Contact
Office Hours
after appointment
Subject
I work in the field of kernel-based approximation methods.
My current interest is in greedy algorithms for scalar and vectorial data, with applications to surrogate models.
Publlications:
2021
- M. Kohr, S. E. Mikhailov, and W. L. Wendland, “Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition,” Discrete Contin. Dyn. Syst., vol. 41, Art. no. 9, 2021, doi: 10.3934/dcds.2021042.
2019
- M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” Comput. Geosci., vol. 2, Art. no. 23, 2019, doi: https://doi.org/10.1007/s10596-018-9785-x.
- D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” Numerical Mathematics and Advanced Applications ENUMATH 2017, pp. 603–614, 2019, doi: https://doi.org/10.1007/978-3-319-96415-7_55.
2018
- T. Brünnette, G. Santin, and B. Haasdonk, “Greedy kernel methods for accelerating implicit integrators for parametric ODEs,” 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
- S. De Marchi, A. Iske, and G. Santin, “Image reconstruction from scattered Radon data by weighted positive definite kernel functions,” Calcolo, vol. 55, Art. no. 1, Feb. 2018, doi: 10.1007/s10092-018-0247-6.
- J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018, [Online]. Available: https://arxiv.org/abs/1704.08208
- B. Haasdonk and G. Santin, “Greedy Kernel Approximation for Sparse Surrogate Modeling,” in Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing, W. Keiper, A. Milde, and S. Volkwein, Eds., Cham: Springer International Publishing, 2018, pp. 21–45. doi: 10.1007/978-3-319-75319-5_2.
- D. Wittwar and B. Haasdonk, “Greedy Algorithms for Matrix-Valued Kernels,” University of Stuttgart, 2018. [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
2017
- S. De Marchi, A. Idda, and G. Santin, “A Rescaled Method for RBF Approximation,” in Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds., Cham: Springer International Publishing, 2017, pp. 39–59. doi: 10.1007/978-3-319-59912-0_3.
- S. De Marchi, A. Iske, and G. Santin, “Image Reconstruction from Scattered Radon Data by Weighted Positive Definite Kernel Functions,” 2017.
- M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two scale model for liquid phase epitaxy with elasticity,” Contin. Mech. Thermodyn., vol. 29, Art. no. 4, 2017, doi: 10.1007/s00161-015-0462-1.
- G. Santin and B. Haasdonk, “Convergence rate of the data-independent P-greedy algorithm in kernel-based approximation,” Dolomites Research Notes on Approximation, vol. 10, pp. 68–78, 2017, [Online]. Available: http://www.emis.de/journals/DRNA/9-2.html
2016
- D. Amsallem and B. Haasdonk, “PEBL-ROM: Projection-Error Based Local Reduced-Order Models,” AMSES, Advanced Modeling and Simulation in Engineering Sciences, vol. 3, Art. no. 6, 2016, doi: 10.1186/s40323-016-0059-7.
- R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Approximating basins of attraction for dynamical systems via stable radial bases,” in AIP Conf. Proc., 2016. doi: 10.1063/1.4952177.
- R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016, doi: 10.1016/j.apnum.2016.07.005.
- D. Garmatter, B. Haasdonk, and B. Harrach, “A reduced Landweber Method for Nonlinear Inverse Problems,” Inverse Problems, vol. 32, Art. no. 3, 2016, doi: http://dx.doi.org/10.1088/0266-5611/32/3/035001.
- M. Redeker and B. Haasdonk, “A POD-EIM reduced two-scale model for precipitation in porous media,” MCMDS, Mathematical and Computer Modelling of Dynamical Systems, 2016, doi: 10.1080/13873954.2016.1198384.
- G. Santin, “Approximation in kernel-based spaces, optimal subspaces and approximation of eigenfunction,” Doctoral School in Mathematical Sciences, University of Padova, 2016. [Online]. Available: http://paduaresearch.cab.unipd.it/9186/
- G. Santin and R. Schaback, “Approximation of eigenfunctions in kernel-based spaces,” Adv. Comput. Math., vol. 42, Art. no. 4, 2016, doi: 10.1007/s10444-015-9449-5.
2015
- R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “RBF approximation of large datasets by partition of unity and local stabilization,” in CMMSE 2015 : Proceedings of the 15th International Conference on Mathematical Methods in Science and Engineering, J. Vigo-Aguiar, Ed., 2015, pp. 317–326.
2014
- W. L. Wendland, “Martin Costabel’s version of the trace theorem revisited,” Math. Methods Appl. Sci., vol. 37 (13), pp. 1924–1955, 2014.
2013
- S. De Marchi and G. Santin, “A new stable basis for radial basis function interpolation,” J. Comput. Appl. Math., vol. 253, pp. 1–13, 2013, doi: 10.1016/j.cam.2013.03.048.
2011
- M. Kohr, C. Pintea, and W. L. Wendland, “Dirichlet-transmission problems for general Brinkman operators on Lipschitz and $C^1$ domains in Riemannian manifolds,” Discrete Contin. Dyn. Syst. Ser. B, vol. 15, Art. no. 4, 2011, doi: 10.3934/dcdsb.2011.15.999.
- G. Santin, A. Sommariva, and M. Vianello, “An algebraic cubature formula on curvilinear polygons,” Applied Mathematics and Computation, vol. 217, Art. no. 24, 2011, doi: 10.1016/j.amc.2011.04.071.
2008
- B. Haasdonk and M. Ohlberger, “Reduced basis method for finite volume approximations of parametrized linear evolution equations,” ESAIM: M2AN, vol. 42, Art. no. 2, Mar. 2008, doi: 10.1051/m2an:2008001.
- G. C. Hsiao and W. L. Wendland, Boundary integral equations, vol. 164. in Applied Mathematical Sciences, vol. 164. Berlin: Springer-Verlag, 2008, p. xx. doi: 10.1007/978-3-540-68545-6.
- A. Lalegname, A. Sändig, and G. Sewell, “Analytical and numerical treatment of a dynamic crack model,” International Journal of Fracture, vol. 152, Art. no. 2, 2008, doi: 10.1007/s10704-008-9274-7.
2005
- B. Haasdonk, “Feature Space Interpretation of SVMs with Indefinite Kernels,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, Art. no. 4, 2005, doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2005.78.
2004
- B. Haasdonk, A. Halawani, and H. Burkhardt, “Adjustable invariant features by partial Haar-integration,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004, pp. 769–774. doi: http://dx.doi.org/10.1109/ICPR.2004.1334372.
- SoSe 2019: Numerische Grundlagen (Assistenz)
- WiSe 2018: Einfuehrung in die Numerik für Partielle Differentialgleichungen
- SoSe 2018: Numerische Grundlagen
- WiSe 2017: Approximation with Kernel Methods
- SoSe 2017: Numerische Grundlagen
- WiSe 2016: Numerische Mathematik I
- SoSe 2016: Numerische Grundlagen
- WiSe 2015: Höhere Mathematik I
- VKOGA validation and selection by log-marginal likelihood, SimTech Projektarbeit
- Inverse Radon Transformation mit Multiskalen-Kernen, MSc in Mathematics.
- Kernel Methods for Accelerating Implicit Integrators, BSc in Simulation Technology.
- Interpolation mit Multiskalen-Kernen, BSc in Mathematics.
- A comparison of some RBF interpolation methods: theory and numerics, MSc in Mathematics (at University of Padova).
- Kernel-based medical image reconstruction from Radon data, MSc in Mathematics (at University of Padova).
26.9.2017 Greedy kernel methods for accelerating implicit integrators for parametric ODEs,
13.9.2016 Non-symmetric kernel-based approximation,
30.6.2016 Approximation in kernel-based spaces: optimal subspaces and greedy algorithms,
Stuttgart-Tübingen Seminar
30.3.2016 Greedy Kernel Interpolation Surrogate Modeling (Poster),
6-10.7.2015 RBF approximation of large datasets by partition of unity and local stabilization,
CMMSE2015
25.9.2014 Approximation in kernel based spaces,
30.6 - 4.7.2014 Bases for Radial Basis Function Approximation,
29-30.11.2013 A fast algorithm for computing a truncated orthonormal basis for RBF native spaces,
21-22.10.2013 Some tools for fast and stable Radial Basis Function approximation with Scilab,
21-22.10.2013 Kernel methods for Radon transform (Poster),
8-13.9.2013 WSVD basis for RBF and Krylov subspaces (Poster),
5-9.8.2013 A orthonormal basis for Radial Basis Function approximation ,
9-15.6.2013 A fast algorithm for computing a truncated orthonormal basis for RBF native spaces ,
9-14.9.2012 A new stable basis for RBF approximation (Poster),
My profiles on orcid.org/0000-0001-6959-1070 , Google Scholar, Research Gate.
2016 P-greedy:implementation of the P-greedy algorithm (MATLAB).
2015 EigenApprox:Approximation of eigenfunctions in kernel based spaces (MATLAB).
2015 KBMIR:Kernel based medical image reconstruction (MATLAB).
2014 WSVD and FCoOB:RBF Approximation with WSVD-Basis and Fast WSVD-Basis (MATLAB).