Contact
+49 711 685 65546
+4971168565507
Email
Website
Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.154
Subject
Mathematical quantum physics, numerical analysis, functional analysis. More information on my webpage.
- Garrigue, L. (2022). Building Kohn–Sham Potentials for Ground and Excited States. Archive for Rational Mechanics and Analysis, 245(2), 949--1003. https://doi.org/10.1007/s00205-022-01804-1
- Cancès, E., Garrigue, L., & Gontier, D. (2022). A simple derivation of moiré-scale continuous models for twisted bilayer graphene. arXiv. https://doi.org/10.48550/ARXIV.2206.05685
- Garrigue, L. (2021). Some Properties of the Potential-to-Ground State Map in Quantum Mechanics. Communications in Mathematical Physics, 386(3), 1803--1844. https://doi.org/10.1007/s00220-021-04140-9
- Cancès, É., Garrigue, L., & Gontier, D. (2021). Second-order homogenization of periodic Schrödinger operators with highly oscillating potentials. arXiv. https://doi.org/10.48550/ARXIV.2112.12008
- Garrigue, L. (2020). Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem. II. The Pauli Hamiltonian. DOCUMENTA MATHEMATICA, Vol 25(2020), 869–898. https://doi.org/10.25537/DM.2020V25.869-898
- Garrigue, L. (2019). Hohenberg–Kohn Theorems for Interactions, Spin and Temperature. Journal of Statistical Physics, 177(3), 415--437. https://doi.org/10.1007/s10955-019-02365-6
- Garrigue, L. (2018). Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem. Mathematical Physics, Analysis and Geometry, 21(3), Article 3. https://doi.org/10.1007/s11040-018-9287-z
- Feb 2023 - : Tenure track at Cergy'university
- 2022 - Jan 2023 : Postdoc in numerical analysis and mathematical physics at Stuttgart's university, with Benjamin Stamm
- 2020 - 2022 : Postdoc in mathematical physics and numerical analysis at the École des ponts, with Éric Cancès
- 2017 - 2020 : PhD in mathematical physics at the university Paris-Dauphine, with Mathieu Lewin
- 2012 - 2017 : Student and civil servant at the École normale supérieure in Paris. Master's degree in theoretical physics and master's degree in fundamental mathematics