Contact
Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.127
Office Hours
Wednesday, 11:30 - 12:30
Subject
Averaging theories and multiscale methods (homogenization, volume averaging, termodynamically constrained averaging theory, numerical upscaling, computation of effective properties)
Mathematical modelling (coupling free-flow and porous-medium systems, modelling flow and transport processes in porous media, porous-medium models with fluid-fluid interfacial area, sediment transport, mixed-dimensional models for fractured porous media)
Efficient numerical algorithms for multiphysics problems (domain decomposition, time splitting, multigrid, preconditioners, Newton-Krylov-methods, stability analysis, a priori error estimates)
Model validation and calibration (data-driven homogenisation based on neural networks, sensitivity analysis, model reduction, pore-scale modelling)
2024
- Strohbeck, P., Discacciati, M., Rybak, I.: Optimized Schwarz method for the Stokes-Darcy problem with generalized interface conditions. J. Comput. Phys. (submitted). (2024).
- Strohbeck, P., Rybak, I.: Efficient preconditioners for coupled Stokes-Darcy problems with MAC scheme: Spectral analysis and numerical study. J. Sci. Comput. (submitted). (2024).
- Ruan, L., Rybak, I.: Stokes-Brinkman-Darcy models for coupled fluid-porous systems: derivation, analysis and validation. Appl. Math. Comp. (submitted). (2024).
2023
- Kröker, I., Oladyshkin, S., Rybak, I.: Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Comput. Geosci. (2023). https://doi.org/10.1007/s10596-023-10236-z.
- Miller, C.T., Gray, W.G., Kees, C.E., Rybak, I., Shepherd, B.J.: Correction to: Modelling Sediment Transport in Three-Phase Surface Water Systems. J. Hydraul. Res. 61, 168–171 (2023). https://doi.org/10.1080/00221686.2022.2107580.
- Eggenweiler, E., Nickl, J., Rybak, I.: Justification of generalized interface conditions for Stokes-Darcy problems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., and Navoret, L. (eds.) Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. pp. 275–283. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-40864-9_22.
- Strohbeck, P., Riethmüller, C., Göddeke, D., Rybak, I.: Robust and Efficient Preconditioners for Stokes--Darcy Problems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., and Navoret, L. (eds.) Finite Volumes for Complex Applications X---Volume 1, Elliptic and Parabolic Problems. pp. 375--383. Springer Nature Switzerland, Cham (2023).
- Eggenweiler, E., Rybak, I.: Higher-order coupling conditions for arbitrary flows in Stokes-Darcy systems. J. Fluid Mech. (submitted). (2023).
- Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., Weishaupt, K.: A Surrogate-Assisted Uncertainty-Aware Bayesian Validation Framework and its Application to Coupling Free Flow and Porous-Medium Flow. Comput. Geosci. (2023). https://doi.org/10.1007/s10596-023-10228-z.
- Strohbeck, P., Eggenweiler, E., Rybak, I.: A modification of the Beavers-Joseph condition for arbitrary flows to the fluid-porous interface. Transp. Porous Med. 147, 605–628 (2023). https://doi.org/10.1007/s11242-023-01919-3.
- Ruan, L., Rybak, I.: Stokes-Brinkman-Darcy models for coupled free-flow and porous-medium systems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., and Navoret, L. (eds.) Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. pp. 365–373. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-40864-9_31.
- Strohbeck, P., Riethmüller, C., Göddeke, D., Rybak, I.: Robust and efficient preconditioners for Stokes-Darcy problems. In: Franck, E., Fuhrmann, J., Michel-Dansac, V., and Navoret, L. (eds.) Finite Volumes for Complex Applications X - Volume 1, Elliptic and Parabolic Problems. pp. 375–383. Springer Nature Switzerland (2023). https://doi.org/10.1007/978-3-031-40864-9_32.
2022
- Eggenweiler, E., Discacciati, M., Rybak, I.: Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal. 56, 727–742 (2022). https://doi.org/10.1051/m2an/2022025.
2021
- Rybak, I., Schwarzmeier, C., Eggenweiler, E., Rüde, U.: Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci. 25, 621–635 (2021). https://doi.org/10.1007/s10596-020-09994-x.
- Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., Rybak, I.: Permeability estimation of regular porous structures: a benchmark for comparison of methods. Transp. Porous Med. 138, 1–23 (2021). https://doi.org/10.1007/s11242-021-01586-2.
- Eggenweiler, E., Rybak, I.: Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul. 19, 731–757 (2021). https://doi.org/10.1137/20M1346638.
2020
- Rybak, I., Metzger, S.: A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp. 384, (2020). https://doi.org/10.1016/j.amc.2020.125260.
- Eggenweiler, E., Rybak, I.: Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech. 892, A10 (2020). http://dx.doi.org/10.1017/jfm.2020.194.
- Eggenweiler, E., Rybak, I.: Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In: Klöfkorn, R., Keilegavlen, E., Radu, F., and Fuhrmann, J. (eds.) Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples. pp. 345--353. Springer International Publishing (2020). https://doi.org/10.1007/978-3-030-43651-3_31.
2019
- Miller, C.T., Gray, W.G., Kees, C.E., Rybak, I.V., Shepherd, B.J.: Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res. 57, (2019). https://doi.org/10.1080/00221686.2019.1581673.
2016
- Magiera, J., Rohde, C., Rybak, I.: A hyperbolic-elliptic model problem for coupled surface-subsurface flow. Transp. Porous Media. 114, 425–455 (2016). https://doi.org/10.1007/S11242-015-0548-Z.
- Rybak, I., Magiera, J.: Decoupled schemes for free flow and porous medium systems. In: et al., T.D. (ed.) Domain Decomposition Methods in Science and Engineering XXII. pp. 613--621. Springer (2016). https://doi.org/10.1007/978-3-319-18827-0\_54.
2015
- Rybak, I.V., Gray, W.G., Miller, C.T.: Modeling two-fluid-phase flow and species transport in porous media. J. Hydrology. 521, 565--581 (2015). https://doi.org/10.1016/j.jhydrol.2014.11.051.
- Rybak, I., Magiera, J., Helmig, R., Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19, 299–309 (2015). https://doi.org/10.1007/s10596-015-9469-8.
2014
- Rybak, I., Magiera, J.: A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys. 272, 327--342 (2014). https://doi.org/10.1016/j.jcp.2014.04.036.
- Rybak, I.: Coupling free flow and porous medium flow systems using sharp interface and transition region concepts. In: Fuhrmann, J., Ohlberger, M., and Rohde, C. (eds.) Finite Volumes for Complex Applications VII - Elliptic, Parabolic and Hyperbolic Problems, FVCA 7. pp. 703--711. Springer (2014). https://doi.org/10.1007/978-3-319-05591-6_70.
2012
- Jackson, A.S., Rybak, I., Helmig, R., Gray, W.G., Miller, C.T.: Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 9. Transition region models. Adv. Water Res. 42, 71--90 (2012). https://doi.org/10.1016/j.advwatres.2012.01.006.
2011
- Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47, W10522 (2011). https://doi.org/10.1029/2011WR010685.
2009
- Ewing, R., Iliev, O., Lazarov, R., Rybak, I., Willems, J.: A simplified method for upscaling composite materials with high contrast of the conductivity. SIAM J. Sci. Comp. 31, 2568--2586 (2009). https://doi.org/10.1137/080731906.
2008
- Iliev, O., Rybak, I.: On numerical upscaling for flows in heterogeneous porous media. Comput. Methods Appl. Math. 8, 60--76 (2008).
2007
- Ewing, R., Iliev, O., Lazarov, R., Rybak, I.: On two-level preconditioners for flow in porous media. Fraunhofer ITWM (2007).
- Iliev, O., Rybak, I., Willems., J.: On upscaling heat conductivity for a class of industrial problems. Fraunhofer ITWM (2007).
- Iliev, O., Rybak, I.: On approximation property of multipoint flux approximation method. Fraunhofer ITWM (2007).
2005
- Iliev, O., Rybak, I.: On numerical upscaling of flow in anisotropic porous media. In: Mathematisches Forschungsinstitut Oberwolfach Report No. 20. pp. 1162–1165 (2005).
2004
- Rybak, I.: Monotone and conservative difference schemes for elliptic equations with mixed derivatives. Math. Model. Anal. 9, 169--178 (2004).
- Rybak, I.: Monotone and conservative difference schemes for equations with mixed derivatives. Dokl. Akad. Navuk Belarusi. 48, 45--48 (2004).
- Rybak, I.: Monotone and conservative difference schemes for nonlinear nonstationary equations and equations with mixed derivatives, (2004).
- Matus, P., Melnik, R., Wang, L., Rybak, I.: Applications of fully conservative schemes in nonlinear thermoelasticity: modelling shape memory materials. Math. Comp. Simulation. 65, 489--509 (2004).
- Rybak, I.: Computational dynamics of shape memory alloys. In: Proc. of Lobachevski Mathematical Center. pp. 209--218. Kazan (2004).
- Matus, P., Rybak, I.: Difference schemes for elliptic equations with mixed derivatives. Comput. Methods Appl. Math. 4, 494--505 (2004).
- Rybak, I.: Monotone difference schemes for equations with mixed derivatives in the case of boundary conditions of the third type. Proceedings of the National Academy of Sciences of Belarus, Series of Physical-Mathematical Sciences. 40, 37--42 (2004).
2003
- Melnik, R., Wang, L., Matus, P., Rybak, I.: Computational aspects of conservative difference schemes for shape memory alloys applications. Lecture Notes in Comput. Sci. 2668, 791--800 (2003).
- Matus, P., Melnik, R., Rybak, I.: Fully conservative difference schemes for nonlinear models describing dynamics of materials with shape memory. Dokl. Akad. Navuk Belarusi, 47(1):15–17, 2003. 47, 15--17 (2003).
- Matus, P., Rybak, I.: Monotone difference schemes for nonlinear parabolic equations. Differential Equations. 39, 1013--1022 (2003).
- Rybak, I.: Difference schemes for nonlinear models describing dynamic behaviour of shape memory alloys. In: Condensed State Physics: XI Republican Scientific Conference, Grodno, Belarus, April 23�25, 2003. pp. 200–203 (2003).
Winter Term 2024/25 | |
Summer Term 2024 |
Mathematische Programmierung 2 BSc |
Winter Term 2023/24 |
Mathematische Programmierung 1 BSc Hauptseminar: Matrix Computations |
Summer Term 2023 |
Advanced Numerics of Partial Differential Equations |
Winter Term 2022/23 |
Höhere Mathematik I für Ingenieurstudiengänge (Lineare Algebra und Geometrie) Masterseminar: Multiscale modelling and numerics: how to bridge scales |
Winter Term 2021/22 |
Mathematische Programmierung 1 BSc Homogenization theory and computations Numerische Mathematik 1 |
Summer Term 2021 |
Numerical methods for differential equations Seminar: Saddle-Point Problems |
Winter Term 2020/21 |
Mathematik 1 für Wirtschaftswissenschaftler (WebEx) |
Summer Term 2020 |
Advanced Numerics of Partial Differential Equations (WebEx) Masterseminar: Multiskalenmodellierung in der numerischen Mathematik (WebEx) |
Winter Term 2019/20 |
Mathematik 1 für Wirtschaftswissenschaftler Seminar: Efficient numerical methods for large linear systems |
Summer Term 2019 |
Numerische Lineare Algebra |
Winter Term 2018/19 | Masterseminar Simulation Technology |
Summer Term 2017 | Numerische Lineare Algebra |
Winter Term 2016/17 | Numerische Fluiddynamik |
Summer Term 2016 | Mathematische Modellierung |
Winter Term 2015/16 | Numerische Verfahren für Mehrskalenprobleme |
Winter Term 2014/15 | Höhere Mathematik I für Ingenieurstudiengänge (Lineare Algebra und Geometrie) |
Winter Term 2012/13 | Poröse Medien: Modellierung, Analysis und Numerik |
Summer Term 2012 | Höhere Mathematik I für Ingenieurstudiengänge (Lineare Algebra und Geometrie) |
Jan. 2016 |
Habilitation in Mathematics (University of Stuttgart, Germany) |
Nov. 2001 -- Nov. 2004 |
PhD in Physics and Mathematics (Institute of Mathematics, National Academy of Sciences of Belarus) |
Sep. 1996 -- Jun. 2001 | MSc in Applied Mathematics (Belarusian State University) |
Apr. 2000 -- Jun. 2001 | MSc in Economical Cybernetics (Belarusian State University) |
2022-2025 | Principal investigator in ANR-DFG Project FLUPOR: "Generalised Interface Conditions for Multi-Dimensional Inertial Flows in Fluid-Porous Systems" with Philippe Angot, Aix-Marseille Université (1 postdoc position for 24 months, 2 PhD positions for 36 months) |
2022-2025 | Principal investigator in Collaborative Research Centre (SFB) 1313 "Interface-Driven Multi-Field Processes in Porous Media – Flow, Transport and Deformation'' (Phase 2), German Research Foundation (DFG), Project A03 "Development of interface concepts using averaging techniques" (1 PhD position for 48 months) |
2018-2021 | Principal investigator in Collaborative Research Centre (SFB) 1313 "Interface-Driven Multi-Field Processes in Porous Media – Flow, Transport and Deformation'', German Research Foundation (DFG), Project A03 "Development of interface concepts using averaging techniques" |
2016-2017 | Eigene Stelle, ``Mathematische Modellierung und Numerik von Übergangsbereichen zwischen porösen Medien und freien Strömungen'', DFG Projekt, RY 126/2-2 |
2012-2015 | Eigene Stelle, ``Mathematische Modellierung und Numerik von Übergangsbereichen zwischen porösen Medien und freien Strömungen'', DFG Projekt, RY 126/2-1 |
2007-2009 | Project participant, ``Development of multilevel algorithms for simulation of fluid flows in porous media'', Belarusian Republican Foundation for Fundamental Research, F07MS-054 |
2004-2007 | Project participant, ``Hydrogeological and geo-environmental simulations: a contribution to the algorithms and advanced applications'', INTAS-03-50-4395 |
2004-2006 | Principal investigator, ``Development of monotone and conservative difference schemes for problems of mathematical physics with mixed derivatives'', Belarusian Republican Foundation for Fundamental Research, F04M-136 |
- Advances in Computational Mathematics
- Advances in Water Resources (Certificate of Excellence in Reviewing, 2013)
- Applied Mathematics and Computation
- Applied Mathematical Modelling
- Applied Numerical Mathematics
- Computational and Applied Mathematics
- Computational Geosciences
- Computers and Mathematics with Applications
- Computer Methods in Applied Mechanics and Engineering
- Geofluids
- IMA Journal of Numerical Analysis
- International Journal of Heat and Mass Transfer
- Journal of Computational and Applied Mathematics
- Journal of Computational Physics
- Journal of Hydraulic Research
- Journal of Hydrology
- Journal of Porous Media
- Journal of Scientific Computing
- Mathematics of Computation
- Mathematical Reviews
- Nonlinearity
- Numerical Methods for Partial Differential Equations
- SIAM Journal on Numerical Analysis
- Transport in Porous Media
- Water Resources Research
Postdoctoral Researchers:
Elissa Eggenweiler
Ph.D. Students:
Linheng Ruan
Paula Strohbeck
Joscha Nickl (Aix-Marseille-Université, France)
Master Students:
Sven Kahle
Maurice Wolf
PhD theses:
- P. Strohbeck: Development of interface concepts using averaging techniques
since November 2022 - J. Nickl: Generalised interface conditions for multi-dimensional inertial flows in fluid-porous systems: mathematical analysis and model validation (Aix-Marseille Universite, France), since October 2022
- L. Ruan: Generalised interface conditions for multi-dimensional inertial
flows in fluid-porous systems: mathematical modelling and numerical analysis, since May 2022 - E. Eggenweiler: Interface conditions for arbitrary flows in Stokes-Darcy systems: derivation, analysis and validation (defended 2022)
Master theses:
- S. Kahle: Data-driven homogenization and boundary layer theory based on neural networks, 2023
- M. Wolf: Data-driven homogenization for two-phase flows in porous media, 2023
- P. Strohbeck: Efficient preconditioners for Stokes-Darcy problems, 2022
- N. Nutsch: Optical flow methods for PIV analysis in
fractured porous media, 2022 - J. Nickl: Generalised interface conditions for Stokes–Darcy problems
with symmetric stress tensor, 2022 - A. Baric: Boundary layers for coupled problems in porous media, 2019
- Y. Öztürk: Upscaling of capillary network structures, 2018
Bachelor theses:
- F. Castor: Preconditioners for saddle point problems in fluid dynamics, 2021
- S. Kahle: Stochastic gradient descent for image registration, 2021
- M. Wolf: Data-driven homogenization based on neural networks for permeability estimation, 2020
- P. Strohbeck: Optimization of sharp interface location for coupled porous-medium and free-flow systems, 2020
- N. Nutsch: Numerical optimization methods for image registration with mutual information, 2020
- A.-K. Kapfenstein: Numerical optimization algorithms for image registration, 2020
- J. Flad: Image Registration using Mutual Information, 2019
- T. Schwaderer: Krylov subspace methods for diffusion equations with
discontinuous coefficients, 2019 - L. Ruan: Newton-Krylov Methods for Porous Media Flows, 2019
- A. Savanovic: Efficient numerical methods for ill-conditioned linear
systems, 2019 - L. Igel: Numerical methods for equilibrium and kinetic models, 2018
- D. Beyer: Newton-Krylov methods for unsaturated flows in porous media, 2018
- S. Özkan: Homogenisation of flow and transport in porous media, 2018
- S. Matskevich: Mathematical modelling of filtration processes, 2018
- E. Eggenweiler: Mathematical modelling of flows in fractured porous media,
2017 - A. Baric: Mathematical modelling of coupled free and subsurface water
flow, 2017