This image shows Benjamin Stamm

Benjamin Stamm

Prof. Dr.

Head of Group
Institute of Applied Analysis and Numerical Simulation
Chair of Numerical Mathematics for High Performance Computing

Contact

+49 711 685 62040
+49 711 685 65507

Website

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.157

Office Hours

by appointment

Subject

Prof. Dr. Benjamin Stamm joined the Faculty of Mathematics at the University of Stuttgart in August 2022. Before moving to Stuttgart, he worked at RWTH Aachen University and Sorbonne Université UPMC Paris 6, after conducting research at the University of California, Berkeley, and Brown University. Prof. Stamm has an academic background with a Ph.D. and a master's degree in mathematics from École Polytechnique Fédérale de Lausanne (EPFL).

His research area focuses on numerical analysis, scientific computing, and simulations, in particular efficient discretizations and solvers for partial differential equations (PDEs) and eigenvalue problems, error certification and a posteriori error estimates, reduced basis method, and high-performance computing (HPC) implementations. Prof. Stamm develops scalable numerical methods and algorithms for complex problems in the natural sciences, with many of his research topics originating in computational chemistry and physics. The methods he develops are aimed at certifying the accuracy of computations and improving the efficiency of numerical methods. He also emphasizes the development of modular softwares that enable uniform implementation of these methods.

Prof. Stamm's research is characterized by its relevance to current research topics and applications, its interdisciplinary nature, and its focus on developing efficient and accurate methods that have an impact on various scientific and technical disciplines. The interdisciplinary nature of his work is evident in his collaboration with experts from different disciplines, such as chemists, physicists, and materials scientists.

  1. Cheng, Y., Cancès, E., Ehrlacher, V., Misquitta, A. J., & Stamm, B. (2024). Multi-center decomposition of molecular densities: A numerical perspective.
  2. Cheng, Y., & Stamm, B. (2024). Approximations of the Iterative Stockholder Analysis scheme using exponential basis functions. https://arxiv.org/abs/2412.05079
  3. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). ddX: Polarizable Continuum Solvation from Small Molecules to Proteins. American Chemical Society (ACS). https://doi.org/10.26434/chemrxiv-2024-787rx
  4. Pes, F., Polack, È., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible scheme based on density matrix extrapolation on the Grassmann manifold for Born-Oppenheimer Molecular Dynamics. https://doi.org/10.48550/arXiv.2307.05653
  5. Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2023). Embedded corrector problems for homogenization in linear elasticity. https://doi.org/10.48550/arXiv.2307.03537
  6. Dusson, G., Garrigue, L., & Stamm, B. (2023). A multipoint perturbation formula for eigenvalue problems. https://doi.org/10.48550/arXiv.2305.08151
  7. Jha, A., & Stamm, B. (2023). Domain decomposition method for Poisson--Boltzmann equations based on Solvent Excluded Surface. https://doi.org/10.48550/arXiv.2309.06862
  8. Jha, A., Nottoli, M., Quan, C., & Stamm, B. (2022). Computation of forces arising from the linear Poisson--Boltzmann method in the domain-decomposition paradigm. arXiv. https://doi.org/10.48550/ARXIV.2203.00552
  9. Claeys, X., Hassan, M., & Stamm, B. (2021). Continuity estimates for Riesz potentials on polygonal boundaries. arXiv. https://doi.org/10.48550/ARXIV.2107.10713
  10. Fiorenza, L. (2024). Preconditioning in Steepest Descent Methods for Discretized Elliptic Eigenvalue Problems. https://opencms.uni-stuttgart.de/fak8/ians/nmh/theses/data/bsc_lea_fiorenza.pdf
  11. Mustermann, M. (2024). Test-preprint.
  12. Heck, A. (2024). Entwicklung eines CAMMP-Workshops zum Thema Verschlüsselung. https://opencms.uni-stuttgart.de/fak8/ians/nmh/theses/data/msc_alicia_heck.pdf
  13. Lee, J. (2023). A Posteriori Error Estimators for Laplace Eigenvalue Problems. https://opencms.uni-stuttgart.de/fak8/ians/nmh/theses/data/msc_junghoon_lee.pdf
  14. Cagniart, N., Maday, Y., & Stamm, B. (2018). Model Order Reduction for Problems with Large Convection Effects. In Computational Methods in Applied Sciences (pp. 131--150). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_10
  15. Nochetto, R. H., & Stamm, B. (2018). A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra. In Computational Methods in Applied Sciences (pp. 371--394). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_20
  16. Bebendorf, M., Maday, Y., & Stamm, B. (2014). Comparison of Some Reduced Representation Approximations. In Reduced Order Methods for Modeling and Computational Reduction (pp. 67--100). Springer International Publishing. https://doi.org/10.1007/978-3-319-02090-7_3
  17. Kemlin, G., Carvalho Corso, T., Stamm, B., & Melcher, C. (2024). Replication Data for: “Numerical simulation of the Gross-Pitaevskii equation via vortex tracking.” DaRUS. https://doi.org/10.18419/DARUS-4229
  18. Nottoli, M., Herbst, M. F., Mikhalev, A., Jha, A., Lipparini, F., & Stamm, B. (2024). Replication Data for: “ddX: Polarizable Continuum Solvation from Small Molecules to Proteins.” DaRUS. https://doi.org/10.18419/DARUS-4030
  19. Theisen, L., & Stamm, B. (2024). A Scalable Two-Level Domain Decomposition Eigensolver for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Scientific Computing, 46(5), Article 5. https://doi.org/10.1137/23m161848x
  20. Lindgren, E. B., Avis, H., Miller, A., Stamm, B., Besley, E., & Stace, A. J. (2024). The significance of multipole interactions for the stability of regular structures composed from charged particles. Journal of Colloid and Interface Science, 663, 458–466. https://doi.org/10.1016/j.jcis.2024.02.146
  21. Claeys, X., Hassan, M., & Stamm, B. (2024). Continuity estimates for Riesz potentials on polygonal boundaries. Partial Differential Equations and Applications. https://doi.org/10.1007/s42985-024-00280-4
  22. Bamer, F., Ebrahem, F., Markert, B., & Stamm, B. (2023). Molecular Mechanics of Disordered Solids. Archives of Computational Methods in Engineering, 30(3), Article 3. https://doi.org/10.1007/s11831-022-09861-1
  23. Dusson, G., Sigal, I. M., & Stamm, B. (2023). Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(340), Article 340. https://doi.org/10.1090/mcom/3774
  24. Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear scaling computation of forces for the domain-decomposition linear Poisson–Boltzmann method. The Journal of Chemical Physics. https://doi.org/10.1063/5.0141025
  25. Brehmer, P., Herbst, M. F., Wessel, S., Rizzi, M., & Stamm, B. (2023). Reduced basis surrogates for quantum spin systems based on tensor networks. Physical Review E. https://doi.org/10.1103/PhysRevE.108.025306
  26. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics. https://doi.org/10.1007/s11005-023-01645-3
  27. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1. https://doi.org/10.1007/s11005-023-01645-3
  28. Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters. https://doi.org/10.1021/acs.jpclett.3c02098
  29. Pes, F., Polack, É., Mazzeo, P., Dusson, G., Stamm, B., & Lipparini, F. (2023). A Quasi Time-Reversible Scheme Based on Density Matrix Extrapolation on the Grassmann Manifold for Born–Oppenheimer Molecular Dynamics. The Journal of Physical Chemistry Letters, 9720--9726. https://doi.org/10.1021/acs.jpclett.3c02098
  30. Persson, P.-O., & Stamm, B. (2022). A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2021.110765
  31. Stamm, B., & Xiang, S. (2022). Boundary Integral Equations for Isotropic Linear Elasticity. Journal of Computational Mathematics, 40(6), Article 6. https://doi.org/10.4208/jcm.2103-m2019-0031
  32. Benda, R. V., Cancès, E., Ehrlacher, V., & Stamm, B. (2022). Multi-center decomposition of molecular densities: a mathematical perspective. The Journal of Chemical Physics. https://doi.org/10.1063/5.0076630
  33. Herbst, M. F., Stamm, B., Wessel, S., & Rizzi, M. (2022). Surrogate models for quantum spin systems based on reduced-order modeling. Physical Review E. https://doi.org/10.1103/PhysRevE.105.045303
  34. Mikhalev, A., Nottoli, M., & Stamm, B. (2022). Linearly scaling computation of ddPCM solvation energy and forces using the fast multipole method. The Journal of Chemical Physics, 157(11), Article 11. https://doi.org/10.1063/5.0104536
  35. Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
  36. Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
  37. Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
  38. Nottoli, M., Mikhalev, A., Stamm, B., & Lipparini, F. (2022). Coarse-Graining ddCOSMO through an Interface between Tinker and the ddX Library. The Journal of Physical Chemistry B, 126(43), Article 43. https://doi.org/10.1021/acs.jpcb.2c04579
  39. Hassan, M., Williamson, C., Baptiste, J., Braun, S., Stace, A. J., Besley, E., & Stamm, B. (2022). Manipulating Interactions between Dielectric Particles with Electric Fields : A General Electrostatic Many-Body Framework. Journal of Chemical Theory and Computation, 18(10), Article 10. https://doi.org/10.1021/acs.jctc.2c00008
  40. Cairano, L. D., Stamm, B., & Calandrini, V. (2021). Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophysical Journal, 120(21), Article 21. https://doi.org/10.1016/j.bpj.2021.09.033
  41. Bamer, F., Alshabab, S. S., Paul, A., Ebrahem, F., Markert, B., & Stamm, B. (2021). Data-driven classification of elementary rearrangement events in silica glass. Scripta Materialia. https://doi.org/10.1016/j.scriptamat.2021.114179
  42. Heid, P., Stamm, B., & Wihler, T. P. (2021). Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. Journal of Computational Physics, 436, 110165. https://doi.org/10.1016/j.jcp.2021.110165
  43. Bramas, B., Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part II: complexity analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S625--S651. https://doi.org/10.1051/m2an/2020055
  44. Hassan, M., & Stamm, B. (2021). A Linear Scaling in Accuracy Numerical Method for Computing the Electrostatic Forces in the $N$-Body Dielectric Spheres Problem. Communications in Computational Physics, 29(2), Article 2. https://doi.org/10.4208/cicp.oa-2020-0090
  45. Hassan, M., & Stamm, B. (2021). An integral equation formulation of the N-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S65--S102. https://doi.org/10.1051/m2an/2020030
  46. Dusson, G., Sigal, I. M., & Stamm, B. (2021). The Feshbach-Schur map and perturbation theory. Partial Differential Equations, Spectral Theory, and Mathematical Physics, 65--88. https://doi.org/10.4171/ecr/18
  47. Polack, E., Dusson, G., Stamm, B., & Lipparini, F. (2021). Grassmann Extrapolation of Density Matrices for Born–Oppenheimer Molecular Dynamics. Journal of Chemical Theory and Computation, 17(11), Article 11. https://doi.org/10.1021/acs.jctc.1c00751
  48. Reusken, A., & Stamm, B. (2021). Analysis of the Schwarz Domain Decomposition Method for the Conductor-like Screening Continuum Model. SIAM Journal on Numerical Analysis, 59(2), Article 2. https://doi.org/10.1137/20m1342872
  49. Baptiste, J., Williamson, C., Fox, J., Stace, A. J., Hassan, M., Braun, S., Stamm, B., Mann, I., & Besley, E. (2021). The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 21(11), Article 11. https://doi.org/10.5194/acp-21-8735-2021
  50. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2020). Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters. Mathematics of Computation. https://doi.org/10.1090/mcom/3549
  51. Ciaramella, G., Hassan, M., & Stamm, B. (2020). On the Scalability of the Schwarz Method. The SMAI Journal of Computational Mathematics, 6, 33--68. https://doi.org/10.5802/smai-jcm.61
  52. Polack, É., Mikhalev, A., Dusson, G., Stamm, B., & Lipparini, F. (2020). An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries. Molecular Physics, 118(19–20), Article 19–20. https://doi.org/10.1080/00268976.2020.1779834
  53. Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An Embedded Corrector Problem for Homogenization. Part I: Theory. Multiscale Modeling &amp$\mathsemicolon$ Simulation, 18(3), Article 3. https://doi.org/10.1137/18m120035x
  54. Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An embedded corrector problem for homogenization. Part II: Algorithms and discretization. Journal of Computational Physics, 407, 109254. https://doi.org/10.1016/j.jcp.2020.109254
  55. Duan, X., Quan, C., & Stamm, B. (2020). A boundary-partition-based Voronoi diagram of d-dimensional balls: definition, properties, and applications. Advances in Computational Mathematics, 46(3), Article 3. https://doi.org/10.1007/s10444-020-09765-3
  56. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohral\’ık, M. (2020). Post-processing of the planewave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, 41(4), Article 4. https://doi.org/10.1093/imanum/draa044
  57. Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J., Maday, Y., Mennucci, B., & Lipparini, F. (2019). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor‐like screening model. International Journal of Quantum Chemistry. https://doi.org/10.1002/qua.25669
  58. Quan, C., Stamm, B., & Maday, Y. (2019). A Domain Decomposition Method for the Poisson--Boltzmann Solvation Models. SIAM Journal on Scientific Computing, 41(2), Article 2. https://doi.org/10.1137/18m119553x
  59. Lindgren, E. B., Quan, C., & Stamm, B. (2019). Theoretical analysis of screened many-body electrostatic interactions between charged polarizable particles. The Journal of Chemical Physics. https://doi.org/10.1063/1.5079515
  60. Nottoli, M., Stamm, B., Scalmani, G., & Lipparini, F. (2019). Quantum Calculations in Solution of Energies, Structures, and Properties with a Domain Decomposition Polarizable Continuum Model. Journal of Chemical Theory and Computation. https://doi.org/10.1021/acs.jctc.9b00640
  61. Lindgren, E. B., Stamm, B., Maday, Y., Besley, E., & Stace, A. J. (2018). Dynamic simulations of many-body electrostatic self-assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2115), Article 2115. https://doi.org/10.1098/rsta.2017.0143
  62. Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J.-P., Maday, Y., Mennucci, B., & Lipparini, F. (2018). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor-like screening model. International Journal of Quantum Chemistry, e25669. https://doi.org/10.1002/qua.25669
  63. Quan, C., Stamm, B., & Maday, Y. (2018). A domain decomposition method for the polarizable continuum model based on the solvent excluded surface. Mathematical Models and Methods in Applied Sciences, 28(07), Article 07. https://doi.org/10.1142/s0218202518500331
  64. Lindgren, E. B., Stace, A. J., Polack, E., Maday, Y., Stamm, B., & Besley, E. (2018). An integral equation approach to calculate electrostatic interactions in many-body dielectric systems. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2018.06.015
  65. Lagardère, L., Jolly, L.-H., Lipparini, F., Aviat, F., Stamm, B., Jing, Z. F., Harger, M., Torabifard, H., Cisneros, G. A., Schnieders, M. J., Gresh, N., Maday, Y., Ren, P. Y., Ponder, J. W., & Piquemal, J.-P. (2018). Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science. https://doi.org/10.1039/c7sc04531j
  66. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2018). Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework. Numerische Mathematik. https://doi.org/10.1007/s00211-018-0984-0
  67. Stamm, B., Lagardère, L., Polack, É., Maday, Y., & Piquemal, J.-P. (2018). A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms. The Journal of Chemical Physics. https://doi.org/10.1063/1.5044541
  68. Aviat, F., Levitt, A., Stamm, B., Maday, Y., Ren, P., Ponder, J. W., Lagardere, L., & Piquemal, J.-P. (2017). Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations. Journal of Chemical Theory and Computation, 13(1), Article 1.
  69. Lindgren, E. B., Stamm, B., Chan, H.-K., Maday, Y., Stace, A. J., & Besley, E. (2017). The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus, 291, 245–253.
  70. Gatto, P., Lipparini, F., & Stamm, B. (2017). Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm. The Journal of Chemical Physics, 147(22), Article 22.
  71. Cances, E., Dusson, G., Maday, Y., Stamm, B., & Vohralik, M. (2017). GUARANTEED AND ROBUST A POSTERIORI BOUNDS FOR LAPLACE EIGENVALUES AND EIGENVECTORS: CONFORMING APPROXIMATIONS. Siam Journal on Numerical Analysis, 55(5), Article 5.
  72. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2017). Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations. SIAM J. Numerical Analysis, 55(5), Article 5. http://dblp.uni-trier.de/db/journals/siamnum/siamnum55.html#CancesDMSV17
  73. Quan, C., & Stamm, B. (2017). Meshing molecular surfaces based on analytical implicit representation. Journal of Molecular Graphics and Modelling, 71, 200--210. https://doi.org/10.1016/j.jmgm.2016.11.008
  74. Lin, L., & Stamm, B. (2017). A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS USING NON-POLYNOMIAL BASIS FUNCTIONS. PART II: EIGENVALUE PROBLEMS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(5), Article 5.
  75. Quan, C., & Stamm, B. (2016). Mathematical analysis and calculation of molecular surfaces. Journal of Computational Physics, 322, 760–782.
  76. Lin, L., & Stamm, B. (2016). A posteriori error estimates for discontinuous Galerkin methods using non-polynomial basis functions Part I: Second order linear PDE. ESAIM: Mathematical Modelling and Numerical Analysis, 50(4), Article 4.
  77. Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2016). A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models. Journal of Computational Physics, 307, 446–459.
  78. Stamm, B., Cancès, E., Lipparini, F., & Maday, Y. (2016). A new discretization for the polarizable continuum model within the domain decomposition paradigm. Journal of Chemical Physics, 144(5), Article 5.
  79. Lagardère, L., Lipparini, F., Polack, E., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald. Journal of Chemical Theory and Computation, 11(6), Article 6. https://doi.org/10.1021/acs.jctc.5b00171
  80. Cancès, ?., Ehrlacher, V., Legoll, F., & Stamm, B. (2015). An embedded corrector problem to approximate the homogenized coefficients of an elliptic equation. Comptes Rendus Mathematique, 353(9), Article 9.
  81. Stamm, B., & Wihler, T. P. (2015). A total variation discontinuous Galerkin approach for image restoration. International Journal of Numerical Analysis and Modeling, 12(1), Article 1.
  82. Caprasecca, S., Jurinovich, S., Lagardère, L., Stamm, B., & Lipparini, F. (2015). Achieving linear scaling in computational cost for a fully polarizable MM/continuum embedding. Journal of Chemical Theory and Computation, 11(2), Article 2.
  83. Lipparini, F., Lagardère, L., Raynaud, C., Stamm, B., Cancès, E., Mennucci, B., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2015). Polarizable molecular dynamics in a polarizable continuum solvent. Journal of Chemical Theory and Computation, 11(2), Article 2.
  84. Hesthaven, J. S., Rozza, G., & Stamm, B. (2015). Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Certified Reduced Basis Methods for Parametrized Partial Differential Equations, 1–131.
  85. Cancès, T., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2014). A perturbation-method-based a posteriori estimator for the planewave discretization of nonlinear Schrödinger equations. Comptes Rendus Mathematique, 352(11), Article 11.
  86. Lipparini, F., Scalmani, G., Lagardère, L., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. Journal of Chemical Physics, 141(18), Article 18.
  87. Lipparini, F., Lagardère, L., Stamm, B., Cancès, E., Schnieders, M., Ren, P., Maday, Y., & Piquemal, J.-P. (2014). Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: I. Toward massively parallel direct space computations. Journal of Chemical Theory and Computation, 10(4), Article 4.
  88. Lipparini, F., Lagardère, L., Scalmani, G., Stamm, B., Cancès, E., Maday, Y., Piquemal, J.-P., Frisch, M. J., & Mennucci, B. (2014). Quantum calculations in solution for large to very large molecules: A new linear scaling QM/continuum approach. Journal of Physical Chemistry Letters, 5(6), Article 6.
  89. Hesthaven, J. S., Stamm, B., & Zhang, S. (2014). EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION AND REDUCED BASIS METHODS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 48(1), Article 1.
  90. Cances, E., Maday, Y., & Stamm, B. (2013). Domain decomposition for implicit solvation models. Journal of Chemical Physics, 139(5), Article 5.
  91. Lipparini, F., Stamm, B., Cances, E., Maday, Y., & Mennucci, B. (2013). Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. Journal of Chemical Theory and Computation, 9(8), Article 8.
  92. Maday, Y., & Stamm, B. (2013). LOCALLY ADAPTIVE GREEDY APPROXIMATIONS FOR ANISOTROPIC PARAMETER REDUCED BASIS SPACES. Siam Journal on Scientific Computing, 35(6), Article 6.
  93. Eftang, J. L., & Stamm, B. (2012). Parameter multi-domain hp’ empirical interpolation. International Journal For Numerical Methods in Engineering, 90(4), Article 4.
  94. Ganesh, M., Hesthaven, J. S., & Stamm, B. (2012). A reduced basis method for electromagnetic scattering by multiple particles in three dimensions. Journal of Computational Physics, 231(23), Article 23.
  95. Hesthaven, J. S., Stamm, B., & Zhang, S. (2012). CERTIFIED REDUCED BASIS METHOD FOR THE ELECTRIC FIELD INTEGRAL EQUATION. Siam Journal on Scientific Computing, 34(3), Article 3.
  96. Stamm, B. (2011). A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method. Journal of Computational and Applied Mathematics, 235(15), Article 15.
  97. Fares, M., Hesthaven, J. S., Maday, Y., & Stamm, B. (2011). The reduced basis method for the electric field integral equation. Journal of Computational Physics, 230(14), Article 14.
  98. Burman, E., & Stamm, B. (2011). Bubble stabilized discontinuous Galerkin methods on conforming and non-conforming meshes. Calcolo, 48(2), Article 2.
  99. Burman, E., & Stamm, B. (2010). BUBBLE STABILIZED DISCONTINUOUS GALERKIN METHOD FOR STOKES’ PROBLEM. Mathematical Models & Methods in Applied Sciences, 20(2), Article 2.
  100. Burman, E., & Stamm, B. (2010). Bubble stabilized discontinuous Galerkin method for parabolic and elliptic problems. Numerische Mathematik, 116(2), Article 2.
  101. Burman, E., Quarteroni, A., & Stamm, B. (2010). Interior Penalty Continuous and Discontinuous Finite Element Approximations of Hyperbolic Equations. Journal of Scientific Computing, 43(3), Article 3.
  102. Stamm, B., & Wihler, T. P. (2010). Hp-optimal discontinuous galerkin methods for linear elliptic problems. Mathematics of Computation, 79(272), Article 272.
  103. Burman, E. N., & Stamm, B. (2009). Local discontinuous Galerkin method with reduced stabilization for diffusion equations. Communications in Computational Physics, 5(2–4), Article 2–4.
  104. Burman, E., & Stamm, B. (2008). LOW ORDER DISCONTINUOUS GALERKIN METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS. Siam Journal on Numerical Analysis, 47(1), Article 1.
  105. Burman, E., & Stamm, B. (2008). Symmetric and non-symmetric discontinuous Galerkin methods stabilized using bubble enrichment. Comptes Rendus Mathematique, 346(1–2), Article 1–2.
  106. Stamm, Benjamin. (2008). Stabilization strategies for discontinuous Galerkin methods. https://doi.org/10.5075/EPFL-THESIS-4135
  107. Burman, E., Quarteroni, A., & Stamm, B. (2008). Stabilization strategies for high order methods for transport dominated problems. Bolletino Dell Unione Matematica Italiana, 1(1), Article 1.
  108. Burman, E., & Stamm, B. (2007). Minimal stabilization for discontinuous galerkin finite element methods for hyperbolic problems. Journal of Scientific Computing, 33(2), Article 2.
  109. Burman, E., Ern, A., Mozolevski, I., & Stamm, B. (2007). The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders p >= 2. Comptes Rendus Mathematique, 345(10), Article 10.

Current and previous lectures can be found on the teaching page.

  • 08/22 – present: Professor at Dept. of Mathematics, University of Stuttgart
  • 02/16 – 07/22: Professor at Dept. of Mathematics and Center for Computational Engineering Science, RWTH Aachen University
  • 09/12 - 01/16: Assistant professor with CNRS chair, Sorbonne Université UPMC Paris 6
  • 07/10 - 08/12: Charles B. Morrey Visiting Assistant Professor at the Dept. of Mathematics, University of California, Berkeley
  • 10/08 - 06/10: Post-doctoral research associate, Brown University
  • 07/08: PhD in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)
  • 04/05: Master in Mathematics, École Polytechnique Fédérale de Lausanne (EPFL)

Current and past funded projects can be found on the research page.

To the top of the page