Applications - ENUMATH 2013, 2015, vol. 103, pp. 437--445.
    31. I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system,” Advances in Computational Mathematics, vol. 41, no. 5, pp. 1131--1157, 2015.
    32. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains,” IMA J. Num. Analysis, vol. 35, pp. 834–858, 2015.
    33. S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 834–858, 2015.
    34. S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in Numerical Mathematics and Advanced Applications -- ENUMATH 2013, vol. 103, A. Abdulle, S. Deparis, D. Kressner, F. Nobile, and M. Picasso, Eds. Springer, 2015, pp. 601--609.
    35. J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition,” J. Numer. Methods Fluids, vol. 79, pp. 615–639, 2015.
    36. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, pp. 615–639, 2015.
    37. J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions,” 2015.
    38. G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death,” Far East Journal of Dynamical Systems, 2015.
    39. M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,” Advances in Computational Mathematics, vol. 41, no. 5, pp. 987--1013, 2015.
    40. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015.
    41. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous  medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299--309, 2015.
    42. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015.
    43. V. Schleper, “A hybrid model for traffic flow and crowd dynamics with random individual  properties,” Math. Biosci. Eng., vol. 12, no. 2, pp. 393–413, 2015.
    44. V. Schleper, “Nonlinear Transport and Coupling of Conservation Laws.” 2015.
    45. A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic  regulator,” in Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical  Modelling, 2015, pp. 713--718.
    46. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,” International Journal of Numerical Methods in Engineering, vol. 101, no. 1, pp. 1--28, 2015.
    47. D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, vol. 101, no. 1, pp. 1–28, 2015.
    48. C. Zeiler, “Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation,” Verlag Dr. Hut, München, 2015.
  5. 2014

    1. H. Adibi and H. Minbashian, Integral Equations (in Persian). Amirkabir University of Technology Press, 2014.
    2. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, pp. 827–861, 2014.
    3. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and  Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 873–881.
    4. A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” Insurance Math. Econom., vol. 57, pp. 31--45, 2014.
    5. A. Barth and F. E. Benth, “The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation,” Stochastics, vol. 86, no. 6, pp. 932--966, 2014.
    6. P. Bastian et al., “EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications,” in Euro-Par 2014: Parallel Processing Workshops, vol. 8806, L. Lopes, J. Zilinskas, A. Costan, R. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander, Eds. Springer, 2014, pp. 530--541.
    7. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification  applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, pp. 793–817, 2014.
    8. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, pp. 554–579, 2014.
    9. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014.
    10. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014.
    11. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014.
    12. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, pp. 559--559, 2014.
    13. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, pp. 319–344, 2014.
    14. R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous  media,” Numer. Meth. Part. D. E., vol. 30, pp. 723–748, 2014.
    15. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions  using a Discontinuous-Galerkin Method,” in ILASS–Europe, 26th European Conference on Liquid Atomization and  Spray Systems, 2014.
    16. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014, vol. Vol. 77/78. 2014.
    17. H. Garikapati, “A PGD Based Preconditioner for Scalar Elliptic Problems,” Master thesis, University of Stuttgart, 2014.
    18. F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” Math. Comp., vol. 83, no. 289, pp. 2127--2160, 2014.
    19. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, pp. 241–281, 2014.
    20. J. Giesselmann and T. Müller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, pp. 489–516, 2014.
    21. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606.
    22. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014.
    23. J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    24. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    25. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, pp. 3518--3539, 2014.
    26. D. Göddeke, D. Komatitsch, and M. Möller, “Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods,” in Numerical Computations with GPUs, V. Kindratenko, Ed. Springer, 2014, pp. 183--206.
    27. B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  für effiziente und gesicherte numerische Simulation,” GAMM Rundbrief, vol. 2014, no. 1, pp. 6–13, 2014.
    28. B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems,” IANS, University of Stuttgart, Germany, 2014.
    29. H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on C^k-1,1 manifolds,” Math. Nachr., vol. 287, pp. 48–69, 2014.
    30. M. Hintermüller and A. Langer, “Adaptive Regularization for Parseval Frames in Image Processing.” SFB-Report No. 2014-014, 2014.
    31. M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image  Processing,” in Domain Decomposition Methods in Science and Engineering XXI, Springer, 2014, pp. 829--837.
    32. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 107, no. 0, pp. 63–75, 2014.
    33. S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows  in porous media,” arXiv.org, 2014.
    34. L. Kazaz, “Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.” 2014.
    35. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints,” SIAM J. Control Optim., vol. 52(3), pp. 1832–1861. (30 pages), 2014.
    36. M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds,” Communications in Pure and Applied Analysis, vol. 13, pp. 1–28, 2014.
    37. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains,” J. Math. Fluid Mechanics, vol. 16, pp. 595–830, 2014.
    38. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains,” in Complex Analysis and Potential Theory with Applications, A. G. T. Aliev Azerogly and S. V. Rogosin, Eds. Cambridge Sci. Publ., 2014, pp. 111–124.
    39. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 353–361.
    40. I. Maier and B. Haasdonk, “A Dirichlet-Neumann reduced basis method for homogeneous domain  decomposition problems,” Applied Numerical Mathematics, vol. 78, pp. 31--48, 2014.
    41. S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven  porous media flow solver,” in 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 2014, pp. 109--113.
    42. M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” PhD dissertation, University of Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014.
    43. E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions,” 2014.
    44. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711.
    45. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014.
    46. M. Staehle, “Anisotrope Diffusion zur Bildfilterung,” Master thesis, University of Stuttgart, 2014.
    47. W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
    48. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems,” SIAM J. Sci. Comp., vol. 36, no. 2, pp. A311--A338, 2014.
    49. D. Wittwar, “Empirische Interpolation and Anwendung zur Numerischen Integration.” 2014.
  6. 2013

    1. A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs,” Multiscale Model. Simul., vol. 11, no. 4, pp. 1033--1070, 2013.
    2. D. Amsallem, B. Haasdonk, and G. Rozza, “A Conference within a Conference for MOR Researchers,” SIAM News, vol. 46, no. 6, p. 8, 2013.
    3. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial  differential equations,” BIT, vol. 53, no. 1, pp. 3--27, 2013.
    4. A. Barth and A. Lang, “L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations,” Stochastic Process. Appl., vol. 123, no. 5, pp. 1563--1587, 2013.
    5. T. Bissinger, “Verfahren zur Stabilen Kerninterpolation.” 2013.
    6. S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” J. Comput. Appl. Math., vol. 253, pp. 1--13, 2013.
    7. M. Dihlmann and B. Haasdonk, “Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models,” PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting  of the International Association of Applied Mathematics and Mechanics  (GAMM), Novi Sad 2013; Editors: L. Cvetković, T. Atanacković and  V. Kostić, vol. 13, no. 1, pp. 3–6, 2013.
    8. M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis  surrogate models for evolution problems,” University of Stuttgart (The final publication is available at Springer  via http://dx.doi.org/10.1007/s10589-014-9697-1), 2013.
    9. C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, no. 10–11, pp. 745--761, 2013.
    10. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” in ILASS–Europe, 25th European Conference on Liquid Atomization and  Spray Systems, 2013.
    11. S. Fechter, F. Jägle, and V. Schleper, “Exact and approximate Riemann solvers at phase boundaries,” Computers & Fluids, vol. 75, pp. 112--126, 2013.
    12. J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics,” ZAMM, vol. 93, no. 8, pp. 501–519, 2013.
    13. D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications,” Math. Methods Appl. Sci., vol. 36, pp. 1631–1648, 2013.
    14. D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n,” ZAMM, vol. 93, pp. 762–776, 2013.
    15. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses,” Computers & Fluids, vol. 80, pp. 327--332, 2013.
    16. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364.
    17. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in Séminaire Laurent Schwartz — EDP et applications, 2013.
    18. D. Göddeke et al., “Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster,” Journal of Computational Physics, vol. 237, pp. 132--150, 2013.
    19. S. Göttlich, S. Hoher, P. Schindler, V. Schleper, and A. Verl, “Modeling, simulation and validation of material flow on conveyor  belts,” Appl. Math. Modell., vol. 38, no. 13, pp. 3295–3313, 2013.
    20. B. Haasdonk, K. Urban, and B. Wieland, “Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion,” SIAM/ASA J. Unc. Quant., vol. 1, pp. 79–105, 2013.
    21. B. Haasdonk, “Convergence Rates of the POD--Greedy Method,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 3, pp. 859--873, 2013.
    22. C.-J. Heine, C. A. Möller, M. A. Peter, and K. G. Siebert, “Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure,” in Poromechanics, 2013, vol. V, pp. 1964–1972.
    23. M. Hintermüller and A. Langer, “Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing,” SIAM Journal on Imaging Sciences, vol. 6, no. 4, pp. 2134--2173, 2013.
    24. S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction Using Dictionaries,” in VI International Conference on Adaptive Modeling and Simulation (ADMOS  2013), Lisbon, Portugal, 2013, pp. 365--376.
    25. F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, p. n/a--n/a, 2013.
    26. F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” PhD dissertation, Universität Stuttgart, 2013.
    27. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, pp. 446–458, 2013.
    28. M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators,” International Mathematics Research Notices, vol. 2013 (19), pp. 4499–4588, 2013.
    29. M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains,” Potential Analysis, vol. 38, pp. 1123–1171, 2013.
    30. D. Kreplin, “Adaptive Reduzierte Basis Methoden für Evolutionsprobleme.” 2013.
    31. I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” PhD dissertation, Universität Stuttgart, 2013.
    32. M. Köppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept,” Master thesis, Institut für Wasserbau, Universität Stuttgart, Zusammenarbeit mit  Pomdapi INRIA Rocquencourt . Paris, France., 2013.
    33. A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized domain decomposition for image restoration,” Journal of Scientific Computing, vol. 54, no. 2–3, pp. 549--576, 2013.
    34. S. Moutari, M. Herty, A. Klein, M. Oeser, V. Schleper, and G. Steinaur, “Modeling road traffic accidents using macroscopic second-order models  of traffic flow,” IMA Journal of Applied Mathematics, vol. 78, no. 5, pp. 1087–1108, 2013.
    35. F. Nitsch, “Stability Analysis of Linear Time-periodic Systems.” 2013.
    36. V. Ortmann, “Empirische Matrixinterpolation.” 2013.
    37. L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers.” 2013.
    38. M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies,” Journal of Computational Physics, vol. 240, pp. 268–283, 2013.
    39. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, pp. 441--469, 2013.
    40. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, pp. 2145--2171, 2013.
    41. A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen,” Master thesis, University of Stuttgart, 2013.
    42. A. Schmidt, “Galerkin-Radiosity.” 2013.
    43. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” Master thesis, Universität Stuttgart, 2013.
    44. A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” Master thesis, University of Stuttgart, 2013.
    45. D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” Master thesis, University of Stuttgart, 2013.
    46. A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” Master thesis, Universität Mannheim, Germany, 2013.
    47. T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System.” 2013.
    48. S. Turek and D. Göddeke, “Hardware-oriented Numerics for PDE,” in Encyclopedia of Applied and Computational Mathematics, B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, and A. Tveito, Eds. Springer, 2013.
    49. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Research Notes on Approximation, vol. 6, pp. 83–100, 2013.
    50. D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” Dolomites Res. Notes Approx., vol. 6, pp. 83–100, 2013.
    51. J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries.” 2013.
    52. B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape  design,” Machanics & Industry, vol. 14, pp. 1–22, 2013.
  7. 2012

    1. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77.
    2. F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” in Algoritmy 2012, 2012, pp. 393--403.
    3. C. Appel, “Mathematische Methoden zur Bestimmung alterungskritischer Parameter  von Lithium-Ionen Zellen,” Master thesis, IANS, University of Stuttgart, 2012.
    4. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98.
    5. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite  element methods,” Stochastics, vol. 84, no. 2–3, pp. 217--231, 2012.
    6. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises,” Appl. Math. Optim., vol. 66, no. 3, pp. 387--413, 2012.
    7. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic  partial differential equations,” Int. J. Comput. Math., vol. 89, no. 18, pp. 2479--2498, 2012.
    8. J. Bernlöhr, “Online Reduzierte Basis Generierung für Parameterabhängige Elliptische  Partielle Differentialgleichungen,” Master thesis, IANS, University of Stuttgart, 2012.
    9. S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO  and Dune,” Theoretical and Computational Fluid Dynamics, pp. 1–20, 2012.
    10. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion  problems.,” SIAM J. Sci. Comput., vol. 34, no. 1, 2012.
    11. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1753--A1776, 2012.
    12. F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes  and Stimulate Designer’s Creativity,” Engineering Applications of Artificial Intelligence, vol. 25, no. 7, pp. 1413–1424, 2012.
    13. R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to  incompressible limit,” Nonlinear Anal. Real World Appl., vol. 13, no. 5, pp. 2195--2213, 2012.
    14. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS 2011, Multiscale Coupling of Complex Models, vol. 38. ESAIM Proceedings, 2012.
    15. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar  conservation laws,” J. Differential Equations, vol. 253, no. 5, pp. 1399--1421, 2012.
    16. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and  Adaptive Scientific Computing,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 17–31.
    17. A. Dedner, B. Flemisch, and R. Klöfkorn, Advances in DUNE. Springer, 2012.
    18. M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of  Parametrized Evolution Systems,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, 2012.
    19. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012.
    20. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous  Media,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, 2012.
    21. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution  Equations based on Empirical Operator Interpolation,” SIAM J. Sci. Comput., vol. 34, no. 2, pp. A937–A969, 2012.
    22. M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and  RBMATLAB,” in Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer, 2012.
    23. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 406--414.
    24. M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE  solutions of elliptic boundary value problems in polygons,” Numerical Methods for Partial Differential Equations, vol. 28, no. 4, pp. 1124--1151, 2012.
    25. M. Fornasier, Y. Kim, A. Langer, and C.-B. Schönlieb, “Wavelet Decomposition Method for L\_2//TV-Image Deblurring,” SIAM Journal on Imaging Sciences, vol. 5, no. 3, pp. 857--885, 2012.
    26. D. Garmatter, “Reduzierte Basis Methoden für lineare Evolutionsprobleme am Beispiel  von European Option Pricing,” Master thesis, IANS, University of Stuttgart, 2012.
    27. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
    28. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
    29. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” in ENUMATH 2011 Proceedings, 2012.
    30. B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” University of Stuttgart, 2012.
    31. H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” J. Math. Anal. Appl., vol. 393, no. 2, pp. 397--412, 2012.
    32. S. Hoher, P. Schindler, S. G?ttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material  Flow Systems,” in Enabling Manufacturing Competitiveness and Economic Sustainability, H. A. ElMaraghy, Ed. Springer Berlin Heidelberg, 2012, pp. 316–321.
    33. A. Häcker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” Journal of mathematical Biology, vol. 64, pp. 361–401, 2012.
    34. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models,” Adv. Water Res., vol. 42, pp. 71--90, 2012.
    35. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface  tension,” ESAIM: Proc., vol. 38, pp. 387–408, 2012.
    36. J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” Mathematical Models and Methods in Applied Sciences, vol. 22, no. 03, p. 1150017, 2012.
    37. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    38. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, p. , 2012.
    39. R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods  for Compressible Flow Problems,” in Proceedings of the ALGORITMY 2012, 2012, pp. 11–21.
    40. R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in Advances in DUNE, A. Dedner, B. Flemisch, and R. Klöfkorn, Eds. Springer Berlin Heidelberg, 2012, pp. 45–58.
    41. K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control  Problems,” in Constrained Optimiziation and Optimal Control for Partial Differential  Equations, vol. 160, L. et al., Ed. Springer, 2012, pp. 431–443.
    42. M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators.,” Mathematica, vol. 54, pp. 159–176, 2012.
    43. M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation,” Appl. Anal., vol. 91, no. 2, pp. 251--275, 2012.
    44. C. Kreuzer, C. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of  the Heat Equation,” IMA Journal of Numerical Analysis, 2012. [Online]. Available: http://dx.doi.org/10.1093/imanum/drr026.
    45. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, pp. 441--456, 2012.
    46. U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds., “Fast Boundary Element Methods on Engineering and Industrial Applications.” Springer, p. 269, 2012.
    47. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246–262, 2012.
    48. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, pp. 564--573, 2012.
    49. T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” Acta Mechanica Sinica, vol. 28(3), pp. 854–862, 2012.
    50. V. Schleper, “On the coupling of compressible and incompressible fluids,” in Numerical Methods for Hyperbolic Equations, 2012.
    51. V. Schleper, M. Gugat, M. Herty, A. Klar, and G. Leugering, “Well-posedness of networked hyperbolic systems of balance laws,” in Constrained Optimization and Optimal Control for Partial Differential  Equations, vol. 160, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, Eds. Birkhäuser, 2012.
    52. K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in Multiscale and Adaptivity: Modelling, Numerics and Applications, vol. 2040, Berlin: Springer, 2012, pp. 227–309.
    53. P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic  elastic material,” Inverse Problems, vol. 28, no. 8, p. 085010, 2012.
    54. S. Waldherr and B. Haasdonk, “Efficient Parametric Analysis of the Chemical Master Equation through  Model Order Reduction,” BMC Systems Biology, vol. 6, p. 81, 2012.
    55. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” Math. Biosci. Eng., vol. 9, pp. 663–683, 2012.
    56. D. Wirtz and B. Haasdonk, “An Improved Vectorial Kernel Orthogonal Greedy Algorithm,” University of Stuttgart, 2012.
    57. D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems,” University of Stuttgart, 2012.
    58. D. Wirtz, N. Karajan, and B. Haasdonk, “Model order reduction of multiscale models using kernel methods,” SRC SimTech, University of Stuttgart, Germany, 2012.
    59. D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based  reduced systems,” Systems and Control Letters, vol. 61, no. 1, pp. 203–211, 2012.
    60. D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” in Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical  Modelling, 2012.
  8. 2011

    1. A. Barth, C. Schwab, and N. Zollinger, “Multi-level Monte Carlo finite element method for elliptic PDEs  with stochastic coefficients,” Numer. Math., vol. 119, no. 1, pp. 123--161, 2011.
    2. A. Barth, F. E. Benth, and J. Potthoff, “Hedging of spatial temperature risk with market-traded futures,” Appl. Math. Finance, vol. 18, no. 2, pp. 93--117, 2011.
    3. S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and Stable Discontinuous Galerkin Methods with Application  to Atmospheric Flows,” in Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT, I. K. et al., Ed. KIT Scientific Publishing, 2011, pp. 109–116.
    4. S. Brdar, A. Dedner, R. Klöfkorn, M. Kränkel, and D. Kröner, “Simulation of Geophysical Problems with DUNE-FEM,” in Computational Science and High Performance Computing IV, vol. 115, E. K. et al., Ed. Springer, 2011, pp. 93–106.
    5. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives.  Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
    6. A. Dedner et al., “On the computation of slow manifolds in chemical kinetics via optimization  and their use as reduced models in reactive flow systems.,” 2011.
    7. A. Dedner and R. Klöfkorn, “A Generic Stabilization Approach for Higher Order Discontinuous  Galerkin Methods for Convection Dominated Problems,” J. Sci. Comput., vol. 47, no. 3, pp. 365–388, 2011.
    8. M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model Reduction of Parametrized Evolution Problems using the Reduced  basis Method with Adaptive Time-Partitioning,” in Proc. of ADMOS 2011, 2011.
    9. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion  Equations,” in In Proc. FVCA6, 2011.
    10. C. Eck and M. Kutter, “On the solvability of a two scale model for liquid phase epitaxy  with elasticity,” Bericht 2011/001 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011.
    11. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, “3D Benchmark on Discretization Schemes for Anisotropic Diffusion  Problems on General Grids,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 895–930.
    12. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Geometric  multigrid solvers,” in 23rd International Conference on Parallel Computational Fluid Dynamics  (ParCFD’11), 2011.
    13. M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, and S. Turek, “A Simulation Suite for Lattice-Boltzmann based Real-Time CFD  Applications Exploiting Multi-Level Parallelism on modern Multi-  and Many-Core Architectures,” Journal of Computational Science, vol. 2, pp. 113--123, 2011.
    14. M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Efficient Finite Element Geometric Multigrid Solvers for Unstructured  Grids on GPUs,” in Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering, 2011.
    15. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” PhD dissertation, Universität Stuttgart, 2011.
    16. M. Gugat, M. Herty, and V. Schleper, “Flow control in gas networks: exact controllability to a given demand,” Math. Methods Appl. Sci., vol. 34, no. 7, pp. 745--757, 2011.
    17. D. Göddeke and R. Strzodka, “Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision  Multigrid,” IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 22--32, 2011.
    18. B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Basis Generation Approach for Parametrized  Model Reduction Based on Adaptive Grids in Parameter Space,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, pp. 423--442, 2011.
    19. B. Haasdonk, “Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011,” University of Stuttgart, 2011–004, 2011.
    20. B. Haasdonk and B. Lohmann, “Special Issue on ‘“Model Order Reduction of Parametrized Problems,”’” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, pp. 295--296, 2011.
    21. B. Haasdonk and M. Ohlberger, “Efficient reduced models and a posteriori error estimation  for parametrized dynamical systems by offline/online decomposition,” Math. Comput. Model. Dyn. Syst., vol. 17, no. 2, pp. 145--161, 2011.
    22. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction  FIR Filters,” in Proceedings of the 19th Seminar on Mathematical Analysis and Its  Applications, Mazandaran University, Babolsar, Iran, 2011.
    23. M. Herty and V. Schleper, “Traffic flow with unobservant drivers,” ZAMM Z. Angew. Math. Mech., vol. 91, no. 10, pp. 763--776, 2011.
    24. M. Herty and V. Schleper, “Time discretizations for numerical optimisation of hyperbolic problems,” Appl. Math. Comput., vol. 218, no. 1, pp. 183--194, 2011.
    25. N. Jung, A. T. Patera, B. Haasdonk, and B. Lohmann, “Model Order Reduction and Error Estimation with an Application to  the Parameter-Dependent Eddy Current Equation,” Mathematical and Computer Modelling of Dynamical Systems, vol. 17, no. 4, pp. 561--582, 2011.
    26. B. Kabil, “On the asymptotics of solutions to resonator equations,” Hyperbolic Problems: Theory, Numerics, Applications, vol. 8, pp. 373–380, 2011.
    27. S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous  multiscale problems,” Comptes Rendus Mathematique, vol. 349, no. 23–24, pp. 1233--1238, 2011.
    28. S. Kaulmann, “A Localized Reduced Basis Approach for Heterogenous Multiscale Problems,” Westfälische Wilhelms Universität Münster, Einsteinstrasse 62, 48149 Münster, 2011.
    29. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Mathematical Biosciences and Engineering, vol. 8, no. 2, pp. 575--589, 2011.
    30. J. Kelkel, “A Multiscale Approach to Cell Migration in Tissue Networks,” PhD dissertation, Universität Stuttgart, 2011.
    31. R. Klöfkorn, “Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme,” in Finite Volumes for Complex Applications VI Problems & Perspectives, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 1023–1033.
    32. M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, no. 4, pp. 999--1018, 2011.
    33. C. Kreuzer and K. G. Siebert, “Decay Rates of Adaptive Finite Elements with Dörfler Marking,” Numerische Mathematik, vol. 117, no. 4, pp. 679–716, 2011.
    34. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” GAMM-Mitteilungen, vol. 34, no. 1, pp. 84--89, 2011.
    35. A. Lalegname and A. Sändig, “Wave-crack interaction in finite elastic bodies,” International Journal of Fracture, vol. 172, no. 2, pp. 131--149, 2011.
    36. A. Lalegname and A.-M. Sändig, “Wave-crack interaction in finite elastic bodies,” Bericht 2011/002 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2011.
    37. Maier, “Ein iteratives Gebietszerlegungsverfahren für die Reduzierte-Basis-Methode,” Master thesis, University of Stuttgart, 2011.
    38. T. A. Mel’nyk, I. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem,” Math. Methods Appl. Sci., vol. 34, no. 7, pp. 758--775, 2011.
    39. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011.
    40. T. Richter et al., “ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering,” in Proceedings of the 2011 IEEE International Symposium on Multimedia, Washington, DC, USA, 2011, pp. 537--542.
    41. T. Ruiner, “A-posteriori Fehlerschätzer für Reduzierte Mechanische Systeme zweiter  Ordnung,” Master thesis, ITM, University of Stuttgart, 2011.
    42. A. Rössle and A.-M. Sändig, “Corner Singularities and Regularity Results for the Reissner/Mindlin  Plate Model,” Journal of Elasticity, vol. 103, no. 2, pp. 113--135, 2011.
    43. G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,” Applied Mathematics and Computation, vol. 217, no. 24, pp. 10003--10015, 2011.
    44. D. Schuster, “SVD-basierte Modellreduktion für Elastische Mehrkörpersysteme,” Master thesis, IANS, University of Stuttgart, 2011.
    45. K. G. Siebert, “A Convergence Proof for Adaptive Finite Elements without Lower Bound,” IMA Journal of Numerical Analysis, vol. 31, no. 3, pp. 947–970, 2011.
    46. W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi  fuctions,” in 19th Intern. Conf. on Computer Methods in Mechanics, Warsaw, 2011.
    47. C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions  of death receptor signalling,” SRC SimTech, 2011.
    48. O. Zeeb, “Reduzierte Basis Modelle für Formoptimierung unter Verwendung des  SQP-Algorithmus,” Master thesis, IANS, University of Stuttgart, 2011.
  9. 2010

    1. A. Barth, “A finite element method for martingale-driven stochastic partial  differential equations,” Commun. Stoch. Anal., vol. 4, no. 3, pp. 355--375, 2010.
    2. S. Brdar, A. Dedner, and R. Klöfkorn, “CDG Method for Navier-Stokes Equations,” in Proc. of the 13th International Conference on Hyperbolic Problems:  Theory, Numerics, Applications, 2010.
    3. K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, “An $h$-narrow band finite-element method for elliptic equations on  implicit surfaces,” IMA J. Numer. Anal., vol. 30, no. 2, pp. 351–376, 2010.
    4. A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “A Generic Interface for Parallel and Adaptive Scientific Computing:  Abstraction Principles and the DUNE-FEM Module,” Computing, vol. 90, no. 3--4, pp. 165--196, 2010.
    5. A. Dedner, R. Klöfkorn, and D. Kröner, “Higher Order Adaptive and Parallel Simulations Including Dynamic  Load Balancing with the Software Package DUNE,” in High Performance Computing in Science and Engineering ’09, W. N. et al., Ed. Springer, 2010, pp. 229–239.
    6. M. Feistauer and A.-M. Sändig, “Graded Mesh Refinement and Error Estimates of Higher Order for DGFE-solutions  of Elliptic Boundary Value Problems in Polygons,” Bericht 2010/005 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2010.
    7. M. Fornasier, A. Langer, and C.-B. Schönlieb, “A convergent overlapping domain decomposition method for total variation  minimization,” Numerische Mathematik, vol. 116, no. 4, pp. 645--685, 2010.
    8. M. Geveler, D. Ribbrock, D. Göddeke, and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-Water Equations with  Fluid-Structure Interaction on Multi- and Manycore Processors,” in Facing the Multicore Challenge, vol. 6310, R. Keller, D. Kramer, and J.-P. Weiß, Eds. Springer, 2010, pp. 92--104.
    9. D. Göddeke and R. Strzodka, “Mixed Precision GPU-Multigrid Solvers with Strong Smoothers,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. CRC Press, 2010, pp. 131--147.
    10. D. Göddeke, “Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations  on GPU Clusters,” PhD dissertation, Technische Universität Dortmund, Fakultät für Mathematik, 2010.
    11. B. Haasdonk, “Effiziente und Gesicherte Modellreduktion für Parametrisierte Dynamische  Systeme.,” at - Automatisierungstechnik, vol. 58, no. 8, pp. 468--474, 2010.
    12. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Approximating Functions by Using Daubechies Wavelets and comparison  with Other Approximation Methods,” in Proceedings of the 4th Iranian Conference on Applied Mathematics, University of Sistan and Baluchestan, Zahedan, Iran, 2010.
    13. A. A. Hemmat, A. Rivaz, and H. Minbashian, “Numerical Solution of Linear Fredholm Integral Equations by Using  Daubechies Wavelets,” in Proceedings of the 23rd International Conference of the Jangjeon  Mathematical Society, Shahid Chamran University - Jangjeon Mathematical Society(Iran-S.Korea),  Ahvaz, Iran, 2010.
    14. M. Herty, J. Mohring, and V. Sachers, “A new model for gas flow in pipe networks,” Math. Methods Appl. Sci., vol. 33, no. 7, pp. 845--855, 2010.
    15. M. Kargar, H. Minbashian, and M. Mashinchi, “Solving Delay Differential Equation with Fuzzy Coefficients,” in Proceedings of the 10th Iranian Conference on Fuzzy Systems, Shahid Beheshti Univ. Of Tehran, Tehran, Iran, 2010.
    16. M. Kargar, H. Minbashian, and M. A. Yaghoobi., “Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification,” in Proceedings of the 4th International Conference on Fuzzy Information  & Engineering (ICFIE), 2010.
    17. J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation  on seashells,” Journal of Mathematical Biology, vol. 60, no. 6, pp. 765--796, 2010.
    18. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, pp. 661--674, 2010.
    19. K. Kohls, A. Rösch, and K. G. Siebert, “Analysis of Adaptive Finite Elements for Constrained Optimal Control  Problems.” pp. 308–311, 2010.
    20. D. Komatitsch, Michéa, G. Erlebacher, and D. Göddeke, “Running 3D finite-difference or spectral-element wave propagation  codes 25x to 50x faster using a GPU cluster,” in 72nd European Association of Geoscientists and Engineers Conference  and Exhibition (EAGE’2010), 2010, vol. 4, pp. 2920--2924.
    21. D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seismic wave propagation modeling with  MPI on a large GPU cluster,” Journal of Computational Physics, vol. 229, pp. 7692--7714, 2010.
    22. D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, “Modeling the propagation of elastic waves using spectral elements  on a cluster of 192 GPUs,” Computer Science -- Research and Development, vol. 25, no. 1--2, pp. 75--82, 2010.
    23. M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,” Bericht 2010/008 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2010.
    24. H. Li, “Modellreduktion für Stochastische Modelle Biochemischer Netzwerke.” 2010.
    25. E. Pekalska and B. Haasdonk, “Indefinite Kernel Discriminant Analysis,” in Proc. COMPSTAT 2010, International Conference on Computational Statistics, 2010.
    26. D. Ribbrock, M. Geveler, D. Göddeke, and S. Turek, “Performance and Accuracy of Lattice-Boltzmann Kernels on Multi-  and Manycore Architectures,” in International Conference on Computational Science (ICCS’10), 2010, vol. 1, pp. 239--247.
    27. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337.
    28. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Int. J. Numer. Anal. Model., vol. 7, no. 3, pp. 520--534, 2010.
    29. S. Turek, D. Göddeke, S. H. M. Buijssen, and H. Wobker, “Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated  Clusters,” in Scientific Computing with Multicore and Accelerators, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. CRC Press, 2010, pp. 113--130.
    30. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “FEAST -- Realisation of hardware-oriented Numerics for HPC  simulations with Finite Elements,” Concurrency and Computation: Practice and Experience, vol. 22, no. 6, pp. 2247--2265, 2010.
  10. 2009

    1. A. Barth, “Stochastic Partial Differential Equations: Approximations  and Applications,” PhD dissertation, University of Oslo, CMA, 2009.
    2. T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, “Solvability and regularity results to boundary-transmission problems  for metallic and piezoelectric elastic materials,” Mathematische Nachrichten, vol. 282, no. 8, pp. 1079--1110, 2009.
    3. R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, “Optimal control in networks of pipes and canals,” SIAM J. Control Optim., vol. 48, no. 3, pp. 2032--2050, 2009.
    4. A. Dedner and R. Klöfkorn, “Stabilization for Discontinuous Galerkin Methods Applied to Systems  of Conservation Laws,” in Proc. of the 12th International Conference on Hyperbolic Problems,  Proceedings of Symposia in Applied Mathematics 67, Part 1, 253-268, 2009.
    5. M. Drohmann, “Reduzierte Basis Methode für die Richards Gleichung,” Master thesis, INAM, University of Münster, 2009.
    6. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast  of the conductivity,” SIAM J. Sci. Comp., vol. 31, no. 4, pp. 2568--2586, 2009.
    7. M. Fischer, “Einfluss der Snapshot-Wahl bei der POD basierten Reduktion.” 2009.
    8. M. Fornasier, A. Langer, and C.-B. Schönlieb, “Domain decomposition methods for compressed sensing,” in Proceedings of the International Conference of SampTA09, 2009.
    9. F. D. Gaspoz and P. Morin, “Convergence rates for adaptive finite elements,” IMA J. Numer. Anal., vol. 29, no. 4, pp. 917--936, 2009.
    10. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, pp. 929–955, 2009.
    11. G. Guerra, F. Marcellini, and V. Schleper, “Balance laws with integrable unbounded sources,” SIAM J. Math. Anal., vol. 41, no. 3, pp. 1164--1189, 2009.
    12. D. Göddeke, S. H. M. Buijssen, H. Wobker, and S. Turek, “GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes  Solver,” in High Performance Computing & Simulation 2009, 2009, pp. 12--21.
    13. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics  Code with FEASTGPU,” International Journal of Computational Science and Engineering, vol. 4, no. 4, pp. 254--269, 2009.
    14. B. Haasdonk, M. Ohlberger, T. Tonn, and K. Urban, MoRePaS 2009 Book of Abstracts. University of Münster, 2009.
    15. B. Haasdonk and M. Ohlberger, “Efficient a-posteriori Error Estimation for Parametrized Reduced  Dynamical Systems,” in GMA-Fachaussschuss 1.30, Tagungsband, 2009.
    16. B. Haasdonk and M. Ohlberger, “Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems,” in Proc. MATHMOD 2009, 6th Vienna International Conference on Mathematical  Modelling, 2009.
    17. B. Haasdonk and M. Ohlberger, “Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online  Decomposition,” in Proc. MATHMOD 2009, 6th Vienna International Conference on Mathematical  Modelling, 2009.
    18. B. Haasdonk and M. Ohlberger, “Reduced basis method for explicit finite volume approximations of  nonlinear conservation laws,” in Hyperbolic problems: theory, numerics and applications, vol. 67, Providence, RI: Amer. Math. Soc., 2009, pp. 605--614.
    19. N. Jung, B. Haasdonk, and D. Kröner, “Reduced Basis Method for Quadratically Nonlinear Transport Equations,” IJCSM, vol. 2, no. 4, pp. 334–353, 2009.
    20. J. Kelkel and C. Surulescu, “A weak solution approach to a reaction--diffusion system modeling  pattern formation on seashells,” Mathematical Methods in the Applied Sciences, vol. 32, no. 17, pp. 2267--2286, 2009.
    21. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws,” J. Differential Equations, vol. 247, no. 12, pp. 3338--3356, 2009.
    22. R. Klöfkorn, “Numerics for Evolution Equations --- A General Interface Ba\-sed  De\-sign Con\-cept,” PhD dissertation, Albert-Ludwigs-Universität Freiburg, 2009.
    23. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Theory of Adaptive Finite Element Methods: An Introduction,” in Multiscale, Nonlinear and Adaptive Approximation, R. A. DeVore and A. Kunoth, Eds. Springer, 2009, pp. 409–542.
    24. E. Pekalska and B. Haasdonk, “Kernel Discriminant Analysis with Positive Definite and Indefinite  Kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 6, pp. 1017–1032, 2009.
    25. V. Schleper, “Modeling, Analysis and Optimal Control of Gas Pipeline Networks,” PhD dissertation, Dissertation, Fachbereich Mathematik, TU Kaiserslautern, Verlag Dr. Hut, München, 2009.
    26. A.-M. Sändig, “Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen,  Vorlesung im Wintersemester 2008/09,” Bericht 2009/001 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2009.
    27. L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study,” Institute for Analysis and Computational Mathematics, Otto-von-Guericke  University Magdeburg, 2009.
    28. D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C. Gutwenger, “HONEI: A collection of libraries for numerical computations targeting  multiple processor architectures,” Computer Physics Communications, vol. 180, no. 12, pp. 2534--2543, 2009.
    29. D. Wirtz, “SegMedix - Development and Application of a Medical Imaging  Framework,” Master thesis, University of Münster, Einsteinstr. 58, 2009.
  11. 2008

    1. H. Antil, A. Gantner, R. H. W. Hoppe, D. Köster, K. G. Siebert, and A. Wixforth, “Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio-chips,” in Domain Decomposition Methods in Science and Engineering XVII, 2008, vol. 60, pp. 305–312.
    2. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part I: Abstract Framework,” Computing, vol. 82, no. 2--3, pp. 103--119, 2008.
    3. P. Bastian et al., “A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part II: Implementation and Tests in DUNE,” Computing, vol. 82, no. 2--3, pp. 121--138, 2008.
    4. S. H. M. Buijssen, H. Wobker, D. Göddeke, and S. Turek, “FEASTSolid and FEASTFlow: FEM Applications Exploiting FEAST’s  HPC Technologies,” in High Performance Computing in Science and Engineering ’08, vol. 2008, W. Nagel, D. Kröner, and M. Resch, Eds. Springer, 2008, pp. 425--440.
    5. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method,” SIAM Journal on Numerical Analysis, vol. 46, no. 5, pp. 2524–2550, 2008.
    6. R. M. Colombo, M. Herty, and V. Sachers, “On $2\times2$ conservation laws at a junction,” SIAM J. Math. Anal., vol. 40, no. 2, pp. 605--622, 2008.
    7. A. Dedner and R. Klöfkorn, “The compact discontinuous Galerkin method for elliptic problems,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 761--776.
    8. A. Dedner, R. Klöfkorn, and D. Kröner, “Efficient higher order methods for convection dominated problems  on unstructured grids and applications,” Comput.~Tech., vol. 13, pp. 25–35, 2008.
    9. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
    10. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase  model,” Indiana Univ. Math. J., vol. 57, no. 2, pp. 717--755, 2008.
    11. M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution  Equations on Parametrized Geometries,” in Proceedings of ALGORITMY 2009, 2008, pp. 111--120.
    12. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation  Laws on Riemannian Manifolds,” in Finite Volumes for Complex Applications 5, 2008.
    13. D. Göddeke et al., “Using GPUs to Improve Multigrid Solver Performance on a Cluster,” International Journal of Computational Science and Engineering, vol. 4, no. 1, pp. 36--55, 2008.
    14. D. Göddeke and R. Strzodka, “Performance and accuracy of hardware-oriented native, emulated-  and mixed-precision solvers in FEM simulations (Part 2: Double  Precision GPUs),” Fakultät für Mathematik, Technische Universität  Dortmund, 2008.
    15. B. Haasdonk and M. Ohlberger, “Adaptive basis enrichment for the reduced basis method applied to  finite volume schemes,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 471--478.
    16. B. Haasdonk and E. Pekalska, “Indefinite Kernel Fisher Discriminant,” in Proc. ICPR 2008, International Conference on Pattern Recognition, 2008.
    17. B. Haasdonk and M. Ohlberger, “Reduced basis method for finite volume approximations of parametrized  linear evolution equations,” ESAIM: M2AN, vol. 42, no. 2, pp. 277--302, 2008.
    18. B. Haasdonk and E. Pekalska, “Classification with Kernel Mahalanobis Distances,” in Proc. of 32nd. GfKl Conference, Advances in Data Analysis, Data Handling  and Business Intelligence, 2008.
    19. B. Haasdonk, M. Ohlberger, and G. Rozza, “A Reduced Basis Method for Evolution Schemes with Parameter-Dependent  Explicit Operators,” ETNA, Electronic Transactions on Numerical Analysis, vol. 32, pp. 145--161, 2008.
    20. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase  transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008.
    21. C.-J. Heine, “Finite element methods on unfitted meshes,” Preprint Fak. f. Math. Phys. Univ. Freiburg, no. 08–09, 2008.
    22. G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. Berlin: Springer-Verlag, 2008, p. xx+618.
    23. O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” Comput. Methods Appl. Math., vol. 8, no. 1, pp. 60--76, 2008.
    24. N. Jung, “Anwendung der Reduzierten Basis Methode auf quadratisch nichtlineare  Transportgleichungen,” Master thesis, IAM, University of Freiburg, 2008.
    25. R. Klöfkorn, D. Kröner, and M. Ohlberger, “Parallel Adaptive Simulation of PEM Fuel Cells,” in Mathematics -- Key Technology for the Future, H.-J. Krebs and W. Jäger, Eds. Springer, 2008, pp. 235–249.
    26. I. Kröker, “Finite volume methods for conservation laws with noise,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 527--534.
    27. D. Köster, O. Kriessl, and K. G. Siebert, “Design of Finite Element Tools for Coupled Surface and Volume Meshes,” Numerical Mathematics: Theory, Methods and Applications, vol. 1, no. 3, pp. 245–274, 2008.
    28. M. Köster, D. Göddeke, H. Wobker, and S. Turek, “How to gain speedups of 1000 on single processors with fast FEM  solvers ---- Benchmarking numerical and computational efficiency,” Fakultät für Mathematik, TU Dortmund, 2008.
    29. A. Lalegname, A. Sändig, and G. Sewell, “Analytical and numerical treatment of a dynamic crack model,” International Journal of Fracture, vol. 152, no. 2, pp. 97--125, 2008.
    30. P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Elements,” Mathematical Models and Methods in Applied Science, vol. 18, pp. 707–737, 2008.
    31. P. Märkl and A.-M. Sändig, “Singularities of the Stokes System in Polygons,” Bericht 2008/009 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2008.
    32. E. Pekalska and B. Haasdonk, “Kernel Quadratic Discriminant Analysis with Positive and Indefinite  Kernels,” University of Münster, 06/08, 2008.
    33. H. Perfahl and A.-M. Sändig, “A Continuum-Mechanical Approach to Avascular Solid Tumor Growth,” Bericht 2008/001 des Instituts für Angewandte Analysis und Numerische  Simulation der Universität Stuttgart, 2008.
    34. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899.
    35. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, pp. 2151--2174, 2008.
    36. S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “UCHPC -- Unconventional High-Performance Computing for Finite  Element Simulations,” in International Supercomputing Conference (ISC’08), 2008.
  12. 2007

    1. J. M. Cascón, R. H. Nochetto, and K. G. Siebert, “Design and Convergence of AFEM in $H(div)$,” Mathematical Models & Methods in Applied Sciences, vol. 17, no. 11, pp. 1849--1881, 2007.
    2. J. M. Cascón, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Optimal Cardinality of an Adaptive Finite Element Method.” pp. 1719–1722, 2007.
    3. R. Ewing, O. Iliev, R. Lazarov, and I. Rybak, “On two-level preconditioners for flow in porous media,” Fraunhofer ITWM, 121, 2007.
    4. J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger, “Guest Editorial for Special Issue on Modelling and Simulation of  PEM-FC,” Journal of Fuel Cell Science and Technology, 2007.
    5. A. Ganter, R. H. W. Hoppe, D. Köster, K. G. Siebert, and A. Wixforth, “Numerical Simulation of Piezoelectrically Agitated Surface Acoustic  Waves on Microfluidic Biochips,” Computing and Visualization in Science, vol. 10, no. 3, pp. 145–161, 2007.
    6. D. Göddeke et al., “Exploring weak scalability for FEM calculations on a GPU-enhanced  cluster,” Parallel Computing, vol. 33, no. 10--11, pp. 685--699, 2007.
    7. D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-processor acceleration of an unmodified parallel structural mechanics  code with FEAST-GPU.” 2007.
    8. D. Göddeke, R. Strzodka, and S. Turek, “Performance and accuracy of hardware-oriented native-, emulated-  and mixed-precision solvers in FEM simulations,” International Journal of Parallel, Emergent and Distributed Systems, vol. 22, no. 4, pp. 221--256, 2007.
    9. B. Haasdonk, M. Ohlberger, and G. Rozza, “A Reduced Basis Method for Evolution Schemes with Parameter-Dependent  Explicit Operators,” University of Münster, 09/07-N, FB 10, 2007.
    10. B. Haasdonk and M. Ohlberger, “Basis Construction for Reduced Basis Methods By Adaptive Parameter  Grids,” in Proc. International Conference on Adaptive Modeling and Simulation,  ADMOS 2007, 2007.
    11. B. Haasdonk and H. Burkhardt, “Invariant Kernels for Pattern Analysis and Machine Learning,” Machine Learning, vol. 68, pp. 35--61, 2007.
    12. B. Haasdonk and H. Burkhardt, “Classification with Invariant Distance Substitution Kernels,” in Proc. of 31st GfKl Conference, Data Analysis, Machine Learning, and  Applications, 2007.
    13. M. Herty and V. Sachers, “Adjoint calculus for optimization of gas networks,” Netw. Heterog. Media, vol. 2, no. 4, pp. 733--750, 2007.
    14. O. Iliev, I. Rybak, and J. Willems., “On upscaling heat conductivity for a class of industrial problems,” Fraunhofer ITWM, 120, 2007.
    15. O. Iliev and I. Rybak, “On approximation property of multipoint flux approximation method,” Fraunhofer ITWM, 119, 2007.
    16. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann  problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, pp. 1089--1123, 2007.
    17. P. Morin, K. G. Siebert, and A. Veeser, “Basic Convergence Results for Conforming Adaptive Finite Elements,” Proceedings in Applied Mathematics and Mechanics, vol. 7, no. 1, pp. 1026001–1026002, 2007.
    18. P. Morin, K. G. Siebert, and A. Veeser, “Convergence of Finite Elements Adapted for Weaker Norms,” in Applied and Industrial Matematics in Italy - II, Hackensack, NJ, 2007, vol. 75, pp. 468–479.
    19. P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Element  Methods.” pp. 1705–1708, 2007.
    20. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, pp. 91--109, 2007.
    21. H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” Applied Physics Letters, vol. 91, no. 23, p. , 2007.
    22. K. G. Siebert and A. Veeser, “A Unilaterally Constrained Quadratic Minimization with Adaptive Finite  Elements,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 260–289, 2007.
  13. 2006

    1. R. Backofen et al., “A Bottom-up approach to Grid-Computing at a University: the Black-Forest-Grid  Initiative,” Praxis der Informationsverarbeitung und Kommunikation, vol. 29, no. 2, pp. 81–87, 2006.
    2. A. Barth, “Distribution of the First Rendezvous Time of Two Geometric  Brownian Motions,” Master thesis, University of Mannheim, 2006.
    3. P. Bastian et al., “The Distributed and Unified Numerics Environment (DUNE),” in Proc. of the 19th Symposium on Simulation Technique in Hannover,  Sep. 12 - 14, 2006.
    4. A. Burri, A. Dedner, D. Diehl, R. Klöfkorn, and M. Ohlberger, “A general object oriented framework for discretizing non-linear evolution  equations,” in Advances in High Performance Computing and Computational Sciences, vol. 93, Y. S. et al., Ed. Springer, 2006, pp. 69–87.
    5. A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger, “An efficient implementation of an adaptive and parallel grid in DUNE,” in Computational Science and High Performance Computing II, vol. 91, E. K. et al., Ed. Springer, 2006, pp. 67–82.
    6. D. Diehl and C. Rohde, “On the structure of MHD shock waves in diffusive-dispersive media,” J. Math. Fluid Mech., vol. 8, no. 1, pp. 120--145, 2006.
    7. D. Göddeke, C. Becker, and S. Turek, “Integrating GPUs as fast co-processors into the parallel FE package  FEAST,” in 19th Symposium Simulationstechnique (ASIM’06), 2006, pp. 277--282.
    8. B. Haasdonk and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximations of Parametrized  Evolution Equations,” University of Freiburg, Institute of Applied Mathematics, 12/2006, 2006.
    9. J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” in Hyperbolic problems: theory, numerics and applications. I, Yokohama Publ., Yokohama, 2006, pp. 147--154.
    10. C.-J. Heine, “Computations of form and stability of rotating drops with finite  elements,” IMA J. Numer. Anal., vol. 26, no. 4, pp. 723--751, 2006.
    11. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, pp. 2423--2449 (electronic), 2006.
    12. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, pp. 1450--1463, 2006.
    13. R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations,” Numerische Mathematik, vol. 104, no. 4, pp. 515–538, 2006.
    14. K.-D. Peschke et al., “Using Transformation Knowledge for the Classification of Raman  Spectra of Biological Samples,” in BIOMED 2006, Proc. of the 4th IASTED International Conference on  Biomedical Engineering, 2006, pp. 288–293.
    15. R. Strzodka and D. Göddeke, “Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate  PDE Solvers from Low Precision Components,” in Proceedings of the 14th Annual IEEE Symposium on Field-Programmable  Custom Computing Machines (FCCM’06), 2006, pp. 259--270.
    16. R. Strzodka and D. Göddeke, “Mixed Precision Methods for Convergent Iterative Schemes,” in Proceedings of the Workshop on Edge Computing Using New Commodity  Architectures, 2006, p. D-59--60.
  14. 2005

    1. P. Bastian et al., “Towards a Unified Framework for Scientific Computing,” in Domain Decomposition Methods in Science and Engineering, 2005, no. 40, pp. 167–174.
    2. F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems  in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, vol. 7, Eur. Math. Soc., Zürich, 2005, pp. 239--270.
    3. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation magnetohydrodynamics: analysis for model problems and efficient  3d-simulations for the full system,” in Analysis and numerics for conservation laws, Berlin: Springer, 2005, pp. 163--202.
    4. M. J. Gander and C. Rohde, “Overlapping Schwarz waveform relaxation for convection-dominated  nonlinear conservation laws,” SIAM J. Sci. Comput., vol. 27, no. 2, pp. 415--439, 2005.
    5. M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, vol. 40, Berlin: Springer, 2005, pp. 251--258.
    6. D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision FEM Simulations with GPUs,” in 18th Symposium Simulationstechnique (ASIM’05), 2005, pp. 139--144.
    7. D. Göddeke, “GPGPU--Basic Math Tutorial,” Fachbereich Mathematik, Universität Dortmund, 2005.
    8. B. Haasdonk, “Transformation Knowledge in Pattern Analysis with Kernel Methods,  Distance and Integration Kernels,” PhD dissertation, Albert-Ludwigs-Universität, Freiburg im Breisgau, Fakultät für  Angewandte Wissenschaften, 2005.
    9. B. Haasdonk, “Feature Space Interpretation of SVMs with Indefinite Kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 482–492, 2005.
    10. B. Haasdonk, A. Vossen, and H. Burkhardt, “Invariance in Kernel Methods by Haar-Integration Kernels,” in Proceedings of the 14th Scandinavian Conference on Image Analysis, 2005.
    11. O. Iliev and I. Rybak, “On numerical upscaling of flow in anisotropic porous media,” in Mathematisches Forschungsinstitut Oberwolfach Report No. 20, 2005, pp. 1162–1165.
    12. V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space  dimensions: a priori and a posteriori error estimates,” Numer. Methods Partial Differential Equations, vol. 21, no. 1, pp. 104--131, 2005.
    13. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Fully Localized A Posteriori Error Estimators and Barrier Sets for  Contact Problems,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, pp. 2118–2135, 2005.
    14. C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion  terms,” SIAM J. Math. Anal., vol. 37, no. 1, pp. 103--129 (electronic), 2005.
    15. C. Rohde, “On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour  phase transitions,” ZAMM Z. Angew. Math. Mech., vol. 85, no. 12, pp. 839--857, 2005.
    16. C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity  system with non-local energy,” Interfaces Free Bound., vol. 7, no. 1, pp. 107--129, 2005.
    17. A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software. The Finite Element  Toolbox ALBERTA, vol. 42. Berlin: Springer, 2005.
    18. K. G. Siebert and A. Veeser, “Convergence of the Equidistribution Strategy.” pp. 2129–2131, 2005.
  15. 2004

    1. A. Bamberger, E. Bänsch, and K. G. Siebert, “Experimental and numerical investigation of edge tones,” ZAMM Journal of Applied Mathematics and Mechanics, vol. 84, no. 9, pp. 632–646, 2004.
    2. A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg, “A parallel, load-balanced MHD code on locally-adapted unstructured  grids in 3d,” Comput. Vis. Sci., vol. 7, no. 2, pp. 79--96, 2004.
    3. A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential  equations,” Numer. Math., vol. 97, no. 3, pp. 441--471, 2004.
    4. B. Haasdonk and C. Bahlmann, “Learning with Distance Substitution Kernels,” in Pattern Recognition - Proceedings of the 26th DAGM Symposium, 2004, pp. 220–227.
    5. B. Haasdonk, A. Halawani, and H. Burkhardt, “Adjustable invariant features by partial Haar-integration,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004, vol. 2, no. 2, pp. 769–774.
    6. C.-J. Heine, “Isoparametric finite element approximation of curvature on hypersurfaces,” Preprint Fak. f. Math. Phys. Univ. Freiburg, no. 26, 2004.
    7. P. Matus and I. Rybak, “Difference schemes for elliptic equations with mixed derivatives,” Comput. Methods Appl. Math., vol. 4, no. 4, pp. 494--505, 2004.
    8. P. Matus, R. Melnik, L. Wang, and I. Rybak, “Applications of fully conservative schemes in nonlinear thermoelasticity:  modelling shape memory materials,” Math. Comp. Simulation, vol. 65, pp. 489--509, 2004.
    9. M. Reisert, “Entwicklung von Algorithmen zur Lageinvarianten Merkmalsgewinnung  für Drahtgittermodelle,” Master thesis, University of Freiburg, 2004.
    10. C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational  scheme,” J. Hyperbolic Differ. Equ., vol. 1, no. 4, pp. 747--768, 2004.
    11. I. Rybak, “Monotone and conservative difference schemes for elliptic equations  with mixed derivatives,” Math. Model. Anal., vol. 9, no. 2, pp. 169--178, 2004.
    12. I. Rybak, “Computational dynamics of shape memory alloys,” in Proc. of Lobachevski Mathematical Center, 2004, pp. 209--218.
    13. I. Rybak, “Monotone and conservative difference schemes for nonlinear nonstationary  equations and equations with mixed derivatives,” PhD dissertation, Institute of Mathematics of the National Academy of Sciences of Belarus, 2004.
    14. I. Rybak, “Monotone difference schemes for equations with mixed derivatives  in the case of boundary conditions of the third type,” Proceedings of the National Academy of Sciences of Belarus, Series  of Physical-Mathematical Sciences, vol. 40, no. 1, pp. 37--42, 2004.
    15. I. Rybak, “Monotone and conservative difference schemes for equations with mixed  derivatives,” Dokl. Akad. Navuk Belarusi, vol. 48, no. 1, pp. 45--48, 2004.
    16. A. Vossen, “Invariante Kernfunktionen Basierend auf Integration über Transformationen,” Master thesis, University of Freiburg, 2004.
  16. 2003

    1. S. Boschert et al., “Simulation of Industrial Crystal Growth by the Vertical Bridgman  Method.” 2003.
    2. H. Burkhardt and B. Haasdonk, “Mustererkennung WS 02/03, ein multimedialer Grundlagenkurs im  Hauptstudium Informatik.” 2003.
    3. A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods  of higher order for systems of conservation laws in multiple space  dimensions,” in Geometric analysis and nonlinear partial differential equations, Berlin: Springer, 2003, pp. 573--589.
    4. A. Dedner, C. Rohde, and M. Wesenberg, “Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 499--508.
    5. A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
    6. W. Dörfler and K. G. Siebert, “An Adaptive Finite Element Method for Minimal Surfaces,” in Geometric Analysis and Nonlinear Partial Differential Equations, 2003, pp. 146–175.
    7. J. Fehr, “Automatisierte Modellselektion für Supportvektor-Maschinen.” 2003.
    8. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations  for a perfect gas,” Phys. D, vol. 185, no. 2, pp. 78--96, 2003.
    9. B. Haasdonk, B. R. Poluru, and A. Teynor, “Presto-Box 1.1 Library Documentation,” IIF-LMB, Universität Freiburg, 2/03, 2003.
    10. B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, “Multiresolution Visualization of Higher Order Adaptive Finite Element  Simulations,” Computing, vol. 70, no. 3, pp. 181–204, 2003.
    11. C.-J. Heine, “Computations of form and stability of rotating drops with finite  elements,” PhD dissertation, RWTH Aachen, 2003.
    12. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
    13. K. Kühn, M. Ohlberger, J. O. Schumacher, C. Ziegler, and R. Klöfkorn, “A dynamic two-phase flow model of proton exchange membrane fuel  cells,” CSCAMM, University of Maryland, College Park, 2003.
    14. N. Mallig, “Transformationswissen in Kernfunktionen für Supportvektor-Maschinen,” Master thesis, University of Freiburg, 2003.
    15. P. Matus and I. Rybak, “Monotone difference schemes for nonlinear parabolic equations,” Differential Equations, vol. 39, no. 7, pp. 1013--1022, 2003.
    16. P. Matus, R. Melnik, and I. Rybak, “Fully conservative difference schemes for nonlinear models describing  dynamics of materials with shape memory,” Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003., vol. 47, no. 1, pp. 15--17, 2003.
    17. R. Melnik, L. Wang, P. Matus, and I. Rybak, “Computational aspects of conservative difference schemes for shape  memory alloys applications,” Lecture Notes in Comput. Sci., vol. 2668, pp. 791--800, 2003.
    18. P. Morin, R. H. Nochetto, and K. G. Siebert, “Local Problems on Stars: A Posteriori Error Estimators, Convergence,  and Performance,” Mathematics of Computation, vol. 72, no. 243, pp. 1067–1097, 2003.
    19. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Control for Elliptic Obstacle Problems,” Numerische Mathematik, vol. 95, no. 1, pp. 163–195, 2003.
    20. C. Rohde and W. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD  fluids with radiation,” Appl. Math., vol. 48, no. 4, pp. 257--277, 2003.
    21. I. Rybak, “Difference schemes for nonlinear models describing dynamic behaviour  of shape memory alloys,” in Condensed State Physics: XI Republican Scientific Conference, Grodno,  Belarus, April 23–25, 2003, 2003, pp. 200–203.
    22. H. Stepputtis, “Distanz-Substitutions-Kerne für Supportvektor-Maschinen.” 2003.
  17. 2002

    1. C. Bahlmann, B. Haasdonk, and H. Burkhardt, “On-line Handwriting Recognition with Support Vector Machines - A  Kernel Approach,” in Proc. of the 8th International Workshop on Frontiers in Handwriting  Recognition, 2002, pp. 49--54.
    2. A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 165--172.
    3. H. Freistühler and C. Rohde, “Numerical computation of viscous profiles for hyperbolic conservation  laws,” Math. Comp., vol. 71, no. 239, pp. 1021--1042 (electronic), 2002.
    4. B. Haasdonk and D. Keysers, “Tangent Distance Kernels for Support Vector Machines,” in Proceedings of the 16th International Conference on Pattern Recognition, 2002, vol. 2, pp. 864–868.
    5. R. Klöfkorn, D. Kröner, and M. Ohlberger, “Local adaptive methods for convection dominated problems.,” Int. J. Numer. Methods Fluids, vol. 40, no. 1–2, pp. 79–91, 2002.
    6. P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal., vol. 40, no. 5, pp. 1968--1992 (electronic), 2002.
    7. K.-M. Lin et al., “Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te,” Journal of Crystal Growth, vol. 237–239, pp. 1736–1740, 2002.
    8. P. Morin, R. H. Nochetto, and K. G. Siebert, “Convergence of Adaptive Finite Element Methods,” SIAM Review, vol. 44, no. 4, pp. 631–658, 2002.
    9. M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection  dominated parabolic systems,” IMA J. Numer. Anal., vol. 22, no. 2, pp. 253--280, 2002.
  18. 2001

    1. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods (Oxford, 1999), Kluwer/Plenum, New York, 2001, pp. 209--216.
    2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 277--286.
    3. H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and  non-classical shock waves,” in Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 287--309, 814.
    4. H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 399--408.
    5. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    6. B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K.-G. Siebert, “h-p-Multiresolution Visualization of Adaptive Finite Element Simulations,” Mathematics Department, University of Freiburg, Preprint 01-26, 2001.
    7. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    8. T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive  movement,” J. Math. Anal. Appl., vol. 260, no. 1, pp. 173--199, 2001.
    9. R. Klöfkorn, “Simulation von Abbau- und Transportprozessen gelöster Schadstoffe  im Grundwasser,” PhD dissertation, Albert-Ludwigs-Universität Freiburg, 2001.
    10. P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions  to hyperbolic systems of conservation laws,” Indiana Univ. Math. J., vol. 50, no. 4, pp. 1707--1743, 2001.
    11. A. Schmidt and K. G. Siebert, “ALBERT --- Software for Scientific Computations and Applications,” Acta Mathematica Universitatis Comenianae, New Ser., vol. 70, no. 1, pp. 105–122, 2001.
  19. 2000

    1. S. Boschert, A. Schmidt, and K. G. Siebert, “Numerical Simulation of Crystal Growth by the Vertical Bridgman  Method,” in Modelling of Transport Phenomena in Crystal Growth, vol. 6, J. S. Szmyd and K. Suzuki, Eds. WIT Press, 2000, pp. 315–330.
    2. K. Deckelnick and K. G. Siebert, “$W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle  Problems,” IMA Journal of Numerical Analysis, vol. 20, no. 3, pp. 481–498, 2000.
    3. B. Haasdonk, “Convergence of a Staggered Lax-Friedrichs Scheme on Unstructured  2D-Grids,” in HYP 2000, Proceedings of the 8th International Conference on Hyperbolic  Problems, 2000, vol. 2, pp. 475--484.
    4. P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” SIAM J. Numer. Anal., vol. 37, no. 6, pp. 2023--2060 (electronic), 2000.
    5. P. Morin, R. H. Nochetto, and K. G. Siebert, “Data Oscillation and Convergence of Adaptive FEM,” SIAM Journal on Numerical Analysis, vol. 38, no. 2, pp. 466–488, 2000.
    6. A. Schmidt and K. G. Siebert, “A Posteriori Estimators for the $h$-$p$ Version of the Finite Element  Method in 1d,” Applied Numerical Mathematics, vol. 35, no. 1, pp. 43–66, 2000.
  20. 1999

    1. A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II, Hermes Sci. Publ., Paris, 1999, pp. 491--498.
    2. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998), vol. 129, Basel: Birkhäuser, 1999, pp. 333--342.
    3. T. Geßner et al., “A Procedural Interface for Multiresolutional Visualization of General  Numerical Data,” University of Bonn, 28, 1999.
    4. B. Haasdonk, “Konvergenz eines Staggered Lax-Friedrichs Verfahrens auf unstrukturierten  2D Gittern,” Master thesis, Universität Freiburg, Abteilung für Angewandte Mathematik, 1999.
    5. A. Schmidt and K. G. Siebert, “Abstract Data Structures for a Finite Element Package: Design Principles  of ALBERT,” Journal of Applied Mathematics and Mechanics, vol. 79, no. 1, pp. 49–52, 1999.
  21. 1998

    1. S. Boschert, T. Kaiser, A. Schmidt, K. G. Siebert, K.-W. Benz, and G. Dziuk, “Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical  Bridgman Technique,” in Modeling and Simulation Based Engineering, 1998.
    2. C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems  of conservation laws in 2D,” Numer. Math., vol. 81, no. 1, pp. 85--123, 1998.
    3. C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, pp. 470--499, 1998.
    4. A. Schmidt and K. G. Siebert, “Concepts of the Finite Element Toolbox ALBERT.” 1998.
    5. K. G. Siebert, “Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.” 1998.
  22. 1996

    1. M. Rumpf, A. Schmidt, and K. G. Siebert, “Functions Defining Arbitrary Meshes --- A Flexible Interface Between  Numerical Data and Visualization Routines,” Computer Graphics Forum, vol. 15, no. 2, pp. 129–141, 1996.
    2. A. Schmidt and K. G. Siebert, “Numerical Aspects of Parabolic Free Boundary Problems - Adaptive  Finite Element Methods.” 1996.
    3. K. G. Siebert, “An A Posteriori Error Estimator for Anisotropic Refinement,” Numerische Mathematik, vol. 73, no. 3, pp. 373–398, 1996.
  23. 1995

    1. E. Bänsch and K. G. Siebert, “A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques.” 1995.
    2. M. Rumpf, A. Scmidt, and K. G. Siebert, “On a Unified Visualization Approach for Data from Advanced Numerical  Methods,” in Visualization in Scientific Computing ’95, 1995, pp. 35–44.
  24. 1993

    1. K. G. Siebert, “Local Refinement of 3D-Meshes Consisting of Prisms and Conforming  Closure,” IMPACT of Computing in Science and Engineering, vol. 5, no. 4, pp. 271–284, 1993.
    2. K. G. Siebert, “An A Posteriori Error Estimator for Anisotropic Refinement,” PhD dissertation, Freiburg, 1993.
  25. 1990

    1. K. G. Siebert, “Ein Finite-Elemente-Verfahren zur Lösung der inkompressiblen  Euler-Gleichungen auf der Sphäre mit der Stromlinien-Diffusions-Methode,” Master thesis, Bonn, 1990.
Dieses Bild zeigt Göddeke
Prof. Dr. rer. nat.

Dominik Göddeke

Head of Institute and Head of Group