This image shows Abhinav Jha

Abhinav Jha

Ph.D.

Postdoc, Research assistant
Institute of Applied Analysis and Numerical Simulation
Numerical Mathematics for High Performance Computing

Contact

+49 711 685 62069
+49 711 685 65507

GitHub

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.155

Office Hours

Monday, 3:00 - 4:00 pm

 

 

  1. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable continuum solvation from small molecules to proteins. WIREs Computational Molecular Science, 14(4), Article 4. https://doi.org/10.1002/wcms.1726
  2. Jha, A. (2024). Residual-Based a Posteriori Error Estimators for Algebraic Stabilizations. Applied Mathematics Letters, 157, 109192. https://doi.org/10.1016/j.aml.2024.109192
  3. Knobloch, P., Kuzmin, D., & Jha, A. (2024). Well-balanced convex limiting for finite element discretizations of steady convection-diffusion-reaction equations. Journal of Computational Physics, 518, 113305. https://doi.org/10.1016/j.jcp.2024.113305
  4. Jha, A., John, V., & Knobloch, P. (2023). Adaptive Grids in the Context of Algebraic Stabilizations for Convection-Diffusion-Reaction Equations. SIAM Journal on Scientific Computing, 45(4), Article 4. https://doi.org/10.1137/21m1466360
  5. Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. The Journal of Chemical Physics. https://doi.org/10.1063/5.0141025
  6. Jha, A., Pártl, O., Ahmed, N., & Kuzmin, D. (2022). An Assessment of Solvers for Algebraically Stabilized Discretizations of Convection-Diffusion-Reaction Equations. Journal of Numerical Mathematics, 0(0), Article 0. https://doi.org/10.1515/jnma-2021-0123
  7. Jha, A. (2021). Hanging nodes for higher-order Lagrange finite elements. Examples and Counterexamples, 1, 100025. https://doi.org/10.1016/j.exco.2021.100025
  8. Jha, A. (2021). A residual based a posteriori error estimators for AFC schemes for convection-diffusion equations. Computers &amp$\mathsemicolon$ Mathematics with Applications, 97, 86--99. https://doi.org/10.1016/j.camwa.2021.05.031
  9. Jha, A., & John, V. (2020). On Basic Iteration Schemes for Nonlinear AFC Discretizations. In Lecture Notes in Computational Science and Engineering (pp. 113--128). Springer International Publishing. https://doi.org/10.1007/978-3-030-41800-7_7
  10. Jha, A., & John, V. (2019). A study of solvers for nonlinear AFC discretizations of convection–diffusion equations. Computers &amp$\mathsemicolon$ Mathematics with Applications, 78(9), Article 9. https://doi.org/10.1016/j.camwa.2019.04.020

• 09/2022: PostDoc; Numerical Mathematics for High Performance Computing at Universität Stuttgart, with Benjamin Stamm

• 11/2021-08/2022: PostDoc; Applied and Computational Mathematics at RWTH Aachen University, with Benjamin Stamm

• 10/2017-10/2020: PhD in Numerical Analysis and Scientific Computing at Freie Universität, Berlin, with Volker John

• 07/2015-07/2017: M.Sc. Mathematics at Indian Institute of Technology, Roorkee

• 07/2012--7/2015: B.Sc.(H) Mathematics at St. Stephen’s College, Univeristy of Delhi

To the top of the page