Dieses Bild zeigt Rybak

Priv.-Doz. Dr.

Iryna Rybak

Research assistant

Contact

+49 711 685-65508

Pfaffenwaldring 57
70569  Stuttgart
Deutschland

Consultation

Wednesday 9:00-10:00

 

Subject

  • Modeling flow and transport processes in porous media
  • Coupling free flow and porous medium systems
  • Thermodynamically constrained averaging theory (TCAT)
  • Numerical upscaling, multiscale methods
  • Domain decomposition methods, time splitting schemes
  • Development of efficient numerical algorithms for multiphysics problems
  1. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621.
  2. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, no. 2, pp. 425–455, 2016.
  3. J. Magiera, C. Rohde, and I. Rybak, “A Hyperbolic-Elliptic Model Problem for Coupled Surface-Subsurface Flow,” TRANSPORT IN POROUS MEDIA, vol. 114, no. 2, SI, pp. 425–455, 2016.
  4. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” J. Hydrology, vol. 521, pp. 565--581, 2015.
  5. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous  medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299--309, 2015.
  6. I. V. Rybak, W. G. Gray, and C. T. Miller, “Modeling two-fluid-phase flow and species transport in porous media,” JOURNAL OF HYDROLOGY, vol. 521, pp. 565–581, 2015.
  7. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous    medium and free flow systems,” COMPUTATIONAL GEOSCIENCES, vol. 19, no. 2, pp. 299–309, 2015.
  8. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711.
  9. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014.
  10. A. S. Jackson, I. Rybak, R. Helmig, W. G. Gray, and C. T. Miller, “Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models,” Adv. Water Res., vol. 42, pp. 71--90, 2012.
  11. K. Mosthaf et al., “A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow,” Water Resour. Res., vol. 47, p. W10522, 2011.
  12. R. Ewing, O. Iliev, R. Lazarov, I. Rybak, and J. Willems, “A simplified method for upscaling composite materials with high contrast  of the conductivity,” SIAM J. Sci. Comp., vol. 31, no. 4, pp. 2568--2586, 2009.
  13. O. Iliev and I. Rybak, “On numerical upscaling for flows in heterogeneous porous media,” Comput. Methods Appl. Math., vol. 8, no. 1, pp. 60--76, 2008.
  14. O. Iliev and I. Rybak, “On approximation property of multipoint flux approximation method,” Fraunhofer ITWM, 119, 2007.
  15. R. Ewing, O. Iliev, R. Lazarov, and I. Rybak, “On two-level preconditioners for flow in porous media,” Fraunhofer ITWM, 121, 2007.
  16. O. Iliev, I. Rybak, and J. Willems., “On upscaling heat conductivity for a class of industrial problems,” Fraunhofer ITWM, 120, 2007.
  17. O. Iliev and I. Rybak, “On numerical upscaling of flow in anisotropic porous media,” in Mathematisches Forschungsinstitut Oberwolfach Report No. 20, 2005, pp. 1162–1165.
  18. I. Rybak, “Monotone and conservative difference schemes for equations with mixed  derivatives,” Dokl. Akad. Navuk Belarusi, vol. 48, no. 1, pp. 45--48, 2004.
  19. I. Rybak, “Monotone and conservative difference schemes for elliptic equations  with mixed derivatives,” Math. Model. Anal., vol. 9, no. 2, pp. 169--178, 2004.
  20. I. Rybak, “Monotone difference schemes for equations with mixed derivatives  in the case of boundary conditions of the third type,” Proceedings of the National Academy of Sciences of Belarus, Series  of Physical-Mathematical Sciences, vol. 40, no. 1, pp. 37--42, 2004.
  21. P. Matus and I. Rybak, “Difference schemes for elliptic equations with mixed derivatives,” Comput. Methods Appl. Math., vol. 4, no. 4, pp. 494--505, 2004.
  22. I. Rybak, “Monotone and conservative difference schemes for nonlinear nonstationary  equations and equations with mixed derivatives,” PhD dissertation, Institute of Mathematics of the National Academy of Sciences of Belarus, 2004.
  23. P. Matus, R. Melnik, L. Wang, and I. Rybak, “Applications of fully conservative schemes in nonlinear thermoelasticity:  modelling shape memory materials,” Math. Comp. Simulation, vol. 65, pp. 489--509, 2004.
  24. I. Rybak, “Computational dynamics of shape memory alloys,” in Proc. of Lobachevski Mathematical Center, 2004, pp. 209--218.
  25. P. Matus and I. Rybak, “Monotone difference schemes for nonlinear parabolic equations,” Differential Equations, vol. 39, no. 7, pp. 1013--1022, 2003.
  26. I. Rybak, “Difference schemes for nonlinear models describing dynamic behaviour  of shape memory alloys,” in Condensed State Physics: XI Republican Scientific Conference, Grodno,  Belarus, April 23–25, 2003, 2003, pp. 200–203.
  27. P. Matus, R. Melnik, and I. Rybak, “Fully conservative difference schemes for nonlinear models describing  dynamics of materials with shape memory,” Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003., vol. 47, no. 1, pp. 15--17, 2003.
  28. R. Melnik, L. Wang, P. Matus, and I. Rybak, “Computational aspects of conservative difference schemes for shape  memory alloys applications,” Lecture Notes in Comput. Sci., vol. 2668, pp. 791--800, 2003.
2016-2017 Eigene Stelle, ``Mathematische Modellierung und Numerik von Übergangsbereichen zwischen porösen Medien und freien Strömungen'',  DFG Projekt, RY 126/2-2
2012-2015 Eigene Stelle, ``Mathematische Modellierung und Numerik von Übergangsbereichen zwischen porösen Medien und freien Strömungen'',  DFG Projekt, RY 126/2-1
2007-2009 Project participant, ``Development of multilevel algorithms for simulation of fluid flows in porous media'', Belarusian Republican Foundation for Fundamental Research, F07MS-054
2004-2007 Project participant, ``Hydrogeological and geo-environmental simulations: a contribution to the algorithms and advanced applications'', INTAS-03-50-4395
2004-2006 Principal investigator, ``Development of monotone and conservative difference schemes for problems of mathematical physics with mixed derivatives'', Belarusian Republican Foundation for Fundamental Research, F04M-136

Peer-Review Activities:

  • Advances in Computational Mathematics
  • Advances in Water Resources (Certificate of Excellence in Reviewing, 2013)
  • Applied Mathematics and Computation
  • Computational and Applied Mathematics
  • Computers and Mathematics with Applications
  • Geofluids
  • IMA Journal of Numerical Analysis
  • Journal of Computational and Applied Mathematics
  • Journal of Computational Physics
  • Journal of Hydrology
  • Journal of Porous Media
  • Nonlinearity
  • Numerical Methods for Partial Differential Equations
  • SIAM Journal on Numerical Analysis
  • Water Resources Research