Institute of Applied Analysis and Numerical Simulation

# Research

List of publications.

### Selected Publications

### 2019

- M. Feistauer, F. Roskovec, and A.-M. Sändig, “Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon,” vol. 39, no. 1, pp. 423–453, 2019.
- M. Köppel, V. Martin, and J. E. Roberts, “A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures,” vol. 10, no. 7, 2019.
- F. Meyer, C. Rohde, and J. Giesselmann, “A posteriori error analysis for random scalar conservation laws using the stochastic Galerkin method,” vol. 00, pp. 1–28, 2019.
- D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” in
*Numerical Mathematics and Advanced Applications ENUMATH 2017*, Bergen, 2019, vol. 126.

### 2018

- B. M. Afkham, A. Bhatt, B. Haasdonk, and J. S. Hesthaven, “Symplectic Model-Reduction with a Weighted Inner Product,” pp. 1–23, 2018.
- M. Alkämper, F. Gaspoz, and R. Klöfkorn, “A weak compatibility condition for newest vertex bisection in any dimension,” vol. 40, no. 6, pp. A3853–A3872, 2018.
- A. Alla, B. Haasdonk, and A. Schmidt, “Feedback control of parametrized PDEs via model order reduction and dynamic programming principle,” University of Stuttgart, 2018.
- A. Armiti-Juber and C. Rohde, “On Darcy- and Brinkman-type models for two-phase flow in asymptotically flat domains,” pp. 1–19, 2018.
- A. Barth and A. Stein, “A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients,” vol. 6, no. 4, pp. 1707–1743, 2018.
- A. Barth and T. Stüwe, “Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise,” vol. 143, pp. 215–225, 2018.
- A. Bhatt and B. Haasdonk, “Certified and structure-preserving model order reduction of EMBS,” in
*Advancement in mathematical sciences*, Noida, Uttar Pradesh, 2018, no. 1897. - A. Bhatt, J. Fehr, and B. Hassdonk, “Model Order Reduction of an Elastic Body under Large Rigid Motion,” in
*Numerical Mathematics and Advanced Applications - ENUMATH 2017*, Bergen, 2018, no. 126. - A. Bhatt and R. A. Van Gorder, “Chaos in a non-autonomous nonlinear system describing asymmetric water wheels,”
*NONLINEAR DYNAMICS*, vol. 93, no. 4, pp. 1977–1988, 2018. - A. Bhatt, B. Haasdonk, and B. E. Moore, “Structure-preserving Integration and Model Order Reduction.” Department of Mathematics, IIT Roorkee, 2018.
- C. P. Bradley
*et al.*, “Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems,”*FRONTIERS IN PHYSIOLOGY*, vol. 9, 2018. - M. Brehler, M. Schirwon, D. Göddeke, and P. Krummrich, “Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs,” in
*Signal Processing in Photonic Communications*, Zürich, 2018. - T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” in
*Numerical Mathematics and Advanced Applications - ENUMATH 2017*, Bergen, 2018, vol. Proceedings of ENUMATH 2017, no. 126. - P. Buchfink, “Structure-preserving Model Reduction for Elasticity,” PhD dissertation, 2018.
- C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow,” in
*Theory, Numerics and Applications of Hyperbolic Problems*, Aachen, 2018, vol. 236, no. 1, pp. 309–322. - S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive definite kernel functions,” vol. 55, no. 1, pp. 1–24, 2018.
- C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, and K. Rothermel, “Enabling interactive mobile simulations through distributed reduced models,”
*PERVASIVE AND MOBILE COMPUTING*, vol. 45, pp. 19–34, 2018. - N.-A. Dreier, M. Altenbernd, C. Engwer, and D. Göddeke, “A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application,” in
*26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing*, Cambridge, 2018. - S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension,” vol. 169, pp. 169–185, 2018.
- J. Fehr, D. Grunert, A. Bhatt, and B. Haasdonk, “A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems,” in
*9th Vienna International Conference on Mathematical Modelling*, Vienna, 2018, vol. 51, no. 2, pp. 202–207. - F. Fritzen, B. Haasdonk, D. Ryckelynck, and S. Schöps, “An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem,” vol. 23, no. 1, p. 8, 2018.
- J. Giesselmann, N. Kolbe, M. Medviďová-Lukáčová, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model,” vol. 23, no. 10, pp. 4397–4431, 2018.
- H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” vol. 333, pp. 147–175, 2018.
- H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation,” vol. 39, no. 4, pp. 867–912, 2018.
- B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in
*Reduced-order modeling (ROM) for simulation and optimization*, W. Keiper, A. Milde, and S. Volkwein, Eds. Cham: Springer International Publishing, 2018, pp. 21–45. - H. Harbrecht, W. L. Wendland, and N. Zorii, “Minimal energy problems for strongly singular Riesz kernels,” vol. 291, no. 1, pp. 55–85, 2018.
- M. Hintermüller, A. Langer, C. N. Rautenberg, and T. Wu, “Adaptive regularization for reconstruction from subsampled data,” in
*Imaging, Vision and Learning Based on Optimization and PDEs*, Bergen, 2018. - B. Kane, “Adaptive higher order discontinuous Galerkin methods for porous-media multi-phase flow with strong heterogeneities,” PhD dissertation, Stuttgart, 2018.
- M. Koeppel
*et al.*, “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” pp. 1–16, 2018. - T. Koeppl, G. Santin, B. Haasdonk, and R. Helmig, “Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods,”
*International Journal for Numerical Methods in Biomedical Engineering*, vol. 34, no. 8, p. e3095, 2018. - T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows,” 2018.
- M. Köppel, V. Martin, J. Jaffré, and J. E. Roberts, “A Lagrange multiplier method for a discrete fracture model for flow in porous media,” 2018.
- M. Köppel, “Flow in heterogeneous porous media : fractures and uncertainty quantification,” Verlag Dr. Hut, München, 2018.
- A. Langer, “Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method,” vol. 4, no. 1, 2018.
- A. Langer, “Locally adaptive total variation for removing mixed Gaussian-impulse noise,” vol. 96, no. 2, pp. 298–316, 2018.
- A. Langer, “Overlapping domain decomposition methods for total variation denoising,” 2018.
- J. Magiera and C. Rohde, “A particle-based multiscale solver for Ccmpressible liquid–vapor flow,” in
*Theory, Numerics and Applications of Hyperbolic Problems*, Aachen, 2018, vol. 237, no. 2, pp. 291–304. - I. Martini, B. Haasdonk, and G. Rozza, “Certified reduced basis approximation for the coupling of viscous and inviscid parametrized flow models,” vol. 74, no. 1, pp. 197–219, 2018.
- F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations,” 2018.
- G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface Péclet number,” 2018.
- C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension,” vol. 69, no. 3, pp. 76, 1–40, 2018.
- C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in
*New trends and results in mathematical description of fluid flows*, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181. - A. Schmidt and B. Haasdonk, “Reduced basis approximation of large scale parametric algebraic Riccati equations,” vol. 24, no. 1, pp. 129–151, 2018.
- A. Schmidt and B. Haasdonk, “Data-driven surrogates of value functions and applications to feedback control for dynamical systems,” vol. 51, no. 2, pp. 307–312, 2018.
- A. Schmidt, “Feedback control for parametric partial differential equations using reduced basis surrogate models,” Verlag Dr. Hut, München, 2018.
- D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow in porous media,” vol. 333, pp. 331–355, 2018.
- D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018.

### 2017

- M. Alkämper and R. Klofkorn, “Distributed Newest Vertex Bisection,”
*JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING*, vol. 104, pp. 1–11, 2017. - M. Alkämper and A. Langer, “Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions,” vol. 5, no. 1, pp. 3–19, 2017.
- A. Alla, A. Schmidt, and B. Haasdonk, “Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation,” in
*Model Reduction of Parametrized Systems*, vol. 17, P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Eds. Cham: Springer, 2017, pp. 333–347. - M. Altenbernd and D. Göddeke, “Soft fault detection and correction for multigrid,” Feb. 2017.
- A. Armiti, “Modeling and analysis of almost unidirectional flows in porous media,” Verlag Dr. Hut, München, 2017.
- A. Barth and F. G. Fuchs, “Uncertainty quantification for linear hyperbolic equations with stochastic process or random field coefficients,”
*APPLIED NUMERICAL MATHEMATICS*, vol. 121, pp. 38–51, 2017. - A. Barth, B. Harrach, N. Hyvoenen, and L. Mustonen, “Detecting stochastic inclusions in electrical impedance tomography,”
*INVERSE PROBLEMS*, vol. 33, no. 11, 2017. - M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich, “A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers,”
*JOURNAL OF LIGHTWAVE TECHNOLOGY*, vol. 35, no. 17, pp. 3622–3628, 2017. - R. Bürger and I. Kröker, “Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model,” in
*Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems*, Lille, 2017, vol. 200, pp. 189–197. - R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,”
*APPLIED NUMERICAL MATHEMATICS*, vol. 116, no. SI, pp. 95–107, 2017. - R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local stabilization,” in
*Computational and mathematical methods in science and engineering CMMSE-2015*, Amsterdam, 2017, no. 318, pp. 317–326. - C. Chalons, C. Rohde, and M. Wiebe, “A FINITE VOLUME METHOD FOR UNDERCOMPRESSIVE SHOCK WAVES IN TWO SPACE DIMENSIONS,”
*ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE*, vol. 51, no. 5, pp. 1987–2015, 2017. - A. Chertock, P. Degond, and J. Neusser, “An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations,”
*JOURNAL OF COMPUTATIONAL PHYSICS*, vol. 335, pp. 387–403, 2017. - S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in
*Approximation Theory XV: San Antonio 2016*, San Antonio, 2017, vol. 201, pp. 39–59. - C. Dibak, A. Schmidt, F. Dürr, B. Haasdonk, and K. Rothermel, “Server-Assisted Interactive Mobile Simulations for Pervasive Applications,” in
*2017 IEEE International Conference on Pervasive Computing and Communications (PerCom)*, Kona, HI, USA, 2017. - S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension,”
*JOURNAL OF COMPUTATIONAL PHYSICS*, vol. 336, pp. 347–374, 2017. - M. Feistauer, O. Bartoš, F. Roskovec, and A.-M. Sändig, “Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition,” in
*Proceedings Of Equadiff 2017 Conference*, Bratislava, 2017, pp. 127–136. - S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints : Exactly and in Practice,” in
*Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, (ALENEX) 2017*, Barcelona, 2017, pp. 185–196. - F. D. Gaspoz and P. Morin, “APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT APPROXIMATION (vol 83, pg 2127, 2014),”
*MATHEMATICS OF COMPUTATION*, vol. 86, no. 305, pp. 1525–1526, 2017. - F. D. Gaspoz, P. Morin, and A. Veeser, “A posteriori error estimates with point sources in fractional sobolev spaces,”
*NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS*, vol. 33, no. 4, pp. 1018–1042, 2017. - J. Giesselmann and T. Pryer, “Goal-Oriented Error Analysis of a DG Scheme for a Second Gradient Elastodynamics Model,” in
*Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects*, Lille, 2017, vol. 199, pp. 457–466. - J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone pressures,”
*APPLICABLE ANALYSIS*, vol. 96, no. 9, SI, pp. 1528–1546, 2017. - J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,”
*MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES*, vol. 27, no. 13, pp. 2381–2423, 2017. - J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics,”
*ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS*, vol. 223, no. 3, pp. 1427–1484, 2017. - R. Gutt, M. Kohr, S. E. Mikhailov, and W. L. Wendland, “On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains,”
*MATHEMATICAL METHODS IN THE APPLIED SCIENCES*, vol. 40, no. 18, pp. 7780–7829, 2017. - B. Haasdonk, “Reduced Basis Methods for Parametrized PDEs : A Tutorial Introduction for Stationary and Instationary Problems,” in
*Model reduction and approximation*, no. 15, P. Benner, Ed. Philadelphia: Society for Industrial and Applied Mathematics, 2017, pp. 65–136. - M. Hintermueller, C. N. Rautenberg, T. Wu, and A. Langer, “Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests,”
*JOURNAL OF MATHEMATICAL IMAGING AND VISION*, vol. 59, no. 3, SI, pp. 515–533, 2017. - B. Kane, R. Klöfkorn, and C. Gersbacher, “hp–adaptive discontinuous Galerkin methods for porous media flow,” in
*Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems*, Lille, 2017, vol. 200, pp. 447–456. - B. Kane, “Using Dune-Fem for adaptive higher order discontinuous Galerkin methods for two-phase flow in porous media,” vol. 5, no. 1, pp. 129–149, 2017.
- M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Transmission Problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman Systems in Lipschitz Domains on Compact Riemannian Manifolds,”
*JOURNAL OF MATHEMATICAL FLUID MECHANICS*, vol. 19, no. 2, pp. 203–238, 2017. - M. Kohr, D. Medkova, and W. L. Wendland, “On the Oseen-Brinkman flow around an -dimensional solid obstacle,”
*MONATSHEFTE FUR MATHEMATIK*, vol. 183, no. 2, pp. 269–302, 2017. - M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two-scale model for liquid phase epitaxy with elasticity,”
*CONTINUUM MECHANICS AND THERMODYNAMICS*, vol. 29, no. 4, pp. 989–1016, 2017. - M. Köppel, I. Kroeker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,”
*COMPUTATIONAL GEOSCIENCES*, vol. 21, no. 4, pp. 807–832, 2017. - A. Langer, “Automated parameter selection in the L1-L2-TV model for removing Gaussian plus impulse noise,” vol. 33, no. 7, p. 41, 2017.
- A. Langer, “Automated Parameter Selection for Total Variation Minimization in Image Restoration,”
*JOURNAL OF MATHEMATICAL IMAGING AND VISION*, vol. 57, no. 2, pp. 239–268, 2017. - I. Martini, “Reduced basis approximation for heterogeneous domain decomposition problems,” Verlag Dr. Hut, München, 2017.
- V. Maz’ya, D. Natroshvili, E. Shargorodsky, and W. L. Wendland, Eds.,
*Recent trends in operator theory and partial differential equations : the Roland Duduchava anniversary volume*, no. 258. Basel: Birkhäuser, 2017. - H. Minbashian, H. Adibi, and M. Denghan, “An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations,” vol. 28, no. 12, pp. 2842–2861, 2017.
- H. Minbashian, H. Adibi, and M. Denghan, “On resolution of boundary layers of exponential profile with small thickness using an upwind method in IGA.” 2017.
- H. Minbashian, “Wavelet-based multiscale methods for numerical solution of hyperbolic conservation laws,” PhD dissertation, Tehran, 2017.
- H. Minbashian, H. Adibi, and M. Denghan, “An adaptive wavelet space-time SUPG method for hyperbolic conservation laws,” vol. 33, no. 6, pp. 2062–2089, 2017.
- J. Neusser and V. Schleper, “Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions,” vol. 304, no. C, pp. 65–82, 2017.
- G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” vol. 10, pp. 68–78, 2017.
- P. Tempel, A. Schmidt, B. Haasdonk, and A. Pott, “Application of the Rigid Finite Element method to the simulation of cable-driven parallel robots,” in
*Computational Kinematics*, Poitiers, 2017, vol. 50, pp. 198–205. - W. L. Wendland and L. Wolfgang, “Martin Costabel’s version of the trace theorem revisited,”
*MATHEMATICAL METHODS IN THE APPLIED SCIENCES*, vol. 40, no. 2, SI, pp. 329–334, 2017. - W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” vol. 40, no. 2, pp. 329–334, 2017.
- D. Wittwar, A. Schmidt, and B. Haasdonk, “Reduced basis approximation for the discrete-time parametric algebraic Riccati equation,” University of Stuttgart, Institute for Applied Analysis and Numerical Simulation, 2017.

### 2016

- M. Alkämper, A. Dedner, R. Klöfkorn, and M. Nolte, “The DUNE-ALUGRID Module,” vol. 4, no. 1, pp. 1–28, 2016.
- D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” vol. 3, no. 6, pp. 1–25, Mar. 2016.
- A. C. Antoulas, B. Haasdonk, and B. Peherstorfer,
*Book of Abstracts : MORML ’16 : Workshop on Data-driven Model Order Reduction and Machine Learning*. University of Stuttgart, 2016. - A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener model with several random perturbations: A hybrid stochastic Galerkin approach,” vol. 89, pp. 11–26, 2016.
- A. Barth and A. Stein, “Approximation and simulation of infinite-dimensional Levi processes,” vol. 6, no. 2, pp. 286–334, 2016.
- A. Barth and I. Kröker, “Finite volume methods for hyperbolic partial differential equations with spatial noise,” in
*Theory, Numerics and Applications of Hyperbolic Problems I*, Aachen, 2016, no. 236, pp. 125–135. - A. Barth, C. Schwab, and J. Šukys, “Multilevel Monte Carlo simulation of statistical solutions to the Navier-Stokes equations,” in
*Monte Carlo and Quasi-Monte Carlo methods*, Leuven, Belgium, 2016, vol. 163, no. 163, pp. 209–227. - P. Bastian
*et al.*, “Hardware-Based Efficiency Advances in the EXA-DUNE Project,” in*Software for Exascale Computing - SPPEXA 2013-2015*, Cham, 2016, no. 113, pp. 3–23. - P. Bastian
*et al.*, “Advances Concerning Multiscale Methods and Uncertainty Quantification in EXA-DUNE,” in*Software for Exascale Computing - SPPEXA 2013-2015*, Cham, 2016, no. 113, pp. 25–43. - U. Baur, P. Benner, B. Haasdonk, C. Himpe, I. Maier, and M. Ohlberger, “Comparison of methods for parametric model order reduction of instationary problems,” in
*Max Planck Institute Magdeburg Preprints*, no. 15–01, Magdeburg: Max Planck Institute for Dynamics of Complex Technical Systems, 2016, pp. 1–37. - F. Betancourt and C. Rohde, “Finite-volume schemes for Friedrichs systems with involutions,”
*APPLIED MATHEMATICS AND COMPUTATION*, vol. 272, no. 2, pp. 420–439, 2016. - A. Bhatt and B. E. Moore, “Structure-preserving Exponential Runge-Kutta Methods,” vol. 39, no. 2, pp. A593–A612, 2016.
- A. Bhatt, D. Floyd, and B. E. Moore, “Second order conformal symplectic schemes for damped Hamiltonian systems,” vol. 66, no. 3, pp. 1234–1259, 2016.
- A. Bhatt, “Structure-preserving finite difference methods for linearly damped differential equations,” University of Central Florida, Orlando, Florida, 2016.
- K. Carlberg, L. Brencher, B. Haasdonk, and A. Barth, “Data-driven time parallelism via forecasting,” 2016.
- R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable radial bases,” in
*AIP conference proceedings*, 2016, no. 1738, 1. - R. M. Colombo, G. Guerra, and V. Schleper, “The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case,”
*ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS*, vol. 219, no. 2, pp. 701–718, 2016. - R. M. Colombo, G. Guerra, and V. Schleper, “The compressible to incompressible limit of 1D Euler equations: the non-smooth case,” vol. 219, no. 2, pp. 701–718, 2016.
- R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” presented at the Hyperbolic techniques in Modelling, Analysis and Numerics, Workshop 1625, Oberwolfach, 2016, vol. 13, no. 2, pp. 1683–1751.
- A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,”
*SIAM JOURNAL ON NUMERICAL ANALYSIS*, vol. 54, no. 6, pp. 3523–3549, 2016. - A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws,” vol. 54, no. 6, pp. 3523–3549, 2016.
- D. Diehl, J. Kremser, D. Kroener, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by Local Discontinuous Galerkin methods in multiple space dimensions,”
*APPLIED MATHEMATICS AND COMPUTATION*, vol. 272, no. 2, pp. 309–335, 2016. - M. Dihlmann and B. Haasdonk, “A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL DIFFERENTIAL EQUATIONS,”
*ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS*, vol. 22, no. 3, pp. 625–669, 2016. - F. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,”
*INTERNATIONAL JOURNAL OF THERMAL SCIENCES*, vol. 104, pp. 386–395, 2016. - M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical Methods for Hyperbolic Partial Differential Equations’’,”
*APPLIED MATHEMATICS AND COMPUTATION*, vol. 272, no. 2, pp. 235–236, 2016. - D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced basis Landweber method for nonlinear inverse problems,”
*INVERSE PROBLEMS*, vol. 32, no. 3, 2016. - F. D. Gaspoz, C.-J. Heine, and K. G. Siebert, “Optimal grading of the newest vertex bisection and H-1-stability of the L-2-projection,”
*IMA JOURNAL OF NUMERICAL ANALYSIS*, vol. 36, no. 3, pp. 1217–1241, 2016. - M. Geveler, B. Reuter, V. Aizinger, D. Göddeke, and S. Turek, “Energy efficiency of the simulation of three-dimensional coastal ocean circulation on modern commodity and mobile processors - A case study based on the Haswell and Cortex-A15 microarchitectures,”
*Computer science - research and development*, vol. 31, no. 4, pp. 225–234, 2016. - J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of multiphase problems in elastodynamics,”
*IMA JOURNAL OF NUMERICAL ANALYSIS*, vol. 36, no. 4, pp. 1685–1714, 2016. - J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin schemes,”
*BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY*, vol. 47, no. 1, pp. 359–372, 2016. - J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase problems in elastodynamics,”
*BIT NUMERICAL MATHEMATICS*, vol. 56, no. 1, pp. 99–127, 2016. - J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary,” 2016.
- G. Guerra and V. Schleper, “A coupling between a 1D compressible-incompressible limit and the 1D p-system in the non smooth case,”
*BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY*, vol. 47, no. 1, pp. 381–396, 2016. - R. Gutt, M. Kohr, C. Pintea, and W. L. Wendland, “On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemannian manifolds,”
*MATHEMATISCHE NACHRICHTEN*, vol. 289, no. 4, pp. 471–484, 2016. - H. Harbrecht, W. L. Wendland, and N. Zorii, “Rapid Solution of Minimal Riesz Energy Problems,”
*NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS*, vol. 32, no. 6, pp. 1535–1552, 2016. - B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension,”
*MATHEMATICAL METHODS IN THE APPLIED SCIENCES*, vol. 39, no. 18, pp. 5409–5426, 2016. - M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “On the Robin-Transmission Boundary Value Problems for the Nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes Systems,”
*JOURNAL OF MATHEMATICAL FLUID MECHANICS*, vol. 18, no. 2, pp. 293–329, 2016. - M. Kohr, M. L. de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for a transmission problem with Lipschitz interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE systems,”
*ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK*, vol. 67, no. 5, 2016. - M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “On the Robin transmission boundary value problem for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes system,”
*Journal of Mathematical Fluid Mechanics*, vol. 18, no. 2, pp. 293–329, 2016. - M. Kohr, M. Lanza de Cristoforis, S. E. Mikhailov, and W. L. Wendland, “Integral potential method for transmission problem with Lipschitz interface in R
^{3}for the Stokes and Darcy-Forchheimer-Brinkman PED systems,” vol. 67, pp. 116; 1–30, 2016. - F. List and F. A. Radu, “A study on iterative methods for solving Richards’ equation,”
*COMPUTATIONAL GEOSCIENCES*, vol. 20, no. 2, pp. 341–353, 2016. - J. Magiera, C. Rohde, and I. Rybak, “A Hyperbolic-Elliptic Model Problem for Coupled Surface-Subsurface Flow,”
*TRANSPORT IN POROUS MEDIA*, vol. 114, no. 2, SI, pp. 425–455, 2016. - M. Redeker, C. Rohde, and I. S. Pop, “Upscaling of a tri-phase phase-field model for precipitation in porous media,”
*IMA JOURNAL OF APPLIED MATHEMATICS*, vol. 81, no. 5, pp. 898–939, 2016. - M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,”
*MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS*, vol. 20, no. 4, pp. 323–344, 2016. - E. Rossi and V. Schleper, “Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions,” vol. 50, no. 2, pp. 475–497, 2016.
- I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in
*Domain Decomposition Methods in Science and Engineering XXII*, Cham, 2016, vol. 104, no. 104, pp. 613–621. - G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximationof eigenfunction,” PhD dissertation, 2016.
- G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,”
*ADVANCES IN COMPUTATIONAL MATHEMATICS*, vol. 42, no. 4, pp. 973–993, 2016. - V. Schleper, “A HLL-type Riemann solver for two-phase flow with surface forces and phase transitions,”
*APPLIED NUMERICAL MATHEMATICS*, vol. 108, pp. 256–270, 2016. - A. Schmidt and B. Haasdonk, “Reduced basis method for H2 optimal feedback control problems,” in
*IFAC-PapersOnLine*, Bertinoro, Italy, 2016, no. 49, 8, pp. 327–332. - V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary effects,”
*ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK*, vol. 67, no. 4, 2016. - A. Stein, “Exakte Simulation von Optionspreisen und Sensitivitäten unter stochastischer Volatilität,” PhD dissertation, 2016.

### 2015

- D. Amsallem, C. Farhat, and B. Haasdonk, “Special Issue on Model Reduction,”
*INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING*, vol. 102, no. 5, SI, pp. 931–932, 2015. - D. Amsallem, C. Farhat, and B. Haasdonk, “Editorial: Special issue on modelling reduction,” vol. 102, no. 5, pp. 931–932, 2015.
- A. Bhatt, D. Floyd, and B. E. Moore, “Second order conformal symplectic integrators for damped Hamiltonian systems.” SciCADE, Universität Potsdam, 2015.
- O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced Basis Methods for Pricing Options with the Black-Scholes and Heston Models,”
*SIAM JOURNAL ON FINANCIAL MATHEMATICS*, vol. 6, no. 1, pp. 685–712, 2015. - S. De Marchi and G. Santin, “Fast computation of orthonormal basis for RBF spaces through Krylov space methods,” vol. 55, no. 4, pp. 949–966, 2015.
- M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,”
*COMPUTATIONAL OPTIMIZATION AND APPLICATIONS*, vol. 60, no. 3, pp. 753–787, 2015. - J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” PhD dissertation, Stuttgart, 2015.
- J. Giesselmann and T. Pryer, “ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL,”
*ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE*, vol. 49, no. 1, pp. 275–301, 2015. - J. Giesselmann, “Low Mach asymptotic-preserving scheme for the Euler-Korteweg model,”
*IMA JOURNAL OF NUMERICAL ANALYSIS*, vol. 35, no. 2, pp. 802–833, 2015. - J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence of a non-local to a local model,” vol. 258, no. 10, pp. 3589–3606, 2015.
- J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems of hyperbolic conservation laws,” vol. 53, no. 3, pp. 1280–1303, 2015.
- T. Grosan, M. Kohr, and W. L. Wendland, “Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman system in Lipschitz domains,” vol. 38, no. 17, pp. 3615–3628, 2015.
- M. Gugat, M. Herty, and V. Schleper, “flow control in gas networks: exact controllability to a given demand (vol 34, pg 745, 2011),”
*MATHEMATICAL METHODS IN THE APPLIED SCIENCES*, vol. 38, no. 5, pp. 1001–1004, 2015. - D. Göddeke, M. Altenbernd, and D. Ribbrock, “Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing,”
*PARALLEL COMPUTING*, vol. 49, pp. 117–135, 2015. - M. Hintermüller and A. Langer, “Non-overlapping domain decomposition methods for dual total variation based image denoising,” vol. 62, no. 2, pp. 456–481, 2015.
- S. Kaulmann, B. Flemisch, B. Haasdonk, K. A. Lie, and M. Ohlberger, “The localized reduced basis multiscale method for two-phase flows in porous media,”
*INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING*, vol. 102, no. 5, SI, pp. 1018–1040, 2015. - F. Kissling and C. Rohde, “THE COMPUTATION OF NONCLASSICAL SHOCK WAVES IN POROUS MEDIA WITH A HETEROGENEOUS MULTISCALE METHOD: THE MULTIDIMENSIONAL CASE,”
*MULTISCALE MODELING & SIMULATION*, vol. 13, no. 4, pp. 1507–1541, 2015. - M. Kohr, C. Pintea, and W. L. Wendland, “Poisson-Transmission Problems for -Perturbations of the Stokes System on Lipschitz Domains in Compact Riemannian Manifolds,”
*JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS*, vol. 27, no. 3–4, pp. 823–839, 2015. - M. Kohr, M. L. de Cristoforis, and W. L. Wendland, “Poisson problems for semilinear Brinkman systems on Lipschitz domains in R-n,”
*ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK*, vol. 66, no. 3, pp. 833–864, 2015. - I. Kroeker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain and nonlinear two-phase flow problems,”
*COMPUTATIONAL GEOSCIENCES*, vol. 19, no. 2, pp. 269–284, 2015. - I. Martini and B. Haasdonk, “Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method,” in
*Numerical Mathematics and Advanced Applications - ENUMATH 2013*, Lausanne, 2015, no. 103, pp. 437–445. - I. Martini, G. Rozza, and B. Haasdonk, “Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system,”
*ADVANCES IN COMPUTATIONAL MATHEMATICS*, vol. 41, no. 5, SI, pp. 1131–1157, 2015. - S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems on doubly connected domains,”
*IMA JOURNAL OF NUMERICAL ANALYSIS*, vol. 35, no. 2, pp. 834–858, 2015. - S. Micula and W. L. Wendland, “Trigonometric collocation for nonlinear Riemann-Hilbert problems in doubly connected domains,” vol. 35, no. 2, pp. 834–858, 2015.
- S. Müthing, D. Ribbrock, and D. Göddeke, “Integrating multi-threading and accelerators into DUNE-ISTL,” in
*Numerical Mathematics and Advanced Applications - ENUMATH 2013*, Lausanne, 2015, no. 103, pp. 601–609. - J. Neusser, C. Rohde, and V. Schleper, “Relaxation of the Navier-Stokes-Korteweg equations for compressible two-phase flow with phase transition,”
*INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS*, vol. 79, no. 12, pp. 615–639, 2015. - J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase flow with phase transition,” vol. 79, no. 12, pp. 615–639, 2015.
- G. S. Oztepe, S. R. Choudhury, and A. Bhatt, “Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol Oscillators with Time-Delayed Displacement and Velocity Feedback: Hopf Bifurcations and Amplitude Death,” vol. 26, no. 1, pp. 31–59, 2015.
- M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for crystal growth,”
*ADVANCES IN COMPUTATIONAL MATHEMATICS*, vol. 41, no. 5, SI, pp. 987–1013, 2015. - C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension,”
*APPLIED NUMERICAL MATHEMATICS*, vol. 95, no. SI, pp. 267–279, 2015. - I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,”
*COMPUTATIONAL GEOSCIENCES*, vol. 19, no. 2, pp. 299–309, 2015. - I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,”
*JOURNAL OF HYDROLOGY*, vol. 521, pp. 565–581, 2015. - V. Schleper, “A HYBRID MODEL FOR TRAFFIC FLOW AND CROWD DYNAMICS WITH RANDOM INDIVIDUAL PROPERTIES,”
*MATHEMATICAL BIOSCIENCES AND ENGINEERING*, vol. 12, no. 2, pp. 393–413, 2015. - A. Schmidt, M. Dihlmann, and B. Haasdonk, “Basis generation approaches for a reduced basis linear quadratic regulator,” in
*8th Vienna International Conference on Mathematical Modelling (MATHMOD 2015)*, Vienna, Austria, 2015, no. 48, 1, pp. 713–718. - S. Turek and D. Göddeke, “Hardware-Oriented Numerics for PDE,” in
*Encyclopedia of Applied and Computational Mathematics*, B. Engquist, Ed. Berlin: Springer, 2015, pp. 627–630. - D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate modeling of multiscale models using kernel methods,”
*INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING*, vol. 101, no. 1, pp. 1–28, 2015. - D. Wirtz, N. Karajan, and B. Haasdonk, “Surrogate Modelling of multiscale models using kernel methods,”
*International Journal of Numerical Methods in Engineering*, vol. 101, no. 1, pp. 1–28, 2015.

### 2014

- G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible difuse interface model with phase transition,” vol. 24, no. 5, pp. 827–861, 2014.
- A. Armiti-Juber and C. Rohde, “Almost parallel flows in porous media,” in
*Finite volumes for complex applications VII - elliptic, parabolic and hyperbolic problems*, Berlin, 2014, no. 78, pp. 873–881. - A. Barth and S. Moreno-Bromberg, “Optimal risk and liquidity management with costly refinancing opportunities,” vol. 57, pp. 31–45, 2014.
- A. Barth and F. E. Benth, “The forward dynamics in energy markets - infinite-dimensional modelling and simulation,” vol. 86, no. 6, pp. 932–966, 2014.
- P. Bastian
*et al.*, “EXA-DUNE: Flexible PDE solvers, numerical methods and applications,” in*Lecture notes in computer science*, Porto, 2014, vol. 2, no. 8806, pp. 530–541. - O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth, “Reduced basis methods for pricing options with the Black-Scholes and Heston model,” pp. 1–25, 2014.
- R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quanitification applied to a conservation law modelling a clarifier-thickener unit,” vol. 94, no. 10, pp. 793–817, 2014.
- C. Chalons, P. Engel, and C. Rohde, “A conservative and convergent scheme for undercompressive shock waves,” vol. 52, no. 1, pp. 554–579, 2014.
- A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-disperse equations,” vol. 414, no. 2, pp. 773–798, 2014.
- W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” vol. 273/274, pp. 1–13, 2014.
- W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” pp. 1–34, 2014.
- W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” vol. 94, no. 7/8, p. 559, 2014.
- R. Eymard and V. Schleper, “Study of a numerical scheme for miscible two-phase flow in porous media,” vol. 30, no. 3, pp. 723–748, 2014.
- S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” in
*26th European Conference Liquid Atomization and Spray Systems*, Bremen, 2014, pp. 335–345. - J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds.,
*Finite volumes for complex applications VII - elliptic, parabolic and hyperbolic problems : FVCA 7, Berlin, June 2014*, no. 78. Springer International Publishing, 2014. - H. Garikapati, “A PGD based preconditioner for scalar elliptic problems,” PhD dissertation, 2014.
- F. D. Gaspoz and P. Morin, “Approximation classes for adaptive higher order finite element approximation,” vol. 83, no. 289, pp. 2127–2160, 2014.
- J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem of Dynamic Cavitation,” vol. 212, no. 1, pp. 241–281, 2014.
- J. Giesselmann, “Relative Entropy Approach to Convergence of a Low Order Approximation to a Nonlinear Elasticity Model with Viscosity and Capillarity,” vol. 46, no. 5, pp. 3518–3539, 2014.
- J. Giesselmann and T. Müller, “Geometric error of finite volume schemes for conservation laws on evolving surfaces,” vol. 128, no. 3, pp. 489–516, 2014.
- J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system,” vol. 83, no. 289, pp. 2071–2099, 2014.
- J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in
*Hyperbolic problems*, Padova, 2014, no. 8, pp. 599–606. - J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation Laws on Surfaces for Generic Numerical Flux Functions,” in
*Finite volumes for complex applications VII*, Berlin, 2014, no. 77, pp. 323–331. - J. Giesselmann and T. Pryer, “On Aposteriori Error Analysis of DG Schemes Approximating Hyperbolic Conservation Laws,” in
*Finite volumes for complex applications VII*, Berlin, 2014, no. 77, pp. 313–321. - D. Göddeke, D. Komatitsch, and M. Möller, “Finite and spectral element methods on unstructured grids for flow and wave propagation problems,” in
*Numerical computations with GPUs*, V. Kindratenko, Ed. Cham: Springer, 2014, pp. 183–206. - B. Haasdonk and M. Ohlberger, “Wenn die Probleme zahlreicher werden: Reduzierte Methoden für effiziente und gesicherte numerische Simulation,” vol. 2014, no. 1, pp. 6–13, 2014.
- H. Harbrecht, W. L. Wendland, and N. Zorii, “Riesz minimal energy problems on Ck-1,1 manifolds,” vol. 287, no. 1, pp. 48–69, 2014.
- M. Hintermüller and A. Langer,
*Adaptive Regularization for Parseval Frames in Image Processing*, vol. 2014–014, no. 2014–014. Graz, 2014. - M. Hintermüller and A. Langer, “Surrogate Functional Based Subspace Correction Methods for Image Processing,” in
*Domain decomposition methods in science and engineering XXI*, Rennes, 2014, vol. 98, no. 98, pp. 829–837. - B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the stability of liquid–vapor interfaces,” vol. 107, pp. 63–75, 2014.
- S. Kaulmann, B. Flemisch, B. Haasdonk, K.-A. Lie, and M. Ohlberger, “The Localized Reduced Basis Multiscale method for two-phase flows in porous media,” pp. 1–30, 2014.
- L. Kazaz, “Black box model order reduction of nonlinear systems with kernel and discrete empirical interpolation,” Universität Stuttgart, Stuttgart, 2014.
- F. Kissling and K. H. Karlsen, “On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure,” vol. 94, no. 7–8, pp. 678–689, 2014.
- K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Analysis of Optimal Control Problems with Control Constraints,” vol. 52, no. 3, pp. 1832–1861, 2014.
- M. Kohr, C. Pintea, and W. L. Wendland, “Neumann-transmission problems for pseudodifferential Brinkman operators on Lipschitz domains in compact Riemannian manifolds,” vol. 13, no. 1, pp. 172–202, 2014.
- M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains,” vol. 16, no. 3, pp. 595–630, 2014.
- M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary conditions in Lipschitz domains,” in
*Complex Analysis and Potential Theory with Applications*, Kraków, 2014, pp. 111–124. - M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in
*Finite volumes for complex applications VII*, Berlin, 2014, no. 77, pp. 353–361. - I. Maier and B. Haasdonk, “A Dirichlet–Neumann reduced basis method for homogeneous domain decomposition problems,” vol. 78, pp. 31–48, 2014.
- S. Müthing, P. Bastian, D. Göddeke, and D. Ribbrock, “Node-level performance engineering for an advanced density driven porous media flow solver,” in
*3rd Workshop on Computational Engineering 2014*, Stuttgart, 2014, pp. 109–113. - M. Redeker, “Adaptive two-scale models for processes with evolution of microstructures,” Universität Stuttgart, Stuttgart, 2014.
- I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface and transition region concepts,” in
*Finite volumes for complex applications VII*, Berlin, 2014, no. 78, pp. 703–711. - I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium systems,” vol. 272, pp. 327–342, 2014.
- M. Stähle, “Anisotrope Diffusion zur Bildfilterung,” PhD dissertation, Stuttgart, 2014.
- D. Wirtz, D. C. Sorensen, and B. Haasdonk, “A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems,” vol. 36, no. 2, pp. A311–A338, 2014.
- D. Wittwar, “Empirische Interpolation und Anwendung zur Numerischen Integration,” PhD dissertation, Stuttgart, 2014.

### 2013

- A. Abdulle, A. Barth, and C. Schwab, “Multilevel Monte Carlo methods for stochastic elliptic multiscale PDEs,” vol. 11, no. 4, pp. 1033–1070, 2013.
- D. Amsallem, B. Haasdonk, and G. Rozza, “A conference within a Conference for MOR Researchers,” vol. 46, no. 6, p. 8+6, 2013.
- A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial differential equations,” vol. 53, no. 1, pp. 3–27, 2013.
- A. Barth and A. Lang, “LP and almost sure convergence of a Milstein scheme for stochastic partial differential equations,” vol. 123, no. 5, pp. 1563–1587, 2013.
- T. Bissinger, “Verfahren zur stabilen Kerninterpolation,” Universität Stuttgart, Stuttgart, 2013.
- S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” vol. 253, pp. 1–13, 2013.
- M. A. Dihlmann and B. Haasdonk, “Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems,” Universität Stuttgart, Stuttgart, 2013.
- M. A. Dihlmann and B. Haasdonk, “Certified nonlinear parameter optimization with reduced basis surrogate models,” vol. 13, no. 1, pp. 3–6, 2013.
- C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity : an iterative procedure,” vol. 93, no. 10/11, pp. 745–761, 2013.
- K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid scale,” in
*ILASS 2013*, Chania, 2013, pp. 39–46. - P. Engel, A. Viorel, and C. Rohde, “A low-order approximation for viscous-capillary phase transition dynamics,” vol. 70, no. 4, pp. 319–344, 2013.
- J. Fehr, M. Fischer, B. Haasdonk, and P. Eberhard, “Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics,” vol. 93, no. 8, pp. 501–519, 2013.
- D. Fericean, T. Grosan, M. Kohr, and W. L. Wendland, “Interface boundary value problems of Robin-transmission type for the Stokes and Brinkman systems on n-dimensional Lipschitz domains : applications,” vol. 36, no. 12, pp. 1631–1648, 2013.
- D. Fericean and W. L. Wendland, “Layer potential analysis for a Dirichlet-transmission problem in Lipschitz domains in Rn,” vol. 93, no. 10–11, pp. 762–776, 2013.
- M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs : Unstructured grid finite element geometric multigrid solvers with strong smoothers based on sparse approximate inverses,” vol. 80, pp. 327–332, 2013.
- J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in
*Proceedings in applied mathematics and mechanics*, Novi Sad, 2013, no. 13,1, pp. 363–364. - J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in
*Séminaire Laurent Schwartz — EDP et applications*, 2013, no. 2012/2013,14, pp. 1–17. - D. Göddeke
*et al.*, “Energy efficiency vs. performance of the numerical solution of PDEs : an application study on a low-power ARM-based cluster,” vol. 237, pp. 132–150, 2013. - B. Haasdonk, K. Urban, and B. Wieland, “Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion,” vol. 1, no. 1, pp. 79–105, 2013.
- B. Haasdonk, “Convergence Rates of the POD–Greedy Method,” vol. 47, no. 3, pp. 859–873, 2013.
- C.-J. Heine, C. A. Möller, M. A. Peter, and K. G. Siebert, “Multiscale Adaptive Simulations of Concrete Carbonation Taking into Account the Evolution of the Microstructure,” in
*Poromechanics V*, Wien, 2013, pp. 1964–1972. - M. Hintermüller and A. Langer, “Subspace correction methods for a class of nonsmooth and nonadditive convex variational problems with mixed L1/L2 data-fidelity in image processing,” vol. 6, no. 4, pp. 2134–2173, 2013.
- S. Kaulmann and B. Haasdonk, “Online Greedy Reduced Basis Construction Using Dictionaries,” in
*Adaptive modeling and simulation 2013*, Lisbon, 2013, pp. 97–98. - F. Kissling, “Analysis and Numerics for Nonclassical Wave Fronts in Porous Media,” Dr. Hut, München, 2013.
- M. Kohr, M. Lanza de Cristoforis, and W. L. Wendland, “Nonlinear Neumann–Transmission Problems for Stokes and Brinkman Equations on Euclidean Lipschitz Domains,” vol. 38, pp. 1123–1171, 2013.
- M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for pseudodifferential Brinkman operators on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian manifolds,” vol. 93, no. 6–7, pp. 446–458, 2013.
- M. Kohr, C. Pintea, and W. L. Wendland, “Layer Potential Analysis for Pseudodifferential Matrix Operators in Lipschitz Domains on Compact Riemannian Manifolds: Applications to Pseudodifferential Brinkman Operators,” vol. 19, pp. 4499–4588, 2013.
- I. Kröker, “Stochastic models for nonlinear convection-dominated flows,” Verl. Dr. Hut, München, 2013.
- M. Köppel, “Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with a Two Mesh Concept,” PhD dissertation, 2013.
- A. Langer, S. Osher, and C.-B. Schönlieb, “Bregmanized Domain Decomposition for Image Restoration,” vol. 54, no. 2–3, pp. 549–576, 2013.
- S. Moutari, M. Herty, A. Klein, M. Oeser, B. Steinauer, and V. Schleper, “Modelling road traffic accidents using macroscopic second-order models of traffic flow,” vol. 78, no. 5, pp. 1087–1108, 2013.
- F. Nitsch, “Stability Analysis of Linear Time-periodic Systems,” PhD dissertation, 2013.
- V. Ortmann, “Empirische Matrixinterpolation,” PhD dissertation, 2013.
- L. Ostrowski, “LQR control for Parametric Systems with Reduced Basis Controllers,” PhD dissertation, 2013.
- M. Redeker and C. Eck, “A fast and accurate adaptive solution strategy for two-scale models with continuous inter-scale dependencies,” vol. 240, pp. 268–283, 2013.
- C. Rohde, W. Wang, and F. Xie, “Decay rates to viscous contact waves for a 1D compressible radiation hydrodynamics model,” vol. 23, no. 3, pp. 441–469, 2013.
- C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation hydrodynamics model: superposition of rarefaction and contact waves,” vol. 12, no. 5, pp. 2145–2171, 2013.
- A. Sachs, “Proper-Generalized-Decomposition-Methode für elliptische partielle Differentialgleichungen,” PhD dissertation, 2013.
- A. Schmidt, “Galerkin-Radiosity,” PhD dissertation, 2013.
- A. Simon, “Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen Residuums im Zusammenhang mit der Reduzierte-Basis-Methode,” PhD dissertation, 2013.
- D. Simon, “Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen,” PhD dissertation, 2013.
- A. Stein, “Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten,” PhD dissertation, 2013.
- T. Strecker, “Simulation and Model Reduction of a Skeletal Muscle Fibre System,” PhD dissertation, 2013.
- D. Wirtz and B. Haasdonk, “A Vectorial Kernel Orthogonal Greedy Algorithm,” vol. 6, pp. 83–100, 2013.
- D. Wirtz and B. Haasdonk, “A-posteriori error estimation for parameterized kernel-based systems,” presented at the 7th Vienna International Conference on Mathematical Modelling, MATHMOD 2012, Vienna, 2013, vol. 2, pp. 763–768.
- D. Wirtz, D. C. Sorensen, and B. Haasdonk,
*A-posteriori error estimation for DEIM reduced nonlinear dynamical systems*. Stuttgart: SimTech - Cluster of Excellence, 2013. - J.-P. Wolf and M. Ganser, “Modelling and Simulation of Lithium-Ion Batteries,” PhD dissertation, 2013.
- B. Yannou, F. Cluzel, and M. Dihlmann, “Evolutionary and interactive sketching tool for innovative car shape design,” vol. 14, pp. 1–22, 2013.

### 2012

- G. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp interface limits and numerics,” in
*European series in applied and industrial mathematics*, Marseille, France, 2012, no. 38, pp. 54–77. - F. Albrecht, B. Haasdonk, S. Kaulmann, and M. Ohlberger, “The Localized Reduced Basis Multiscale Method,” in
*Algoritmy 2012*, Vysoké Tatry, Slovakia, 2012, pp. 393–403. - E. Audusse
*et al.*, “Sediment transport modelling: Relaxation schemes for Saint-Venant - Exner and three layer models,” in*European series in applied and industrial mathematics*, Marseille, France, 2012, no. 38, pp. 78–98. - A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite element methods,” vol. 84, no. 2–3, pp. 217–231, 2012.
- A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by multiplicative noncontinuous martingale noises,” vol. 66, no. 3, pp. 387–413, 2012.
- A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic partial differential equations,” vol. 89, no. 18, pp. 2479–2498, 2012.
- J. Bernlöhr, “Online Reduzierte Basis Generierung für Parameterabhängige Elliptische Partielle Differentialgleichungen.” Universität Stuttgart, 2012.
- S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and stable Discontinuous Galerkin methods for convection-diffusion problems,” vol. 34, no. 1, pp. 263–282, 2012.
- S. Brdar, M. Baldauf, A. Dedner, and R. Klöfkorn, “Comparison of dynamical cores for NWP models: comparison of COSMO and Dune,” vol. 27, no. 3/4, pp. 1–20, 2012.
- S. Brdar, A. Dedner, and R. Klöfkorn, “CDG Method for Navier-Stokes Equations,” in
*Hyperbolic problems*, Beijing, China, 2012, no. 17, pp. 320–327. - C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition Problems,”
*SIAM Journal on Scientific Computing*, vol. 34, no. 3, pp. A1753–A1776, 2012. - F. Cluzel, B. Yannou, and M. Dihlmann, “Using Evolutionary Design to Interactively Sketch Car Silhouettes and Stimulate Designer’s Creativity,” vol. 25, no. 7, pp. 1413–1424, 2012.
- R. M. Colombo and V. Schleper, “Two-phase flows: non-smooth well posedness and the compressible to incompressible limit,” vol. 13, no. 5, pp. 2195–2213, 2012.
- F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds.,
*CEMRACS’11, Multiscale Coupling of Complex Models in Scientific Computing*, no. 38. ESAIM Proceedings, 2012. - A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” vol. 253, no. 5, pp. 1399–1421, 2012.
- A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “Dune-Fem: A General Purpose Discretization Toolbox for Parallel and Adaptive Scientific Computing,” in
*Advances in DUNE*, Berlin, 2012, pp. 17–31. - A. Dedner, B. Flemisch, and R. Klöfkorn, Eds.,
*Advances in DUNE : proceedings of the DUNE User Meeting, held in October 6th-8th 2010 in Stuttgart, Germany*. Springer, 2012. - M. Dihlmann, S. Kaulmann, and B. Haasdonk, “Online Reduced Basis Construction Procedure for Model Reduction of Parametrized Evolution Systems,” in
*IFAC-PapersOnLine*, Wien, 2012, no. 45, 2, pp. 112–117. - W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” vol. 14, pp. 105–143, 2012.
- M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous Media,” in
*IFAC-PapersOnLine*, Wien, 2012, no. 45, 2. - M. Drohmann, B. Haasdonk, and M. Ohlberger, “A Software Framework for Reduced Basis Methods Using DUNE-RB and RBMATLAB,” in
*Advances in DUNE*, Stuttgart, 2012, pp. 7–88. - M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation,” vol. 34, no. 2, pp. A937–A969, 2012.
- P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in
*Series in contemporary applied mathematics CAM*, Peking, 2012, vol. 2, no. 18, pp. 406–414. - M. Feistauer and A.-M. Sändig, “Graded mesh refinement and error estimates of higher order for DGFE solutions of elliptic boundary value problems in polygons,” vol. 28, no. 4, pp. 1124–1151, 2012.
- M. Fornasier, Y. Kim, A. Langer, and C.-B. Schönlieb, “Wavelet Decomposition Method for L2-TV-Image Deblurring,” vol. 5, no. 3, pp. 857–885, 2012.
- D. Garmatter, “Reduzierte Basis Methoden für lineare Evolutionsprobleme am Beispiel von European Option Pricing,” PhD dissertation, 2012.
- J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in
*Numerical Methods for Hyperbolic Equations*, Santiago de Compostela, 2012. - J. Giesselmann, “Sharp interface limits for Korteweg Models,” in
*Hyperbolic Problems: Theory, Numerics, Applications*, Peking, 2012, vol. 2, no. 18, pp. 422–430. - M. Gugat, M. Herty, A. Klar, G. Leugering, and V. Schleper, “Well-posedness of networked hyperbolic systems of balance laws,” in
*Constrained optimization and optimal control for partial differential equations*, Basel, 2012, vol. 160, no. 160, pp. 123–146. - B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for Parametrized Variational Inequalities,” vol. 50, no. 5, pp. 2656–2676, 2012.
- H. Harbrecht, W. L. Wendland, and N. Zorii, “On Riesz minimal energy problems,” vol. 393, no. 2, pp. 397–412, 2012.
- S. Hoher, P. Schindler, S. Göttlich, V. Schleper, and S. Röck, “System Dynamic Models and Real-time Simulation of Complex Material Flow Systems,” in
*Enabling Manufacturing Competitiveness and Economic Sustainability*, Montreal, Canada, 2012, pp. 316–321. - A. Häcker, “A mathematical model for mesenchymal and chemosensitive cell dynamics,” vol. 64, pp. 361–401, 2012.
- A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models,” vol. 42, pp. 71–90, 2012.
- F. Jägle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface tension,” in
*European series in applied and industrial mathematics. Proceedings and Surveys*, Marseille, France, 2012, no. 38, pp. 387–408. - J. Kelkel and C. Surulescu, “A Multiscale Approach to Cell Migration in Tissue Networks,” vol. 22, no. 3, pp. 1150017, 1–25, 2012.
- F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method,” in
*Hyperbolic Problems: Theory, Numerics and Applications*, Peking, 2012, no. 18, pp. 469–478. - F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone Using a Multi-Scale Approach,” vol. 11, no. 3, p. vzj2011.0193, 2012.
- R. Klöfkorn, “Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods for Compressible Flow Problems,” in
*Proceedings of the ALGORITMY 2012*, Vysoke Tatry, Podbanske, 2012, pp. 11–21. - R. Klöfkorn and M. Nolte, “Performance Pitfalls in the Dune Grid Interface,” in
*Advances in DUNE*, Stuttgart, 2012, pp. 45–58. - K. Kohls, A. Rösch, and K. G. Siebert, “A Posteriori Error Estimators for Control Constrained Optimal Control Problems,” in
*Constrained Optimiziation and Optimal Control for Partial Differential Equations*, 2012, no. 160, pp. 431–443. - M. Kohr, C. Pintea, and W. L. Wendland, “Potential analysis for pseudodifferential matrix operators in Lipschitz domains on Riemannian manifolds: Applications to Brinkman operators,”
*Mathematica / Académie Roumaine, Filiale de Cluj-Napoca*, vol. 77, no. 2, pp. 159–176, 2012. - M. Kohr, G. P. Raja Sekhar, E. M. Ului, and W. L. Wendland, “Two-dimensional Stokes-Brinkman cell model - a boundary integral formulation,” vol. 91, no. 2, pp. 251–275, 2012.
- C. Kreuzer, C. A. Möller, A. Schmidt, and K. G. Siebert, “Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation,” vol. 32, no. 4, pp. 1375–1403, 2012.
- I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative noise,” vol. 62, no. 4, pp. 441–456, 2012.
- U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, Eds.,
*Fast boundary element methods in engineering and industrial applications*, no. 63. Berlin: Springer, 2012, p. 269. - T. Richter
*et al.*, “ViPLab: a virtual programming laboratory for mathematics and engineering,” vol. 9, pp. 246–262, 2012. - C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics model problem,” vol. 35, no. 5, pp. 564–573, 2012.
- T. Ruiner, J. Fehr, B. Haasdonk, and P. Eberhard, “A-posteriori error estimation for second order mechanical systems,” vol. 28, no. 3, pp. 854–862, 2012.
- V. Schleper, “On the coupling of compressible and incompressible fluids,” in
*Numerical Methods for Hyperbolic Equations*, Santiago de Compostela, 2012. - K. G. Siebert, “Mathematically Founded Design of Adaptive Finite Element Software,” in
*Multiscale and Adaptivity*, Cetraro, 2012, vol. 2040, no. 2040, pp. 227–309. - P. Steinhorst and A.-M. Sändig, “Reciprocity principle for the detection of planar cracks in anisotropic elastic material,” vol. 28, no. 8, pp. 085010, 1–24, 2012.
- S. Waldherr and B. Haasdonk, “Efficient Parametric Analysis of the Chemical Master Equation through Model Order Reduction,” vol. 6, p. 81, 2012.
- C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions of death receptor signalling,” vol. 9, no. 3, pp. 663–683, 2012.
- D. Wirtz, N. Karajan, and B. Haasdonk,
*Model order reduction of multiscale models using kernel methods*. Stuttgart: SimTech - Cluster of Excellence, 2012. - D. Wirtz and B. Haasdonk, “Efficient a-posteriori error estimation for nonlinear kernel-based reduced systems,” vol. 61, no. 1, pp. 203–211, 2012.

### 2011

- A. Barth, C. Schwab, and N. Zollinger, “Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients,”
*Numer. Math.*, vol. 119, no. 1, pp. 123--161, 2011. - A. Barth, F. E. Benth, and J. Potthoff, “Hedging of spatial temperature risk with market-traded futures,”
*Appl. Math. Finance*, vol. 18, no. 2, pp. 93--117, 2011. - S. Brdar, A. Dedner, and R. Klöfkorn, “Compact and Stable Discontinuous Galerkin Methods with Application to Atmospheric Flows,” in
*Computational Methods in Science and Engineering: Proceedings of the Workshop SimLabs@KIT*, I. K. et al., Ed. KIT Scientific Publishing, 2011, pp. 109–116. - S. Brdar, A. Dedner, R. Klöfkorn, M. Kränkel, and D. Kröner, “Simulation of Geophysical Problems with DUNE-FEM,” in
*Computational Science and High Performance Computing IV*, vol. 115, E. K. et al., Ed. Springer, 2011, pp. 93–106. - R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random feed,” in
*Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2*, vol. 4, Springer, 2011, pp. 195--203. - A. Dedner
*et al.*, “On the computation of slow manifolds in chemical kinetics via optimization and their use as reduced models in reactive flow systems.,” 2011. - A. Dedner and R. Klöfkorn, “A Generic Stabilization Approach for Higher Order Discontinuous Galerkin Methods for Convection Dominated Problems,”
*J. Sci. Comput.*, vol. 47, no. 3, pp. 365–388, 2011. - M. Dihlmann, M. Drohmann, and B. Haasdonk, “Model Reduction of Parametrized Evolution Problems using the Reduced basis Method with Adaptive Time-Partitioning,” in
*Proc. of ADMOS 2011*, 2011. - M. Drohmann, B. Haasdonk, and M. Ohlberger, “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations,” in
*In Proc. FVCA6*, 2011. - C. Eck and M. Kutter, “On the solvability of a two scale model for liquid phase epitaxy with elasticity,” Bericht 2011/001 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2011.
- R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn, and G. Manzini, “3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids,” in
*Finite Volumes for Complex Applications VI Problems & Perspectives*, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 895–930. - M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Towards a complete FEM-based simulation toolkit on GPUs: Geometric multigrid solvers,” in
*23rd International Conference on Parallel Computational Fluid Dynamics (ParCFD’11)*, 2011. - M. Geveler, D. Ribbrock, S. Mallach, D. Göddeke, and S. Turek, “A Simulation Suite for Lattice-Boltzmann based Real-Time CFD Applications Exploiting Multi-Level Parallelism on modern Multi- and Many-Core Architectures,”
*Journal of Computational Science*, vol. 2, pp. 113--123, 2011. - M. Geveler, D. Ribbrock, D. Göddeke, P. Zajac, and S. Turek, “Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs,” in
*Second International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering*, 2011. - J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential Equations,” PhD dissertation, Universität Stuttgart, 2011.
- D. Goöddeke and R. Strzodka, “Mixed Precision GPU-Multigrid Solvers with Strong Smoothers,” in
*Scientific Computing with Multicore and Accelerators*, J. Kurzak, D. A. Bader, and J. J. Dongarra, Eds. Boca Raton, Fla.: CRC Press, 2011, pp. 131–147. - M. Gugat, M. Herty, and V. Schleper, “Flow control in gas networks: exact controllability to a given demand,”
*Math. Methods Appl. Sci.*, vol. 34, no. 7, pp. 745--757, 2011. - D. Göddeke and R. Strzodka, “Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision Multigrid,”
*IEEE Transactions on Parallel and Distributed Systems*, vol. 22, no. 1, pp. 22--32, 2011. - B. Haasdonk, M. Dihlmann, and M. Ohlberger, “A Training Set and Multiple Basis Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space,”
*Mathematical and Computer Modelling of Dynamical Systems*, vol. 17, pp. 423--442, 2011. - B. Haasdonk, “Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011,” University of Stuttgart, 2011–004, 2011.
- B. Haasdonk and B. Lohmann, “Special Issue on ‘“Model Order Reduction of Parametrized Problems,”’”
*Mathematical and Computer Modelling of Dynamical Systems*, vol. 17, no. 4, pp. 295--296, 2011. - B. Haasdonk, J. Salomon, and B. Wohlmuth, “A Reduced Basis Method for the Simulation of American Options,” in
*Numerical Mathematics and Advanced Applications 2011*, Leicester, 2011, pp. 821–829. - B. Haasdonk and M. Ohlberger, “Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition,”
*Math. Comput. Model. Dyn. Syst.*, vol. 17, no. 2, pp. 145--161, 2011. - A. A. Hemmat, A. Rivaz, and H. Minbashian, “Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction FIR Filters,” in
*Proceedings of the 19th Seminar on Mathematical Analysis and Its Applications*, Mazandaran University, Babolsar, Iran, 2011. - M. Herty and V. Schleper, “Traffic flow with unobservant drivers,”
*ZAMM Z. Angew. Math. Mech.*, vol. 91, no. 10, pp. 763--776, 2011. - M. Herty and V. Schleper, “Time discretizations for numerical optimisation of hyperbolic problems,”
*Appl. Math. Comput.*, vol. 218, no. 1, pp. 183--194, 2011. - N. Jung, A. T. Patera, B. Haasdonk, and B. Lohmann, “Model Order Reduction and Error Estimation with an Application to the Parameter-Dependent Eddy Current Equation,”
*Mathematical and Computer Modelling of Dynamical Systems*, vol. 17, no. 4, pp. 561--582, 2011. - B. Kabil, “On the asymptotics of solutions to resonator equations,”
*Hyperbolic Problems: Theory, Numerics, Applications*, vol. 8, pp. 373–380, 2011. - S. Kaulmann, M. Ohlberger, and B. Haasdonk, “A new local reduced basis discontinuous Galerkin approach for heterogeneous multiscale problems,”
*Comptes Rendus Mathematique*, vol. 349, no. 23–24, pp. 1233--1238, 2011. - S. Kaulmann, “A Localized Reduced Basis Approach for Heterogenous Multiscale Problems,” Westfälische Wilhelms Universität Münster, Einsteinstrasse 62, 48149 Münster, 2011.
- J. Kelkel and C. Surulescu, “On a stochastic reaction--diffusion system modeling pattern formation on seashells,”
*Mathematical Biosciences and Engineering*, vol. 8, no. 2, pp. 575--589, 2011. - J. Kelkel, “A Multiscale Approach to Cell Migration in Tissue Networks,” PhD dissertation, Universität Stuttgart, 2011.
- R. Klöfkorn, “Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme,” in
*Finite Volumes for Complex Applications VI Problems & Perspectives*, vol. 4, J. Fort, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Eds. Springer Berlin Heidelberg, 2011, pp. 1023–1033. - M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds,”
*Discrete Contin. Dyn. Syst. Ser. B*, vol. 15, no. 4, pp. 999--1018, 2011. - C. Kreuzer and K. G. Siebert, “Decay Rates of Adaptive Finite Elements with Dörfler Marking,”
*Numerische Mathematik*, vol. 117, no. 4, pp. 679–716, 2011. - M. Kutter and A.-M. Sändig, “Modeling of ferroelectric hysteresis as variational inequality,”
*GAMM-Mitteilungen*, vol. 34, no. 1, pp. 84--89, 2011. - A. Lalegname and A. Sändig, “Wave-crack interaction in finite elastic bodies,”
*International Journal of Fracture*, vol. 172, no. 2, pp. 131--149, 2011. - A. Lalegname and A.-M. Sändig, “Wave-crack interaction in ﬁnite elastic bodies,” Bericht 2011/002 des Instituts für Angewandte Analysis und Numerische Simulation der Universität Stuttgart, 2011.
- Maier, “Ein iteratives Gebietszerlegungsverfahren für die Reduzierte-Basis-Methode,” 2011.
- T. A. Mel’nyk, I. A. Nakvasiuk, and W. L. Wendland, “Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem,”
*Math. Methods Appl. Sci.*, vol. 34, no. 7, pp. 758--775, 2011. - K. Mosthaf
*et al.*, “A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow,”*Water Resour. Res.*, vol. 47, p. W10522, 2011. - T. Richter
*et al.*, “ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering,” in*Proceedings of the 2011 IEEE International Symposium on Multimedia*, Washington, DC, USA, 2011, pp. 537--542. - T. Ruiner, “A-posteriori Fehlerschätzer für Reduzierte Mechanische Systeme zweiter Ordnung,” 2011.
- A. Rössle and A.-M. Sändig, “Corner Singularities and Regularity Results for the Reissner/Mindlin Plate Model,”
*Journal of Elasticity*, vol. 103, no. 2, pp. 113--135, 2011. - G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,”
*Applied Mathematics and Computation*, vol. 217, no. 24, pp. 10003--10015, 2011. - D. Schuster, “SVD-basierte Modellreduktion für Elastische Mehrkörpersysteme,” 2011.
- K. G. Siebert, “A Convergence Proof for Adaptive Finite Elements without Lower Bound,”
*IMA Journal of Numerical Analysis*, vol. 31, no. 3, pp. 947–970, 2011. - S. Turek, D. Göddeke, S. H. M. Buijssen, and H. Wobker, “Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated Clusters,” in
*Scientific Computing with Multicore and Accelerators*, J. Kurzak, D. A. Bader, and J. Dongarra, Eds. Boca Raton, Fla.: CRC Press, 2011, pp. 113–130. - W. L. Wendland, “Boundary element domain decomposition with Trefftz elements and Levi fuctions,” in
*19th Intern. Conf. on Computer Methods in Mechanics*, Warsaw, 2011. - C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, “A minimal mathematical model for the initial molecular interactions of death receptor signalling,” SRC SimTech, 2011.
- O. Zeeb, “Reduzierte Basis Modelle für Formoptimierung unter Verwendung des SQP-Algorithmus,” 2011.

### 2010

- A. Barth, “A finite element method for martingale-driven stochastic partial differential equations,” vol. 4, no. 3, pp. 355–375, 2010.
- K. Deckelnick, G. Dziuk, C. M. Elliott, and C.-J. Heine, “An h-narrow band finite-element method for elliptic equations on implicit surfaces,” vol. 30, no. 2, pp. 351–376, 2010.
- A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, “A Generic Interface for Parallel and Adaptive Scientific Computing: Abstraction Principles and the DUNE-FEM Module,” vol. 90, no. 3/4, pp. 165–196, 2010.
- A. Dedner, R. Klöfkorn, and D. Kröner, “Higher Order Adaptive and Parallel Simulations Including Dynamic Load Balancing with the Software Package DUNE,” in
*High performance computing in science and engineering ’ 09*, Stuttgart, 2010, pp. 229–239. - M. Feistauer and A.-M. Sändig,
*Graded Mesh Reﬁnement and Error Estimates of Higher Order for DGFE-solutions of Elliptic Boundary Value Problems in Polygons*, no. 2010, 005. Stuttgart: Inst. für Angewandte Analysis und Numerische Simulation, 2010. - M. Fornasier, A. Langer, and C.-B. Schönlieb, “A convergent overlapping domain decomposition method for total variation minimization,” vol. 116, no. 4, pp. 645–685, 2010.
- M. Fornasier, A. Langer, and C.-B. Schönlieb, “Domain decomposition methods for compressed sensing,” in
*SAMPTA’09, International Conference on Sampling Theory and Applications*, Marseille, 2010. - M. Geveler, D. Ribbrock, D. Goeddeke, and S. Turek, “Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors,” in
*Lecture Notes in Computer Science*, vol. 1, no. 6310, R. Keller, D. Kramer, and J.-P. Weiss, Eds. Berlin: Springer, 2010, pp. 92–104. - D. Göddeke, “Fast and accurate finite-element multigrid solvers for PDE simulations on GPU clusters,” PhD dissertation, Stuttgart, 2010.
- B. Haasdonk and E. Pękalska, “Classification with Kernel Mahalanobis Distances,” in
*Advances in data analysis, data handling and business intelligence*, Hamburg, 2010. - B. Haasdonk, “Effiziente und Gesicherte Modellreduktion für Parametrisierte Dynamische Systeme,” vol. 58, no. 8, pp. 468–474, 2010.
- B. Haasdonk and M. Ohlberger, “Efficient a-posteriori Error Estimation for Parametrized Reduced Dynamical Systems,” in
*Tagungsband, Workshops in Anif/Salzburg / GMA-Fachausschuss 1.30 “Modellbildung, Identifikation und Simulation in der Automatisierungstechnik,”*Anif/Salzburg, 2010. - A. A. Hemmat, A. Rivaz, and H. Minbashian, “Approximating Functions by Using Daubechies Wavelets and comparison with Other Approximation Methods,” presented at the 4th Iranian Conference on Applied Mathematics, Zahedan/Sistan & Baluchistan, Iran, 2010.
- A. A. Hemmat, A. Rivaz, and H. Minbashian, “Numerical Solution of Linear Fredholm Integral Equations by Using Daubechies Wavelets,” in
*Proceedings of the 23rd International Conference of the Jangjeon Mathematical Society*, Ahvaz, Iran, 2010. - M. Herty, J. Mohring, and V. Sachers, “A new model for gas flow in pipe networks,” vol. 33, no. 7, pp. 845–855, 2010.
- M. Kargar, H. Minbashian, and M. Mashinchi, “Solving Delay Differential Equation with Fuzzy Coefficients,” presented at the 10th Iranian Conference on Fuzzy Systems, Theran, Iran, 2010.
- M. Kargar, H. Minbashian, and M. A. Yaghoobi, “Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification,” presented at the 4th International Conference on Fuzzy Information & Engineering (ICFIE), Amol, Iran, 2010.
- J. Kelkel and C. Surulescu, “On a stochastic reaction–diffusion system modeling pattern formation on seashells,” vol. 60, no. 6, pp. 765–796, 2010.
- F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous Multiscale Method,” vol. 5, no. 3, pp. 661–674, 2010.
- K. Kohls, A. Rösch, and K. G. Siebert, “Analysis of Adaptive Finite Elements for Constrained Optimal Control Problems,” no. 7, 2, pp. 308–311, 2010.
- D. Komatitsch, D. Göddeke, G. Erlebacher, and D. Michéa, “Modeling the propagation of elastic waves using spectral elements on a cluster of 192 GPUs,” presented at the ISC ’10, International Supercomputing Conference, Hamburg, 2010, vol. 25, no. 1/2, pp. 75–82.
- D. Komatitsch, D. Michéa, G. Erlebacher, and D. Göddeke, “Running 3D finite-difference or spectral-element wave propagation codes 25x to 50x faster using a GPU cluster,” presented at the 72nd European Association of Geoscientists and Engineers conference and exhibition, Barcelona, Spain, 2010, vol. 4, pp. 2920–2924.
- D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa, “High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster,” vol. 229, pp. 7692–7714, 2010.
- M. Kutter and A.-M. Sändig,
*Modeling of ferroelectric hysteresis as variational inequality*, no. 2010, 008. Stuttgart: IANS, 2010. - H. Li, “Modellreduktion für Stochastische Modelle Biochemischer Netzwerke,” 2010.
- E. Pekalska and B. Haasdonk, “Indefinite Kernel Discriminant Analysis,” in
*Proceedings of COMPSTAT’ 2010*, Paris, France, 2010. - D. Ribbrock, M. Geveler, D. Göddeke, and S. Turek, “Performance and Accuracy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures,” in
*Procedia computer science*, Amsterdam, 2010, vol. 1, no. 1, pp. 239–247. - C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in
*Nonlinear partial differential equations and hyperbolic wave phenomena*, vol. 526, no. 526, H. Holden and K. H. Karlsen, Eds. Providence, RI: American Mathematical Society, 2010, pp. 315–337. - L. Tobiska and C. Winkel, “The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study,” vol. 7, no. 3, pp. 520–534, 2010.
- S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “FEAST – Realisation of hardware-oriented Numerics for HPC simulations with Finite Elements,” in
*Concurrency and Computation: Practice and Experience*, 2010, no. 22, 16, pp. 2247–2265. - S. Turek, D. Göddeke, C. Becker, S. H. M. Buijssen, and H. Wobker, “UCHPC - Unconventional High-Performance Computing for Finite Element Simulations,” in
*International Supercomputing Conference*, Dresden, 2010.

### 2009

- A. Barth, “Stochastic Partial Differential Equations: Approximations and Applications,” PhD dissertation, 2009.
- T. Buchukuri, O. Chkadua, D. Natroshvili, and A.-M. Sändig, “Solvability and regularity results to boundary-transmission problems for metallic and piezoelectric elastic materials,” vol. 282, no. 8, pp. 1079–1110, 2009.
- S. H. M. Buijssen, H. Wobker, D. Göddeke, and S. Turek, “FEASTSolid and FEASTFlow: FEM Applications Exploiting FEAST’s HPC Technologies,” in
*High performance computing in science and engineering ’ 08*, Stuttgart, 2009, vol. 2008, pp. 425–440. - R. M. Colombo, G. Guerra, M. Herty, and V. Schleper, “Optimal control in networks of pipes and canals,” vol. 48, no. 3, pp. 2032–2050, 2009.
- A. Dedner and R. Klöfkorn, “Stabilization for Discontinuous Galerkin Methods Applied to Systems of Conservation Laws,” in
*Plenary and invited talks*, College Park, Md., 2009, no. 67, 1, pp. 253–268. - M. Drohmann, “Reduzierte Basis Methode für die Richards Gleichung,” PhD dissertation, 2009.
- M. Drohmann, B. Haasdonk, and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries,” in
*ALGORITMY 2009*, Podbanské, Slovakia, 2009, pp. 111–120. - R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast of the conductivity,” vol. 31, no. 4, pp. 2568–2586, 2009.
- M. Fischer, “Einfluss der Snapshot-Wahl bei der POD basierten Reduktion,” PhD dissertation, 2009.
- F. D. Gaspoz and P. Morin, “Convergence rates for adaptive finite elements,” vol. 29, no. 4, pp. 917–936, 2009.
- J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” vol. 43, no. 5, pp. 929–955, 2009.
- G. Guerra, F. Marcellini, and V. Schleper, “Balance laws with integrable unbounded sources,” vol. 41, no. 3, pp. 1164–1189, 2009.
- D. Göddeke, S. H. M. Buijssen, H. Wobker, and S. Turek, “GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes Solver,” in
*Proceedings of the 2009 International Conference on High Performance Computing & Simulation (HPCS 2009)*, Leipzig, 2009, pp. 12–21. - D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. S. McCormick, and S. Turek, “Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics Code with FEASTGPU,” vol. 4, no. 4, pp. 254–269, 2009.
- B. Haasdonk, M. Ohlberger, T. Tonn, and K. Urban,
*MoRePaS 2009 Book of Abstracts*. University of Münster, 2009. - B. Haasdonk and M. Ohlberger, “Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems,” in
*Proceedings / MATHMOD 09*, Wien, 2009, no. 35. - B. Haasdonk and M. Ohlberger, “Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online Decomposition,” in
*Proceedings / MATHMOD 09*, Wien, 2009, no. 35. - B. Haasdonk and M. Ohlberger, “Reduced basis method for explicit finite volume approximations of nonlinear conservation laws,” in
*Proceedings of Symposia in Applied Mathematics*, College Park, Md., 2009, no. 67, pp. 605–614. - N. Jung, B. Haasdonk, and D. Kröner, “Reduced Basis Method for Quadratically Nonlinear Transport Equations,” vol. 2, no. 4, pp. 334–353, 2009.
- J. Kelkel and C. Surulescu, “A weak solution approach to a reaction-diffusion system modeling pattern formation on seashells,” vol. 32, no. 17, pp. 2267–2286, 2009.
- F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local Conservation Laws,” vol. 247, no. 12, pp. 3338–3356, 2009.
- R. Klöfkorn, “Numerics for evolution equations : a general interface based design concept,” PhD dissertation, 2009.
- R. H. Nochetto, K. G. Siebert, and A. Veeser, “Theory of Adaptive Finite Element Methods: An Introduction,” in
*Multiscale, Nonlinear and Adaptive Approximation*, R. A. DeVore and A. Kunoth, Eds. Springer, 2009, pp. 409–542. - E. Pekalska and B. Haasdonk, “Kernel Discriminant Analysis with Positive Definite and Indefinite Kernels,” vol. 31, no. 6, pp. 1017–1032, 2009.
- V. Schleper, “Modeling, analysis and optimal control of gas pipeline networks,” Dr. Hut, München, 2009.
- A.-M. Sändig,
*Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen, Vorlesung im Wintersemester 2008/09*, no. 2009, 009. Stuttgart: IANS, 2009. - L. Tobiska and C. Winkel,
*The two-level local projection stabilization as an enriched one-level approach. A one-dimensional study*, no. 2009, 18. Magdeburg: Univ., Fak. für Informatik, 2009. - D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C. Gutwenger, “HONEI: A collection of libraries for numerical computations targeting multiple processor architectures,” vol. 180, no. 12, pp. 2534–2543, 2009.
- D. Wirtz, “SegMedix - Development and Application of a Medical Imaging Framework,” PhD dissertation, 2009.

### 2008

- H. Antil, A. Gantner, R. H. W. Hoppe, D. Köster, K. G. Siebert, and A. Wixforth, “Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Biochips,” in
*Domain decomposition methods in science and engineering XVII*, St. Wolfgang and Strobl, Austria, 2008, no. 60, pp. 305–312. - P. Bastian
*et al.*, “A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part II: Implementation and Tests in DUNE,” vol. 82, no. 2–3, pp. 121–138, 2008. - P. Bastian
*et al.*, “A Generic Grid Interface for Parallel and Adaptive Scientific Computing. Part I: Abstract Framework,”*Computing*, vol. 82, no. 2–3, pp. 103–119, 2008. - J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert, “Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method,” vol. 46, no. 5, pp. 2524–2550, 2008.
- R. M. Colombo, M. Herty, and V. Sachers, “On 2 x 2 conservation laws at a junction,” vol. 40, no. 2, pp. 605–622, 2008.
- A. Dedner and R. Klöfkorn, “The compact discontinuous Galerkin method for elliptic problems,” in
*Finite volumes for complex applications V*, Aussois, France, 2008, pp. 761–776. - A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in
*Finite volumes for complex applications V*, Aussois, France, 2008, pp. 53–68. - A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase model,” vol. 57, no. 2, pp. 717–755, 2008.
- J. Fuhrmann, B. Haasdonk, E. Holzbecher, and M. Ohlberger, “Guest Editorial - Modeling and Simulation of PEM Fuel Cells,” vol. 5, no. 2, p. 020301, 2008.
- J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation Laws on Riemannian Manifolds,” in
*Finite volumes for complex applications V*, Aussois, France, 2008. - D. Göddeke
*et al.*, “Using GPUs to Improve Multigrid Solver Performance on a Cluster,” vol. 4, no. 1, pp. 36–55, 2008. - D. Göddeke and R. Strzodka,
*Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations (Prt 2: double precision GPUs)*, no. 370. Dortmund: Technische Universität, Fakultät für Mathematik, 2008. - B. Haasdonk and M. Ohlberger, “Adaptive basis enrichment for the reduced basis method applied to finite volume schemes,” in
*Finite volumes for complex applications V*, Aussois, France, 2008, pp. 471–478. - B. Haasdonk and E. Pękalska, “Indefinite Kernel Fisher Discriminant,” in
*19th International Conference on Pattern Recognition, 2008*, Tampa, Florida, USA, 2008. - B. Haasdonk and M. Ohlberger, “Reduced basis method for finite volume approximations of parametrized linear evolution equations,” vol. 42, no. 2, pp. 277–302, 2008.
- B. Haasdonk, M. Ohlberger, and G. Rozza, “A reduced basis method for evolution schemes with parameter-dependent explicit operators,” in
*Electronic transactions on numerical analysis*, Chemnitz, 2008, no. 32, pp. 145–161. - J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase transition theory,” vol. 4, no. 4, pp. 860–893, 2008.
- C.-J. Heine, “Finite element methods on unfitted meshes,”
*Preprint Series of the Department of Mathematics / Albert Ludwigs University of Freiburg*, vol. 08–09, 2008. - G. C. Hsiao and W. L. Wendland,
*Boundary integral equations*, no. 164. Berlin: Springer, 2008. - O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” vol. 8, no. 1, pp. 60–76, 2008.
- N. Jung, “Anwendung der Reduzierten Basis Methode auf quadratisch nichtlineare Transportgleichungen,” PhD dissertation, 2008.
- R. Klöfkorn, D. Kröner, and M. Ohlberger, “Parallel Adaptive Simulation of PEM Fuel Cells,” in
*Mathematics - Key Technology for the Future*, H.-J. Krebs and W. Jäger, Eds. Berlin: Springer, 2008, pp. 235–249. - I. Kröker, “Finite volume methods for conservation laws with noise,” in
*Finite volumes for complex applications V*, Aussois, France, 2008, pp. 527–534. - D. Köster, O. Kriessl, and K. G. Siebert, “Design of Finite Element Tools for Coupled Surface and Volume Meshes,” vol. 1, no. 3, pp. 245–274, 2008.
- M. Köster, D. Göddeke, H. Wobker, and S. Turek,
*How to gain speedups of 1000 on single processor with fast FEM solvers benchmarking numerical and computational efficiency*, no. 382. Dortmund: Technische Universität, Fakultät für Mathematik, 2008. - P. Morin, K. G. Siebert, and A. Veeser, “A Basic Convergence Result for Conforming Adaptive Finite Elements,” vol. 18, no. 5, pp. 707–737, 2008.
- P. Märkl and A.-M. Sändig,
*Singularities of the Stokes System in Polygons*, no. 2008, 009. Stuttgart: IANS, 2008. - H. Perfahl and A.-M. Sändig,
*A Continuum-Mechanical Approach to Avascular Solid Tumor Growth*, no. 2008, 001. Stuttgart: IANS, 2008. - E. Pękalska and B. Haasdonk,
*Kernel quadratic discriminant analysis for positive definite and indefinite kernels*, no. 2008, 06. Münster: Univ., 2008. - C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in
*Hyperbolic problems: theory, numerics, applications*, Lyon, 2008, pp. 891–899. - C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics and magnetohydrodynamics,” vol. 18, no. 12, pp. 2151–2174, 2008.

### 2007

- M. J. Cascon, R. H. Nochetto, and K. G. Siebert, “Design and convergence of AFEM in H(DIV),” vol. 17, no. 11, pp. 1849–1881, 2007.
- R. Ewing, O. Iliev, R. Lazarov, and I. Rybak,
*On two-level preconditioners for flow in porous media*, no. 121. Kaiserslautern: Fraunhofer-Institut für Techno- und Wirtschaftsmathematik, Fraunhofer (ITWM), 2007. - A. Gantner, R. H. W. Hoppe, D. Köster, K. Siebert, and A. Wixforth, “Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips,” vol. 10, no. 3, pp. 145–161, 2007.
- D. Göddeke, H. Wobker, R. Strzodka, J. Mohd-Yusof, P. McCormick, and S. Turek, “Co-processor acceleration of an unmodified parallel solid mechanics code with FEASTGPU,” vol. 4, no. 4, pp. 254–269, 2007.
- D. Göddeke, R. Strzodka, and S. Turek, “Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations,” vol. 22, no. 4, pp. 221–256, 2007.
- D. Göddeke
*et al.*, “Exploring weak scalability for FEM calculations on a GPU-enhanced cluster,” vol. 33, no. 10–11, pp. 685–699, 2007. - B. Haasdonk and M. Ohlberger, “Basis construction for reduced basis methods by adaptive parameter grids,” in
*Adaptive modeling and simulation 2007*, Göteborg, 2007, pp. 116–119. - B. Haasdonk and H. Burkhardt, “Invariant kernel functions for pattern analysis and machine learning,” vol. 68, no. 1, pp. 35–61, 2007.
- B. Haasdonk and H. Burkhardt, “Classification with Invariant Distance Substitution Kernels,” in
*Data analysis, machine learning and applications*, Freiburg, 2007, no. 31, pp. 37–44. - M. Herty and V. Sachers, “Adjoint calculus for optimization of gas networks,” vol. 2, no. 4, pp. 733–750, 2007.
- O. Iliev, I. Rybak, and J. Willems,
*On upscaling heat conductivity for a class of industrial problems*, no. 120. Kaiserslautern: ITWM, 2007. - O. Iliev and I. Rybak,
*On approximation property of multipoint flux approximation method*, no. 119. Kaiserslautern: ITWM, 2007. - C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change : Riemann problems and ghost fluid techniques,” vol. 41, no. 6, pp. 1089–1123, 2007.
- P. Morin, K. G. Siebert, and A. Veeser, “Basic convergence results for conforming adaptive finite elements,” in
*Proceedings in applied mathematics and mechanics*, Zürich, 2007, no. 7,1, pp. 1026001–1026002. - P. Morin, K. G. Siebert, and A. Veeser, “Convergence of Finite Elements Adapted for Weak Norms,” in
*Applied and industrial mathematics in italy II*, Baia Samuele, 2007, no. 75, pp. 468–479. - P. Morin, K. G. Siebert, and A. Veeser, “A basic convergence result for conforming adaptive finite element methods,” in
*Oberwolfach Reports*, Oberwolfach, 2007, no. 29, pp. 1705–1708. - C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics : I. Weak entropy solutions for a model problem,” vol. 234, no. 1, pp. 91–109, 2007.
- H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” vol. 91, no. 23, 2007.
- K. G. Siebert and A. Veeser, “A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements,” vol. 18, no. 1, pp. 260–289, 2007.
- K. G. Siebert, J. M. Cascon, C. Kreuzer, and R. H. Nochetto, “Optimal cardinality of an adaptive finite element method,” in
*Oberwolfach Reports*, Oberwolfach, 2007, no. 29, pp. 1719–1722.

### 2006

- R. Backofen
*et al.*, “A Bottom-up approach to Grid-Computing at a University: the Black-Forest-Grid Initiative,” vol. 29, no. 2, pp. 81–87, 2006. - A. Barth, “Distribution of the First Rendezvous Time of Two Geometric Brownian Motions,” PhD dissertation, 2006.
- P. Bastian
*et al.*, “The Distributed and Unified Numerics Environment (DUNE),” in*ASIM 2006*, Hannover, 2006, no. 16. - A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger, “An efficient implementation of an adaptive and parallel grid in DUNE,” in
*Computational Science and High Performance Computing II*, Stuttgart, 2006, vol. 91, no. 91, pp. 67–82. - D. Göddeke, C. Becker, and S. Turek, “Integrating GPUs as fast co-processors into the parallel FE package FEAST,” in
*ASIM 2006*, Hannover, 2006, no. 16, pp. 277–282. - B. Haasdonk and M. Ohlberger, “Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations,” no. 12/2006, 2006.
- J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” presented at the 10. International Conference on Hyperbolic Problems, Hyp2004, Osaka, 2006, vol. 1, pp. 147–154.
- C.-J. Heine, “Computations of form and stability of rotating drops with finite elements,” vol. 26, no. 4, pp. 723–751, 2006.
- V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws,” vol. 43, no. 6, pp. 2423–2449, 2006.
- C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” vol. 56, no. 10–11, pp. 1450–1463, 2006.
- R. H. Nochetto, A. Schmidt, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations,” vol. 104, no. 4, pp. 515–538, 2006.
- K.-D. Peschke
*et al.*, “Using Transformation Knowledge for the Classification of Raman Spectra of Biological Samples,” in*Proceedings of the Fourth IASTED International Conference on Biomedical Engineering*, Innsbruck, Austria, 2006, pp. 288–293. - R. Strzodka and D. Göddeke, “Mixed Precision Methods for Convergent Iterative Schemes,” in
*Proceedings of the Workshop on Edge Computing Using New Commodity Architectures*, Chapel Hill, North Carolina, 2006, p. D-59-60. - R. Strzodka and D. Göddeke, “Pipelined Mixed Precision Algorithms on FPGAs for Fast and Accurate PDE Solvers from Low Precision Components,” in
*14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2006*, Napa, CA, USA, 2006, pp. 259–270.

### 2005

- P. Bastian
*et al.*, “Towards a Unified Framework for Scientific Computing,” in*Domain decomposition methods in science and engineering*, Berlin, 2005, no. 40, pp. 167–174. - F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows,” in
*Numerical methods for hyperbolic and kinetic problems*, Marseille, 2005, vol. 7, pp. 239–270. - A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation magnetohydrodynamics: analysis for model problems and efficient 3d-simulations for the full system,” in
*Analysis and numerics for conservation laws*, G. Warnecke, Ed. Berlin: Springer, 2005, pp. 163–202. - M. J. Gander and C. Rohde, “Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws,” vol. 27, no. 2, pp. 415–439, 2005.
- M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in
*Domain decomposition methods in science and engineering*, Berlin, 2005, no. 40, pp. 251–258. - D. Göddeke,
*GPGPU-Basic Math Tutorial*, no. 300. Dortmund: Univ., 2005. - D. Göddeke, R. Strzodka, and S. Turek, “Accelerating Double Precision FEM Simulations with GPUs,” in
*Proceedings / 18. Symposium Simulationstechnique*, Erlangen, 2005, no. 15, pp. 139–144. - B. Haasdonk, “Transformation knowledge in pattern analysis with kernel methods : distance and integration kernels,” Shaker, Aachen, 2005.
- B. Haasdonk, “Feature Space Interpretation of SVMs with Indefinite Kernels,” vol. 27, no. 4, pp. 482–492, 2005.
- B. Haasdonk, A. Vossen, and H. Burkhardt, “Invariance in Kernel Methods by Haar-Integration Kernels,” in
*Image analysis*, Joensuu, Finland, 2005, no. 3540, pp. 841–851. - O. Iliev and I. Rybak, “On numerical upscaling of flow in anisotropic porous media,” in
*Oberwolfach reports*, Oberwolfach, 2005, no. 2, 2, pp. 20/2005; 1162–1165. - V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates,” vol. 21, no. 1, pp. 104–131, 2005.
- R. H. Nochetto, K. G. Siebert, and A. Veeser, “Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems,” vol. 42, no. 5, pp. 2118–2135, 2005.
- C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion terms,” vol. 37, no. 1, pp. 103–129, 2005.
- C. Rohde, “On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour phase transitions,” vol. 85, no. 12, pp. 839–857, 2005.
- C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity system with non-local energy,”
*Interfaces Free Bound*, vol. 7, no. 1, pp. 107–129, 2005. - A. Schmidt and K. G. Siebert,
*Design of adaptive finite element software : the finite element toolbox ALBERTA*, no. 42. Berlin: Springer, 2005. - K. G. Siebert and A. Veeser, “Convergence of the Equidistribution Strategy,” in
*Oberwolfach reports*, Oberwolfach, 2005, no. 2, 3, pp. 37/2005; 2129–2131.

### 2004

- A. Bamberger, E. Bänsch, and K. G. Siebert, “Experimental and numerical investigation of edge tones,” vol. 84, no. 9, pp. 632–646, 2004.
- A. Bamberger, E. Bänsch, and K. G. Siebert, “Experimental and numerical investigation of edge tones,”
*ZAMM Journal of Applied Mathematics and Mechanics*, vol. 84, no. 9, pp. 632–646, 2004. - A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg, “A parallel, load-balanced MHD code on locally-adapted unstructured grids in 3d,”
*Comput. Vis. Sci.*, vol. 7, no. 2, pp. 79--96, 2004. - A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential equations,” vol. 97, no. 3, pp. 441–471, 2004.
- B. Haasdonk and C. Bahlmann, “Learning with Distance Substitution Kernels,” in
*Pattern Recognition - Proceedings of the 26th DAGM Symposium*, 2004, pp. 220–227. - B. Haasdonk, A. Halawani, and H. Burkhardt, “Adjustable invariant features by partial Haar-integration,” presented at the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, United Kingdom, 2004, vol. 2, pp. 769–774.
- C.-J. Heine, “Isoparametric finite element approximation of curvature on hypersurfaces,”
*Preprint Fak. f. Math. Phys. Univ. Freiburg*, no. 26, 2004. - K. Kühn, M. Ohlberger, J. Schumacher, C. Ziegler, and R. Klöfkorn, “A dynamic two-phase flow model of proton exchange membrane fuel cells,” in
*The fuel cell world (2004)*, Lucerne, Switzerland, 2004, pp. 283–296. - P. Matus and I. Rybak, “Difference schemes for elliptic equations with mixed derivatives,”
*Comput. Methods Appl. Math.*, vol. 4, no. 4, pp. 494--505, 2004. - P. Matus, R. Melnik, L. Wang, and I. Rybak, “Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory materials,”
*Math. Comp. Simulation*, vol. 65, pp. 489--509, 2004. - M. Reisert, “Entwicklung von Algorithmen zur Lageinvarianten Merkmalsgewinnung für Drahtgittermodelle,” 2004.
- C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational scheme,” vol. 1, no. 4, pp. 747–768, 2004.
- I. Rybak, “Computational dynamics of shape memory alloys,” in
*Proc. of Lobachevski Mathematical Center*, 2004, pp. 209--218. - I. Rybak, “Monotone and conservative difference schemes for nonlinear nonstationary equations and equations with mixed derivatives,” PhD dissertation, Institute of Mathematics of the National Academy of Sciences of Belarus, 2004.
- I. Rybak, “Monotone difference schemes for equations with mixed derivatives in the case of boundary conditions of the third type,”
*Proceedings of the National Academy of Sciences of Belarus, Series of Physical-Mathematical Sciences*, vol. 40, no. 1, pp. 37--42, 2004. - I. Rybak, “Monotone and conservative difference schemes for equations with mixed derivatives,”
*Dokl. Akad. Navuk Belarusi*, vol. 48, no. 1, pp. 45--48, 2004. - I. Rybak, “Monotone and conservative difference schemes for elliptic equations with mixed derivatives,” vol. 9, no. 2, pp. 169–178, 2004.
- A. Vossen, “Invariante Kernfunktionen Basierend auf Integration über Transformationen,” 2004.

### 2003

- S. Boschert
*et al.*, “Simulation of Industrial Crystal Growth by the Vertical Bridgman Method,” in*Mathematics - Key Technology for the Future*, W. Jäger and H. J. Krebs, Eds. Berlin: Springer, 2003, pp. 315–330. - S. Boschert
*et al.*, “Simulation of Industrial Crystal Growth by the Vertical Bridgman Method.” 2003. - H. Burkhardt and B. Haasdonk, “Mustererkennung WS 02/03, ein multimedialer Grundlagenkurs im Hauptstudium Informatik.” 2003.
- A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods of higher order for systems of conservation laws in multiple space dimensions,” in
*Geometric analysis and nonlinear partial differential equations*, Berlin: Springer, 2003, pp. 573--589. - A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods of higher order for systems of conservation laws in multiple space dimensions,” in
*Geometric analysis and nonlinear partial differential equations*, S. Hildebrandt and H. Karcher, Eds. Berlin: Springer, 2003, pp. 573–589. - A. Dedner, C. Rohde, and M. Wesenberg, “Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics,” in
*Hyperbolic Problems: Theory, Numerics, Applications*, Pasadena, USA, 2003, pp. 499–508. - A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in
*Hyperbolic problems: theory, numerics, applications*, Berlin: Springer, 2003, pp. 509--518. - W. Dörfler and K. G. Siebert, “An Adaptive Finite Element Method for Minimal Surfaces,” in
*Geometric Analysis and Nonlinear Partial Differential Equations*, 2003, pp. 146–175. - W. Dörfler and K. G. Siebert, “An Adaptive Finite Element Method for Minimal Surfaces,” in
*Geometric Analysis and Nonlinear Partial Differential Equations*, S. Hildebrandt and H. Karcher, Eds. Berlin: Springer, 2003, pp. 146–175. - J. Fehr, “Automatisierte Modellselektion für Supportvektor-Maschinen.” 2003.
- H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,” vol. 185, no. 2, pp. 78–96, 2003.
- H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,”
*Phys. D*, vol. 185, no. 2, pp. 78--96, 2003. - B. Haasdonk, B. R. Poluru, and A. Teynor, “Presto-Box 1.1 Library Documentation,” Institut für Informatik, Lehrstuhl für Mustererkennung und Bildverarbeitung, Universität Freiburg, 2003.
- B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert, “Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations,” vol. 70, no. 3, pp. 181–204, 2003.
- C.-J. Heine, “Computations of form and stability of rotating drops with finite elements,” PhD dissertation, RWTH Aachen, 2003.
- D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic and convection dominated parabolic conservation laws,” in
*Trends in nonlinear analysis*, Berlin: Springer, 2003, pp. 289--306. - D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic and convection dominated parabolic conservation laws,” in
*Trends in nonlinear analysis*, Erste., M. Kirkilionis, S. Krömker, R. Rannacher, and F. Tomi, Eds. Berlin: Springer, 2003, pp. 289–306. - K. Kühn, M. Ohlberger, J. O. Schumacher, C. Ziegler, and R. Klöfkorn, “A dynamic two-phase flow model of proton exchange membrane fuel cells,” CSCAMM, University of Maryland, College Park, 2003.
- N. Mallig, “Transformationswissen in Kernfunktionen für Supportvektor-Maschinen,” 2003.
- P. Matus, R. Melnik, and I. Rybak, “Fully conservative difference schemes for nonlinear models describing dynamics of materials with shape memory,”
*Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003.*, vol. 47, no. 1, pp. 15--17, 2003. - P. P. Matus and I. Rybak, “Monotone difference schemes for nonlinear parabolic equations,” vol. 39, no. 7, pp. 1013–1022, 2003.
- R. Melnik, L. Wang, P. P. Matus, and I. Rybak, “Computational aspects of conservative difference schemes for shape memory alloys applications,” in
*Lecture notes in computer science*, Montréal, Canada, 2003, vol. 2, no. 2668, pp. 791–800. - P. Morin, R. H. Nochetto, and K. G. Siebert, “Local Problems on Stars: A Posteriori Error Estimators, Convergence, and Performance,”
*Mathematics of Computation*, vol. 72, no. 243, pp. 1067–1097, 2003. - R. H. Nochetto, K. G. Siebert, and A. Veeser, “Pointwise A Posteriori Error Control for Elliptic Obstacle Problems,” vol. 95, no. 1, pp. 163–195, 2003.
- C. Rohde and W. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD fluids with radiation,”
*Appl. Math.*, vol. 48, no. 4, pp. 257--277, 2003. - C. Rohde and W. M. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD fluids with radiation,” vol. 48, no. 4, pp. 257–277, 2003.
- I. Rybak, “Difference schemes for nonlinear models describing dynamic behaviour of shape memory alloys,” presented at the Condensed State Physics: XI Republican Scientific Conference, Grodno, Belarus, 2003.
- H. Stepputtis, “Distanz-Substitutions-Kerne für Supportvektor-Maschinen,” PhD dissertation, 2003.

### 2002

- C. Bahlmann, B. Haasdonk, and H. Burkhardt, “On-line Handwriting Recognition with Support Vector Machines - A Kernel Approach,” in
*Proceedings / Eighth International Workshop on Frontiers in Handwriting Recognition*, Ontario, Canada, 2002, pp. 49–54. - A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in
*Finite volumes for complex applications III*, Porquerolles, France, 2002, pp. 165–172. - H. Freistühler and C. Rohde, “Numerical computation of viscous profiles for hyperbolic conservation laws,” vol. 71, no. 239, pp. 1021–1042, 2002.
- B. Haasdonk and D. Keysers, “Tangent Distance Kernels for Support Vector Machines,” presented at the 16. International Conference on Pattern Recognition, ICPR 2002, Québec, 2002, vol. 2, pp. 864–868.
- R. Klöfkorn, D. Kröner, and M. Ohlberger, “Local adaptive methods for convection dominated problems,” vol. 40, no. 1–2, pp. 79–91, 2002.
- P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” vol. 40, no. 5, pp. 1968–1992, 2002.
- K. Lin
*et al.*, “Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te,” in*Journal of Crystal Growth*, Kyōto, 2002, no. 237/239, 3, pp. 1736–1740. - P. Morin, R. H. Nochetto, and K. G. Siebert, “Convergence of Adaptive Finite Element Methods,” vol. 44, no. 4, pp. 631–658, 2002.
- M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems,” vol. 22, no. 2, pp. 253–280, 2002.

### 2001

- A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in
*Godunov methods*, Oxford, U.K., 2001, pp. 209–216. - A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in
*International series of numerical mathematics*, Magdeburg, 2001, vol. 1, no. 140, pp. 277–286. - H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in
*International Series of Numerical Mathematics*, Magdeburg, 2001, vol. 1, no. 140, pp. 399–408. - H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and non-classical shock waves,” in
*Ergodic theory, analysis and efficient simulation of dynamical systems*, B. Fiedler, Ed. Berlin: Springer, 2001, pp. 287–309. - B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids,” vol. 88, no. 3, pp. 459–484, 2001.
- B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. G. Siebert,
*h-p-Multiresolution Visualization of Adaptive Finite Element Simulations*, no. 01–26. Freiburg: Mathematics Department, University of Freiburg, 2001. - B. Haasdonk, “Convergence of a Staggered Lax-Friedrichs Scheme on Unstructured 2D-grids,” in
*Hyperbolic Problems: Theory, Numerics, Applications*, Magdeburg, Germany, 2001, no. 141, pp. 475–483. - T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive movement,” vol. 260, no. 1, pp. 173–199, 2001.
- R. Klöfkorn, “Simulation von Abbau- und Transportprozessen gelöster Schadstoffe im Grundwasser,” PhD dissertation, 2001.
- P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,” vol. 50, no. 4, pp. 1707–1743, 2001.
- A. Schmidt and K. G. Siebert, “ALBERT - Software for Scientific Computations and Applications,” in
*Acta mathematica Universitatis Comenianae*, Podbanské, 2001, no. 70, 1, pp. 105–122.

### 2000

- S. Boschert, A. Schmidt, and K. G. Siebert, “Numerical Simulation of Crystal Growth by the Vertical Bridgman Method,” in
*Modelling of Transport Phenomena in Crystal Growth*, no. 6, J. S. Szmyd and K. Suzuki, Eds. Southampton: WIT Press, 2000, pp. 315–330. - K. Deckelnick and K. G. Siebert, “$W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle Problems,”
*IMA Journal of Numerical Analysis*, vol. 20, no. 3, pp. 481–498, 2000. - K. Deckelnick and K. G. Siebert, “W1∞-convergence of the discrete free boundary for obstacle problems,” vol. 20, no. 3, pp. 481–498, 2000.
- B. Haasdonk, “Convergence of a Staggered Lax-Friedrichs Scheme on Unstructured 2D-Grids,” in
*HYP 2000, Proceedings of the 8th International Conference on Hyperbolic Problems*, 2000, vol. 2, pp. 475--484. - P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” vol. 37, no. 6, pp. 2023–2060, 2000.
- P. Morin, R. H. Nochetto, and K. G. Siebert, “Data Oscillation and Convergence of Adaptive FEM,”
*SIAM Journal on Numerical Analysis*, vol. 38, no. 2, pp. 466–488, 2000. - A. Schmidt and K. G. Siebert, “A Posteriori Estimators for the $h$-$p$ Version of the Finite Element Method in 1d,”
*Applied Numerical Mathematics*, vol. 35, no. 1, pp. 43–66, 2000.

### 1999

- A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in
*Finite volumes for complex applications II : problems and perspectives*, Duisburg, Germany, 1999, pp. 491–498. - H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in
*Hyperbolic Problems : Theory, Numerics, Applications*, Zürich, Switzerland, 1999, no. 129, pp. 333–342. - H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in
*Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998)*, vol. 129, Basel: Birkhäuser, 1999, pp. 333--342. - T. Gessner
*et al.*,*A Procedural Interface for Multiresolutional Visualization of General Numerical Data*, no. 28. 1999. - T. Geßner
*et al.*, “A Procedural Interface for Multiresolutional Visualization of General Numerical Data,” University of Bonn, 28, 1999. - B. Haasdonk, “Konvergenz eines Staggered-Lax-Friedrichs-Verfahrens auf unstrukturierten 2D-Gittern,” PhD dissertation, 1999.
- A. Schmidt and K. G. Siebert, “Abstract Data Structures for a Finite Element Package: Design Principles of ALBERT,”
*Journal of Applied Mathematics and Mechanics*, vol. 79, no. 1, pp. 49–52, 1999. - A. Schmidt and K. G. Siebert, “Abstract data structures for a finite element package : Design principles of ALBERTA,” vol. 79, no. 1, pp. 49–52, 1999.

### 1998

- S. Boschert, T. Kaiser, A. Schmidt, K. G. Siebert, K.-W. Benz, and G. Dziuk, “Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical Bridgman Technique,” in
*Modeling and Simulation Based Engineering*, 1998. - C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D,” vol. 81, no. 1, pp. 85–123, 1998.
- C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several space dimensions,”
*Z. Angew. Math. Phys.*, vol. 49, no. 3, pp. 470--499, 1998. - A. Schmidt and K. G. Siebert, “Concepts of the Finite Element Toolbox ALBERT.” 1998.
- A. Schmidt and K. G. Siebert,
*Concepts of the finite element toolbox ALBERT*, no. 98–17. 1998. - K. G. Siebert, “Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.” Universität Augsburg, 1998.
- K. G. Siebert, “Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.” 1998.

### 1996

- M. Rumpf, A. Schmidt, and K. G. Siebert, “Functions Defining Arbitrary Meshes - A Flexible Interface Between Numerical Data and Visualization Routines,” vol. 15, no. 2, pp. 129–141, 1996.
- A. Schmidt and K. G. Siebert, “Numerical Aspects of Parabolic Free Boundary Problems : Adaptive Finite Element Methods.” Institut für Angewandte Mathematik, Jyväskylä, Finland, 1996.
- K. G. Siebert, “An a posteriori error estimator for anisotropic refinement,” vol. 73, no. 3, pp. 373–398, 1996.

### 1995

- E. Bänsch and K. G. Siebert,
*A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques*, no. 95–30. Freiburg: Mathematics Department, University of Freiburg, 1995. - M. Rumpf, A. Schmidt, and K. G. Siebert, “On a Unified Visualization Approach for Data from Advanced Numerical Methods,” in
*Visualization in scientific computing ’95*, Chia, Italy, 1995, pp. 35–44.

### 1993

- K. G. Siebert, “Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure,”
*Impact of computing in science and engineering*, vol. 5, no. 4, pp. 271–284, 1993. - K. G. Siebert, “An A Posteriori Error Estimator for Anisotropic Refinement,” PhD dissertation, 1993.

### 1990

- K. G. Siebert, “Ein Finite-Elemente-Verfahren zur Loesung der inkompressiblen Euler-Gleichungen auf der Sphaere mit der Stromlinien-Diffusions-Methode,” PhD dissertation, 1990.

**Prof. Dr. rer. nat.**