This image shows Maria Alkämper

Maria Alkämper

M. Sc.

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics


Pfaffenwaldring 57
70569 Stuttgart
Room: 7.164

  1. 2021

    1. M. Alkämper, J. Magiera, and C. Rohde, “An Interface Preserving Moving Mesh in Multiple SpaceDimensions,” Computing Research Repository, vol. abs/2112.11956, 2021, [Online]. Available:
  2. 2018

    1. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A finite-volume tracking scheme for two-phase compressible flow,” Springer Proc. Math. Stat., pp. 309--322, 2018, doi:
  3. 2017

    1. C. Chalons, C. Rohde, and M. Wiebe, “A finite volume method for undercompressive shock waves in two space dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, Art. no. 5, Sep. 2017, doi:
    2. S. Funke, T. Mendel, A. Miller, S. Storandt, and M. Wiebe, “Map Simplification with Topology Constraints: Exactly and in Practice,” in Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 2017, pp. 185--196. doi: 10.1137/1.9781611974768.15.
  4. 2012

    1. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
  5. 2007

    1. H. Schmidt, M. Wiebe, B. Dittes, and M. Grundmann, “Meyer-Neldel rule in ZnO,” Applied Physics Letters, vol. 91, no. 23, Art. no. 23, 2007, doi:
  Assistance to...

Summer Term 2022

Winter Term 2021/22:

Summer Term 2021:

Winter Term 2020/21:
Winter Term 2019/20:
Summer Term 2019:
  • Numerische Grundlagen 
Winter Term 2018/19:
  • Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)
Summer Term 2018:
  • Numerische Mathematik 2
Winter Term 2017/18:
  • Einführung in die Numerik partieller Differentialgleichungen
To the top of the page