Contact
+49 711 685 62040
+49 711 685 65507
Email
Website
Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.157
Office Hours
by appointment
Subject
Prof. Dr. Benjamin Stamm joined the Faculty of Mathematics at the University of Stuttgart in August 2022. Before moving to Stuttgart, he worked at RWTH Aachen University and Sorbonne Université UPMC Paris 6, after conducting research at the University of California, Berkeley, and Brown University. Prof. Stamm has an academic background with a Ph.D. and a master's degree in mathematics from École Polytechnique Fédérale de Lausanne (EPFL).
His research area focuses on numerical analysis, scientific computing, and simulations, in particular efficient discretizations and solvers for partial differential equations (PDEs) and eigenvalue problems, error certification and a posteriori error estimates, reduced basis method, and high-performance computing (HPC) implementations. Prof. Stamm develops scalable numerical methods and algorithms for complex problems in the natural sciences, with many of his research topics originating in computational chemistry and physics. The methods he develops are aimed at certifying the accuracy of computations and improving the efficiency of numerical methods. He also emphasizes the development of modular softwares that enable uniform implementation of these methods.
Prof. Stamm's research is characterized by its relevance to current research topics and applications, its interdisciplinary nature, and its focus on developing efficient and accurate methods that have an impact on various scientific and technical disciplines. The interdisciplinary nature of his work is evident in his collaboration with experts from different disciplines, such as chemists, physicists, and materials scientists.
- Corso, T. C., Hassan, M., Jha, A., & Stamm, B. (2024). An $L^2$-maximum principle for circular arcs on the disk.
- Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable Continuum Solvation from Small Molecules to Proteins. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2024-787rx
- Cheng, Y., Cancès, E., Ehrlacher, V., Misquitta, A. J., & Stamm, B. (2024). Multi-center decomposition of molecular densities: A numerical perspective.
- Pes, F., Polack, È., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible scheme based on density matrix extrapolation on the Grassmann manifold for Born-Oppenheimer Molecular Dynamics. https://doi.org/10.48550/arXiv.2307.05653
- Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2023). Embedded corrector problems for homogenization in linear elasticity. https://doi.org/10.48550/arXiv.2307.03537
- Dusson, G., Garrigue, L., & Stamm, B. (2023). A multipoint perturbation formula for eigenvalue problems. https://doi.org/10.48550/arXiv.2305.08151
- Jha, A., & Stamm, B. (2023). Domain decomposition method for Poisson--Boltzmann equations based on Solvent Excluded Surface. https://doi.org/10.48550/arXiv.2309.06862
- Jha, A., Nottoli, M., Quan, C., & Stamm, B. (2022). Computation of forces arising from the linear Poisson--Boltzmann method in the domain-decomposition paradigm. arXiv. https://doi.org/10.48550/ARXIV.2203.00552
- Claeys, X., Hassan, M., & Stamm, B. (2021). Continuity estimates for Riesz potentials on polygonal boundaries. arXiv. https://doi.org/10.48550/ARXIV.2107.10713
- Cagniart, N., Maday, Y., & Stamm, B. (2018). Model Order Reduction for Problems with Large Convection Effects. In Computational Methods in Applied Sciences (pp. 131--150). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_10
- Nochetto, R. H., & Stamm, B. (2018). A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra. In Computational Methods in Applied Sciences (pp. 371--394). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_20
- Bebendorf, M., Maday, Y., & Stamm, B. (2014). Comparison of Some Reduced Representation Approximations. In Reduced Order Methods for Modeling and Computational Reduction (pp. 67--100). Springer International Publishing. https://doi.org/10.1007/978-3-319-02090-7_3
- Kemlin, G., Carvalho Corso, T., Stamm, B., & Melcher, C. (2024). Replication Data for: “Numerical simulation of the Gross-Pitaevskii equation via vortex tracking.” DaRUS. https://doi.org/10.18419/DARUS-4229
- Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). Replication Data for: “ddX: Polarizable Continuum Solvation from Small Molecules to Proteins.” DaRUS. https://doi.org/10.18419/DARUS-4030
- Claeys, X., Hassan, M., & Stamm, B. (2024). Continuity estimates for Riesz potentials on polygonal boundaries. Partial Differential Equations and Applications. https://doi.org/10.1007/s42985-024-00280-4
- Lindgren, E. B., Avis, H., Miller, A., Stamm, B., Besley, E., & Stace, A. J. (2024). The significance of multipole interactions for the stability of regular structures composed from charged particles. Journal of Colloid and Interface Science, 663, 458–466. https://doi.org/10.1016/j.jcis.2024.02.146
- Bamer, F., Ebrahem, F., Markert, B., & Stamm, B. (2023). Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 30(3), Article 3. https://doi.org/10.1007/s11831-022-09861-1
- Dusson, G., Sigal, I. M., & Stamm, B. (2023). Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(340), Article 340. https://doi.org/10.1090/mcom/3774
- Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. The Journal of Chemical Physics. https://doi.org/10.1063/5.0141025
- Brehmer, P., Herbst, M. F., Wessel, S., Rizzi, M., & Stamm, B. (2023). Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E. https://doi.org/10.1103/PhysRevE.108.025306
- Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1. https://doi.org/10.1007/s11005-023-01645-3
- Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics. https://doi.org/10.1007/s11005-023-01645-3
- Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters. https://doi.org/10.1021/acs.jpclett.3c02098
- Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters, 9720--9726. https://doi.org/10.1021/acs.jpclett.3c02098
- Stamm, B., & Xiang, S. (2022). Boundary Integral Equations for Isotropic Linear Elasticity. Journal of Computational Mathematics, 40(6), Article 6. https://doi.org/10.4208/jcm.2103-m2019-0031
- Persson, P.-O., & Stamm, B. (2022). A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2021.110765
- Benda, R. V., Cancès, E., Ehrlacher, V., & Stamm, B. (2022). Multi-center decomposition of molecular densities: a mathematical perspective. The Journal of Chemical Physics. https://doi.org/10.1063/5.0076630
- Herbst, M. F., Stamm, B., Wessel, S., & Rizzi, M. (2022). Surrogate models for quantum spin systems based on reduced-order modeling. Physical Review E. https://doi.org/10.1103/PhysRevE.105.045303
- Mikhalev, A., Nottoli, M., & Stamm, B. (2022). Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method. The Journal of Chemical Physics, 157(11), Article 11. https://doi.org/10.1063/5.0104536
- Nottoli, M., Mikhalev, A., Stamm, B., & Lipparini, F. (2022). Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. The Journal of Physical Chemistry B, 126(43), Article 43. https://doi.org/10.1021/acs.jpcb.2c04579
- Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
- Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
- Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
- Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E., & Stamm, B. (2022). Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework. Journal of Chemical Theory and Computation, 18(10), Article 10. https://doi.org/10.1021/acs.jctc.2c00008
- Cairano, L. D., Stamm, B., & Calandrini, V. (2021). Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophysical Journal, 120(21), Article 21. https://doi.org/10.1016/j.bpj.2021.09.033
- Bamer, F., Alshabab, S. S., Paul, A., Ebrahem, F., Markert, B., & Stamm, B. (2021). Data-driven classification of elementary rearrangement events in silica glass. Scripta Materialia. https://doi.org/10.1016/j.scriptamat.2021.114179
- Heid, P., Stamm, B., & Wihler, T. P. (2021). Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. Journal of Computational Physics, 436, 110165. https://doi.org/10.1016/j.jcp.2021.110165
- Bramas, B., Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part II: complexity analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S625--S651. https://doi.org/10.1051/m2an/2020055
- Hassan, M., & Stamm, B. (2021). A Linear Scaling in Accuracy Numerical Method for Computing the Electrostatic Forces in the $N$-Body Dielectric Spheres Problem. Communications in Computational Physics, 29(2), Article 2. https://doi.org/10.4208/cicp.oa-2020-0090
- Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S65--S102. https://doi.org/10.1051/m2an/2020030
- Dusson, G., Sigal, I. M., & Stamm, B. (2021). The Feshbach-Schur map and perturbation theory. Partial Differential Equations, Spectral Theory, and Mathematical Physics, 65--88. https://doi.org/10.4171/ecr/18
- Polack, E., Dusson, G., Stamm, B., & Lipparini, F. (2021). Grassmann Extrapolation of Density Matrices for Born–Oppenheimer Molecular Dynamics. Journal of Chemical Theory and Computation, 17(11), Article 11. https://doi.org/10.1021/acs.jctc.1c00751
- Reusken, A., & Stamm, B. (2021). Analysis of the Schwarz Domain Decomposition Method for the Conductor-like Screening Continuum Model. SIAM Journal on Numerical Analysis, 59(2), Article 2. https://doi.org/10.1137/20m1342872
- Baptiste, J., Williamson, C., Fox, J., Stace, A. J., Hassan, M., Braun, S., Stamm, B., Mann, I., & Besley, E. (2021). The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 21(11), Article 11. https://doi.org/10.5194/acp-21-8735-2021
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2020). Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters. Mathematics of Computation. https://doi.org/10.1090/mcom/3549
- Ciaramella, G., Hassan, M., & Stamm, B. (2020). On the Scalability of the Schwarz Method. The SMAI Journal of Computational Mathematics, 6, 33--68. https://doi.org/10.5802/smai-jcm.61
- Polack, É., Mikhalev, A., Dusson, G., Stamm, B., & Lipparini, F. (2020). An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries. Molecular Physics, 118(19–20), Article 19–20. https://doi.org/10.1080/00268976.2020.1779834
- Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An Embedded Corrector Problem for Homogenization. Part I: Theory. Multiscale Modeling &$\mathsemicolon$ Simulation, 18(3), Article 3. https://doi.org/10.1137/18m120035x
- Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An embedded corrector problem for homogenization. Part II: Algorithms and discretization. Journal of Computational Physics, 407, 109254. https://doi.org/10.1016/j.jcp.2020.109254
- Duan, X., Quan, C., & Stamm, B. (2020). A boundary-partition-based Voronoi diagram of d-dimensional balls: definition, properties, and applications. Advances in Computational Mathematics, 46(3), Article 3. https://doi.org/10.1007/s10444-020-09765-3
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohral\’ık, M. (2020). Post-processing of the planewave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, 41(4), Article 4. https://doi.org/10.1093/imanum/draa044
- Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J., Maday, Y., Mennucci, B., & Lipparini, F. (2019). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor‐like screening model. International Journal of Quantum Chemistry. https://doi.org/10.1002/qua.25669
- Quan, C., Stamm, B., & Maday, Y. (2019). A Domain Decomposition Method for the Poisson--Boltzmann Solvation Models. SIAM Journal on Scientific Computing, 41(2), Article 2. https://doi.org/10.1137/18m119553x
- Lindgren, E. B., Quan, C., & Stamm, B. (2019). Theoretical analysis of screened many-body electrostatic interactions between charged polarizable particles. The Journal of Chemical Physics. https://doi.org/10.1063/1.5079515
- Nottoli, M., Stamm, B., Scalmani, G., & Lipparini, F. (2019). Quantum Calculations in Solution of Energies, Structures, and Properties with a Domain Decomposition Polarizable Continuum Model. Journal of Chemical Theory and Computation. https://doi.org/10.1021/acs.jctc.9b00640
- Lindgren, E. B., Stamm, B., Maday, Y., Besley, E., & Stace, A. J. (2018). Dynamic simulations of many-body electrostatic self-assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2115), Article 2115. https://doi.org/10.1098/rsta.2017.0143
- Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J.-P., Maday, Y., Mennucci, B., & Lipparini, F. (2018). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor-like screening model. International Journal of Quantum Chemistry, e25669. https://doi.org/10.1002/qua.25669
- Quan, C., Stamm, B., & Maday, Y. (2018). A domain decomposition method for the polarizable continuum model based on the solvent excluded surface. Mathematical Models and Methods in Applied Sciences, 28(07), Article 07. https://doi.org/10.1142/s0218202518500331
- Lindgren, E. B., Stace, A. J., Polack, E., Maday, Y., Stamm, B., & Besley, E. (2018). An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.015
- Lagardère, L., Jolly, L.-H., Lipparini, F., Aviat, F., Stamm, B., Jing, Z. F., Harger, M., Torabifard, H., Cisneros, G. A., Schnieders, M. J., Gresh, N., Maday, Y., Ren, P. Y., Ponder, J. W., & Piquemal, J.-P. (2018). Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science. https://doi.org/10.1039/c7sc04531j
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2018). Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numerische Mathematik. https://doi.org/10.1007/s00211-018-0984-0
- Stamm, B., Lagardère, L., Polack, É., Maday, Y., & Piquemal, J.-P. (2018). A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms. The Journal of Chemical Physics. https://doi.org/10.1063/1.5044541
- Aviat, F., Levitt, A., Stamm, B., Maday, Y., Ren, P., Ponder, J. W., Lagardere, L., & Piquemal, J.-P. (2017). Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations. Journal of Chemical Theory and Computation, 13(1), Article 1.
- Lindgren, E. B., Stamm, B., Chan, H.-K., Maday, Y., Stace, A. J., & Besley, E. (2017). The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus, 291, 245–253.
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2017). Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations. SIAM J. Numerical Analysis, 55(5), Article 5. http://dblp.uni-trier.de/db/journals/siamnum/siamnum55.html#CancesDMSV17
- Cances, E., Dusson, G., Maday, Y., Stamm, B., & Vohralik, M. (2017). GUARANTEED AND ROBUST A POSTERIORI BOUNDS FOR LAPLACE EIGENVALUES AND EIGENVECTORS: CONFORMING APPROXIMATIONS. Siam Journal on Numerical Analysis, 55(5), Article 5.
- Gatto, P., Lipparini, F., & Stamm, B. (2017). Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm. The Journal of Chemical Physics, 147(22), Article 22.
- Quan, C., & Stamm, B. (2017). Meshing molecular surfaces based on analytical implicit representation. Journal of Molecular Graphics and Modelling, 71, 200--210. https://doi.org/10.1016/j.jmgm.2016.11.008
- Lin, L., & Stamm, B. (2017). A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS USING NON-POLYNOMIAL BASIS FUNCTIONS. PART II: EIGENVALUE PROBLEMS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(5), Article 5.
- Quan, C., & Stamm, B. (2016). Mathematical analysis and calculation of molecular surfaces. Journal of Computational Physics, 322, 760–782.
- Lin, L., & Stamm, B. (2016). A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE. ESAIM: Mathematical Modelling and Numerical Analysis, 50(4), Article 4.
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2016). A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models. Journal of Computational Physics, 307, 446–459.
- Stamm, B., Cancès, E., Lipparini, F., & Maday, Y. (2016). A new discretization for the polarizable continuum model within the domain decomposition paradigm. Journal of Chemical Physics, 144(5), Article 5.
- Lagardère, L., Lipparini, F., Polack, E., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald. Journal of Chemical Theory and Computation, 11(6), Article 6. https://doi.org/10.1021/acs.jctc.5b00171
- Cancès, ?., Ehrlacher, V., Legoll, F., & Stamm, B. (2015). An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation. Comptes Rendus Mathematique, 353(9), Article 9.
- Stamm, B., & Wihler, T. P. (2015). A total variation discontinuous Galerkin approach for image restoration. International Journal of Numerical Analysis and Modeling, 12(1), Article 1.
- Caprasecca, S., Jurinovich, S., Lagardère, L., Stamm, B., & Lipparini, F. (2015). Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding. Journal of Chemical Theory and Computation, 11(2), Article 2.
- Lipparini, F., Lagardère, L., Raynaud, C., Stamm, B., Cancès, E., Mennucci, B., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Polarizable molecular dynamics in a polarizable continuum solvent. Journal of Chemical Theory and Computation, 11(2), Article 2.
- Hesthaven, J. S., Rozza, G., & Stamm, B. (2015). Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, 1–131.
- Cancès, T., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2014). A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. Comptes Rendus Mathematique, 352(11), Article 11.
- Lipparini, F., Scalmani, G., Lagardère, L., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. Journal of Chemical Physics, 141(18), Article 18.
- Lipparini, F., Lagardère, L., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2014). Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: I. Toward massively parallel direct space computations. Journal of Chemical Theory and Computation, 10(4), Article 4.
- Lipparini, F., Lagardère, L., Scalmani, G., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum calculations in solution for large to very large molecules: A new linear scaling QM/continuum approach. Journal of Physical Chemistry Letters, 5(6), Article 6.
- Hesthaven, J. S., Stamm, B., & Zhang, S. (2014). EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION AND REDUCED BASIS METHODS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 48(1), Article 1.
- Cances, E., Maday, Y., & Stamm, B. (2013). Domain decomposition for implicit solvation models. Journal of Chemical Physics, 139(5), Article 5.
- Lipparini, F., Stamm, B., Cances, E., Maday, Y., & Mennucci, B. (2013). Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. Journal of Chemical Theory and Computation, 9(8), Article 8.
- Maday, Y., & Stamm, B. (2013). LOCALLY ADAPTIVE GREEDY APPROXIMATIONS FOR ANISOTROPIC PARAMETER REDUCED BASIS SPACES. Siam Journal on Scientific Computing, 35(6), Article 6.
- Eftang, J. L., & Stamm, B. (2012). Parameter multi-domain hp’ empirical interpolation. International Journal For Numerical Methods in Engineering, 90(4), Article 4.
- Ganesh, M., Hesthaven, J. S., & Stamm, B. (2012). A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. Journal of Computational Physics, 231(23), Article 23.
- Hesthaven, J. S., Stamm, B., & Zhang, S. (2012). CERTIFIED REDUCED BASIS METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION. Siam Journal on Scientific Computing, 34(3), Article 3.
- Stamm, B. (2011). A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method. Journal of Computational and Applied Mathematics, 235(15), Article 15.
- Fares, M., Hesthaven, J. S., Maday, Y., & Stamm, B. (2011). The reduced basis method for the electric field integral equation. Journal of Computational Physics, 230(14), Article 14.
- Burman, E., & Stamm, B. (2011). Bubble stabilized discontinuous Galerkin methods on conforming and non-conforming meshes. Calcolo, 48(2), Article 2.
- Burman, E., & Stamm, B. (2010). BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES’ PROBLEM. Mathematical Models & Methods in Applied Sciences, 20(2), Article 2.
- Burman, E., & Stamm, B. (2010). Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems. Numerische Mathematik, 116(2), Article 2.
- Burman, E., Quarteroni, A., & Stamm, B. (2010). Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations. Journal of Scientific Computing, 43(3), Article 3.
- Stamm, B., & Wihler, T. P. (2010). Hp-optimal discontinuous galerkin methods for linear elliptic problems. Mathematics of Computation, 79(272), Article 272.
- Burman, E. N., & Stamm, B. (2009). Local discontinuous Galerkin method with reduced stabilization for diffusion equations. Communications in Computational Physics, 5(2–4), Article 2–4.
- Burman, E., & Stamm, B. (2008). LOW ORDER DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS. Siam Journal on Numerical Analysis, 47(1), Article 1.
- Stamm, Benjamin. (2008). Stabilization strategies for discontinuous Galerkin methods. https://doi.org/10.5075/EPFL-THESIS-4135
- Burman, E., & Stamm, B. (2008). Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment. Comptes Rendus Mathematique, 346(1–2), Article 1–2.
- Burman, E., Quarteroni, A., & Stamm, B. (2008). Stabilization strategies for high order methods for transport dominated problems. Bolletino Dell Unione Matematica Italiana, 1(1), Article 1.
- Burman, E., & Stamm, B. (2007). Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems. Journal of Scientific Computing, 33(2), Article 2.
- Burman, E., Ern, A., Mozolevski, I., & Stamm, B. (2007). The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders p >= 2. Comptes Rendus Mathematique, 345(10), Article 10.
- 08/22 – present: Professor at Dept. of Mathematics, University of Stuttgart
- 02/16 – 07/22: Professor at Dept. of Mathematics and Center for Computational Engineering Science, RWTH Aachen University
- 09/12 - 01/16: Assistant professor with CNRS chair, Sorbonne Université UPMC Paris 6
- 07/10 - 08/12: Charles B. Morrey Visiting Assistant Professor at the Dept. of Mathematics, University of California, Berkeley
- 10/08 - 06/10: Post-doctoral research associate, Brown University
- 07/08: PhD in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)
- 04/05: Master in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)
Current and past funded projects can be found on the research page.