This image shows Benjamin Stamm

Benjamin Stamm

Prof. Dr.

Head of Group
Institute of Applied Analysis and Numerical Simulation
Chair of Numerical Mathematics for High Performance Computing

Contact

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.157

Office Hours

by appointment

Subject

Research area:

Numerical analysis, scientific computing and simulations and in particular:

  • Efficient discretizations and solvers for partial differential equations (PDE's) and eigenvalue problems
  • Error certification and aposteriori error estimates
  • Reduced order modeling
  • High Performance Computing (HPC) implementations
  • Linear and nonlinear eigenvalue problems in quantum mechanics
  • Modeling, analysis and simulation of atomistic models

Applications:

  • Implicit solvation models in computational chemistry
  • Electronic structure calculations and density functional theory (DFT)
  • Polarizable force-fields
  • Electrostatic interaction of dielectric particles
  • Stochastic homogenization
  • Electromagnetic scattering

 

  1. Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method. The Journal of Chemical Physics, 158, 104105. https://doi.org/10.1063/5.0141025
  2. Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
  3. Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
  4. Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
  5. Herbst, M. F., Stamm, B., Wessel, S., & Rizzi, M. (2022). Surrogate models for quantum spin systems based on reduced-order modeling. Physical Review E, 105(4), Article 4. https://doi.org/10.1103/physreve.105.045303
  6. Benda, R. V., Cancès, E., Ehrlacher, V., & Stamm, B. (2022). Multi-center decomposition of molecular densities: a mathematical perspective. The Journal of Chemical Physics. https://doi.org/10.1063/5.0076630
  7. Persson, P.-O., & Stamm, B. (2022). A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space. Journal of Computational Physics, 449, 110765. https://doi.org/10.1016/j.jcp.2021.110765
  8. Jha, A., Nottoli, M., Quan, C., & Stamm, B. (2022). Computation of forces arising from the linear Poisson--Boltzmann method in the domain-decomposition paradigm. arXiv. https://doi.org/10.48550/ARXIV.2203.00552
  9. Stamm, B., & Xiang, S. (2022). Boundary Integral Equations for Isotropic Linear Elasticity. Journal of Computational Mathematics, 40(6), Article 6. https://doi.org/10.4208/jcm.2103-m2019-0031
  10. Jha, A., Nottoli, M., Quan, C., & Stamm, B. (2022). Computation of forces arising from the linear Poisson--Boltzmann method in the domain-decomposition paradigm. arXiv. https://doi.org/10.48550/ARXIV.2203.00552
  11. Bamer, F., Alshabab, S. S., Paul, A., Ebrahem, F., Markert, B., & Stamm, B. (2021). Data-driven classification of elementary rearrangement events in silica glass. Scripta Materialia. https://doi.org/10.1016/j.scriptamat.2021.114179
  12. Cairano, L. D., Stamm, B., & Calandrini, V. (2021). Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophysical Journal, 120(21), Article 21. https://doi.org/10.1016/j.bpj.2021.09.033
  13. Polack, E., Dusson, G., Stamm, B., & Lipparini, F. (2021). Grassmann Extrapolation of Density Matrices for Born–Oppenheimer Molecular Dynamics. Journal of Chemical Theory and Computation, 17(11), Article 11. https://doi.org/10.1021/acs.jctc.1c00751
  14. Heid, P., Stamm, B., & Wihler, T. P. (2021). Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. Journal of Computational Physics, 436, 110165. https://doi.org/10.1016/j.jcp.2021.110165
  15. Hassan, M., & Stamm, B. (2021). A Linear Scaling in Accuracy Numerical Method for Computing the Electrostatic Forces in the \textdollarN\textdollar-Body Dielectric Spheres Problem. Communications in Computational Physics, 29(2), Article 2. https://doi.org/10.4208/cicp.oa-2020-0090
  16. Hassan, M., & Stamm, B. (2021). A Linear Scaling in Accuracy Numerical Method for Computing the Electrostatic Forces in the $N$-Body Dielectric Spheres Problem. Communications in Computational Physics, 29(2), Article 2. https://doi.org/10.4208/cicp.oa-2020-0090
  17. Baptiste, J., Williamson, C., Fox, J., Stace, A. J., Hassan, M., Braun, S., Stamm, B., Mann, I., & Besley, E. (2021). The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 21(11), Article 11. https://doi.org/10.5194/acp-21-8735-2021
  18. Reusken, A., & Stamm, B. (2021). Analysis of the Schwarz Domain Decomposition Method for the Conductor-like Screening Continuum Model. SIAM Journal on Numerical Analysis, 59(2), Article 2. https://doi.org/10.1137/20m1342872
  19. Claeys, X., Hassan, M., & Stamm, B. (2021). Continuity estimates for Riesz potentials on polygonal boundaries. arXiv. https://doi.org/10.48550/ARXIV.2107.10713
  20. Bramas, B., Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part II: complexity analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S625--S651. https://doi.org/10.1051/m2an/2020055
  21. Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S65--S102. https://doi.org/10.1051/m2an/2020030
  22. Claeys, X., Hassan, M., & Stamm, B. (2021). Continuity estimates for Riesz potentials on polygonal boundaries. arXiv. https://doi.org/10.48550/ARXIV.2107.10713
  23. Dusson, G., Sigal, I. M., & Stamm, B. (2021). The Feshbach-Schur map and perturbation theory. Partial Differential Equations, Spectral Theory, and Mathematical Physics, 65--88. https://doi.org/10.4171/ecr/18
  24. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohral\’ık, M. (2020). Post-processing of the planewave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, 41(4), Article 4. https://doi.org/10.1093/imanum/draa044
  25. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2020). Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters. Mathematics of Computation. https://doi.org/10.1090/mcom/3549
  26. Polack, É., Mikhalev, A., Dusson, G., Stamm, B., & Lipparini, F. (2020). An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries. Molecular Physics, 118(19–20), Article 19–20. https://doi.org/10.1080/00268976.2020.1779834
  27. Duan, X., Quan, C., & Stamm, B. (2020). A boundary-partition-based Voronoi diagram of d-dimensional balls: definition, properties, and applications. Advances in Computational Mathematics, 46(3), Article 3. https://doi.org/10.1007/s10444-020-09765-3
  28. Ciaramella, G., Hassan, M., & Stamm, B. (2020). On the Scalability of the Schwarz Method. The SMAI Journal of Computational Mathematics, 6, 33--68. https://doi.org/10.5802/smai-jcm.61
  29. Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An embedded corrector problem for homogenization. Part II: Algorithms and discretization. Journal of Computational Physics, 407, 109254. https://doi.org/10.1016/j.jcp.2020.109254
  30. Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An Embedded Corrector Problem for Homogenization. Part I: Theory. Multiscale Modeling &amp$\mathsemicolon$ Simulation, 18(3), Article 3. https://doi.org/10.1137/18m120035x
  31. Quan, C., Stamm, B., & Maday, Y. (2019). A Domain Decomposition Method for the Poisson--Boltzmann Solvation Models. SIAM Journal on Scientific Computing, 41(2), Article 2. https://doi.org/10.1137/18m119553x
  32. Lindgren, E. B., Quan, C., & Stamm, B. (2019). Theoretical analysis of screened many-body electrostatic interactions between charged polarizable particles. The Journal of Chemical Physics. https://doi.org/10.1063/1.5079515
  33. Stamm, B., Lagardère, L., Polack, É., Maday, Y., & Piquemal, J.-P. (2018). A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms. The Journal of Chemical Physics. https://doi.org/10.1063/1.5044541
  34. Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J.-P., Maday, Y., Mennucci, B., & Lipparini, F. (2018). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor-like screening model. International Journal of Quantum Chemistry, e25669. https://doi.org/10.1002/qua.25669
  35. Cagniart, N., Maday, Y., & Stamm, B. (2018). Model Order Reduction for Problems with Large Convection Effects. In Computational Methods in Applied Sciences (pp. 131--150). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_10
  36. Nochetto, R. H., & Stamm, B. (2018). A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra. In Computational Methods in Applied Sciences (pp. 371--394). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_20
  37. Quan, C., Stamm, B., & Maday, Y. (2018). A domain decomposition method for the polarizable continuum model based on the solvent excluded surface. Mathematical Models and Methods in Applied Sciences, 28(07), Article 07. https://doi.org/10.1142/s0218202518500331
  38. Lindgren, E. B., Stamm, B., Maday, Y., Besley, E., & Stace, A. J. (2018). Dynamic simulations of many-body electrostatic self-assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2115), Article 2115. https://doi.org/10.1098/rsta.2017.0143
  39. Lagardère, L., Jolly, L.-H., Lipparini, F., Aviat, F., Stamm, B., Jing, Z. F., Harger, M., Torabifard, H., Cisneros, G. A., Schnieders, M. J., Gresh, N., Maday, Y., Ren, P. Y., Ponder, J. W., & Piquemal, J.-P. (2018). Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science. https://doi.org/10.1039/c7sc04531j
  40. Quan, C., & Stamm, B. (2017). Meshing molecular surfaces based on analytical implicit representation. Journal of Molecular Graphics and Modelling, 71, 200--210. https://doi.org/10.1016/j.jmgm.2016.11.008
  41. Aviat, F., Levitt, A., Stamm, B., Maday, Y., Ren, P., Ponder, J. W., Lagardere, L., & Piquemal, J.-P. (2017). Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations. Journal of Chemical Theory and Computation, 13(1), Article 1.
  42. Lindgren, E. B., Stamm, B., Chan, H.-K., Maday, Y., Stace, A. J., & Besley, E. (2017). The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus, 291, 245–253.
  43. Gatto, P., Lipparini, F., & Stamm, B. (2017). Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm. The Journal of Chemical Physics, 147(22), Article 22.
  44. Cances, E., Dusson, G., Maday, Y., Stamm, B., & Vohralik, M. (2017). GUARANTEED AND ROBUST A POSTERIORI BOUNDS FOR LAPLACE EIGENVALUES AND EIGENVECTORS: CONFORMING APPROXIMATIONS. Siam Journal on Numerical Analysis, 55(5), Article 5.
  45. Lin, L., & Stamm, B. (2017). A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS USING NON-POLYNOMIAL BASIS FUNCTIONS. PART II: EIGENVALUE PROBLEMS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(5), Article 5.
  46. Quan, C., & Stamm, B. (2016). Mathematical analysis and calculation of molecular surfaces. Journal of Computational Physics, 322, 760–782.
  47. Lin, L., & Stamm, B. (2016). A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE. ESAIM: Mathematical Modelling and Numerical Analysis, 50(4), Article 4.
  48. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2016). A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models. Journal of Computational Physics, 307, 446–459.
  49. Stamm, B., Cancès, E., Lipparini, F., & Maday, Y. (2016). A new discretization for the polarizable continuum model within the domain decomposition paradigm. Journal of Chemical Physics, 144(5), Article 5.
  50. Lagardère, L., Lipparini, F., Polack, E., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald. Journal of Chemical Theory and Computation, 11(6), Article 6. https://doi.org/10.1021/acs.jctc.5b00171
  51. Cancès, ?., Ehrlacher, V., Legoll, F., & Stamm, B. (2015). An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation. Comptes Rendus Mathematique, 353(9), Article 9.
  52. Stamm, B., & Wihler, T. P. (2015). A total variation discontinuous Galerkin approach for image restoration. International Journal of Numerical Analysis and Modeling, 12(1), Article 1.
  53. Caprasecca, S., Jurinovich, S., Lagardère, L., Stamm, B., & Lipparini, F. (2015). Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding. Journal of Chemical Theory and Computation, 11(2), Article 2.
  54. Lipparini, F., Lagardère, L., Raynaud, C., Stamm, B., Cancès, E., Mennucci, B., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Polarizable molecular dynamics in a polarizable continuum solvent. Journal of Chemical Theory and Computation, 11(2), Article 2.
  55. Hesthaven, J. S., Rozza, G., & Stamm, B. (2015). Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, 1–131.
  56. Lagardère, L., Lipparini, F., Polack, E., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald. Journal of Chemical Theory and Computation, 11(6), Article 6.
  57. Cancès, T., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2014). A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. Comptes Rendus Mathematique, 352(11), Article 11.
  58. Lipparini, F., Scalmani, G., Lagardère, L., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. Journal of Chemical Physics, 141(18), Article 18.
  59. Lipparini, F., Lagardère, L., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2014). Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: I. Toward massively parallel direct space computations. Journal of Chemical Theory and Computation, 10(4), Article 4.
  60. Bebendorf, M., Maday, Y., & Stamm, B. (2014). Comparison of Some Reduced Representation Approximations. In Reduced Order Methods for Modeling and Computational Reduction (pp. 67--100). Springer International Publishing. https://doi.org/10.1007/978-3-319-02090-7_3
  61. Lipparini, F., Lagardère, L., Scalmani, G., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum calculations in solution for large to very large molecules: A new linear scaling QM/continuum approach. Journal of Physical Chemistry Letters, 5(6), Article 6.
  62. Hesthaven, J. S., Stamm, B., & Zhang, S. (2014). EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION AND REDUCED BASIS METHODS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 48(1), Article 1.
  63. Cances, E., Maday, Y., & Stamm, B. (2013). Domain decomposition for implicit solvation models. Journal of Chemical Physics, 139(5), Article 5.
  64. Lipparini, F., Stamm, B., Cances, E., Maday, Y., & Mennucci, B. (2013). Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. Journal of Chemical Theory and Computation, 9(8), Article 8.
  65. Maday, Y., & Stamm, B. (2013). LOCALLY ADAPTIVE GREEDY APPROXIMATIONS FOR ANISOTROPIC PARAMETER REDUCED BASIS SPACES. Siam Journal on Scientific Computing, 35(6), Article 6.
  66. Eftang, J. L., & Stamm, B. (2012). Parameter multi-domain hp’ empirical interpolation. International Journal For Numerical Methods in Engineering, 90(4), Article 4.
  67. Ganesh, M., Hesthaven, J. S., & Stamm, B. (2012). A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. Journal of Computational Physics, 231(23), Article 23.
  68. Hesthaven, J. S., Stamm, B., & Zhang, S. (2012). CERTIFIED REDUCED BASIS METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION. Siam Journal on Scientific Computing, 34(3), Article 3.
  69. Eftang, J. L., & Stamm, B. (2012). Parameter multi-domain “hp” empirical interpolation. International Journal for Numerical Methods in Engineering, 90(4), Article 4.
  70. Stamm, B. (2011). A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method. Journal of Computational and Applied Mathematics, 235(15), Article 15.
  71. Fares, M., Hesthaven, J. S., Maday, Y., & Stamm, B. (2011). The reduced basis method for the electric field integral equation. Journal of Computational Physics, 230(14), Article 14.
  72. Burman, E., & Stamm, B. (2011). Bubble stabilized discontinuous Galerkin methods on conforming and non-conforming meshes. Calcolo, 48(2), Article 2.
  73. Burman, E., & Stamm, B. (2010). BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES’ PROBLEM. Mathematical Models & Methods in Applied Sciences, 20(2), Article 2.
  74. Burman, E., & Stamm, B. (2010). Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems. Numerische Mathematik, 116(2), Article 2.
  75. Burman, E., Quarteroni, A., & Stamm, B. (2010). Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations. Journal of Scientific Computing, 43(3), Article 3.
  76. Stamm, B., & Wihler, T. P. (2010). Hp-optimal discontinuous galerkin methods for linear elliptic problems. Mathematics of Computation, 79(272), Article 272.
  77. Burman, E. N., & Stamm, B. (2009). Local discontinuous Galerkin method with reduced stabilization for diffusion equations. Communications in Computational Physics, 5(2–4), Article 2–4.
  78. Burman, E., & Stamm, B. (2008). LOW ORDER DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS. Siam Journal on Numerical Analysis, 47(1), Article 1.
  79. Stamm, Benjamin. (2008). Stabilization strategies for discontinuous Galerkin methods [Lausanne, EPFL]. https://doi.org/10.5075/EPFL-THESIS-4135
  80. Burman, E., & Stamm, B. (2008). Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment. Comptes Rendus Mathematique, 346(1–2), Article 1–2.
  81. Burman, E., Quarteroni, A., & Stamm, B. (2008). Stabilization strategies for high order methods for transport dominated problems. Bolletino Dell Unione Matematica Italiana, 1(1), Article 1.
  82. Burman, E., & Stamm, B. (2007). Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems. Journal of Scientific Computing, 33(2), Article 2.
  83. Burman, E., Ern, A., Mozolevski, I., & Stamm, B. (2007). The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders p >= 2. Comptes Rendus Mathematique, 345(10), Article 10.
  • 08/22 – present: Professor at Dept. of Mathematics, University of Stuttgart
  • 02/16 – 07/22: Professor at Dept. of Mathematics and Center for Computational Engineering Science, RWTH Aachen University
  • 09/12 - 01/16: Assistant professor with CNRS chair, Sorbonne Université UPMC Paris 6
  • 07/10 - 08/12: Charles B. Morrey Visiting Assistant Professor at the Dept. of Mathematics, University of California, Berkeley
  • 10/08 - 06/10: Post-doctoral research associate, Brown University
  • 07/08: PhD in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)
  • 04/05: Master in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)
To the top of the page