Louis Garrigue


Postdoc, research assistant
Institute of Applied Analysis and Numerical Simulation
Numerical Mathematics for High Performance Computing


Pfaffenwaldring 57
70569 Stuttgart
Room: 7.154


Mathematical quantum physics, numerical analysis, functional analysis. More information on my webpage.

  1. Garrigue, L. (2022). Building Kohn–Sham Potentials for Ground and Excited States. Archive for Rational Mechanics and Analysis, 245(2), 949--1003. https://doi.org/10.1007/s00205-022-01804-1
  2. Cancès, E., Garrigue, L., & Gontier, D. (2022). A simple derivation of moiré-scale continuous models for twisted bilayer graphene. arXiv. https://doi.org/10.48550/ARXIV.2206.05685
  3. Garrigue, L. (2021). Some Properties of the Potential-to-Ground State Map in Quantum Mechanics. Communications in Mathematical Physics, 386(3), 1803--1844. https://doi.org/10.1007/s00220-021-04140-9
  4. Cancès, É., Garrigue, L., & Gontier, D. (2021). Second-order homogenization of periodic Schrödinger operators with highly oscillating potentials. arXiv. https://doi.org/10.48550/ARXIV.2112.12008
  5. Garrigue, L. (2020). Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem. II. The Pauli Hamiltonian. DOCUMENTA MATHEMATICA, Vol 25(2020), 869–898. https://doi.org/10.25537/DM.2020V25.869-898
  6. Garrigue, L. (2019). Hohenberg–Kohn Theorems for Interactions, Spin and Temperature. Journal of Statistical Physics, 177(3), 415--437. https://doi.org/10.1007/s10955-019-02365-6
  7. Garrigue, L. (2018). Unique Continuation for Many-Body Schrödinger Operators and the Hohenberg-Kohn Theorem. Mathematical Physics, Analysis and Geometry, 21(3), Article 3. https://doi.org/10.1007/s11040-018-9287-z
  • Feb 2023  - : Tenure track at Cergy'university
  • 2022 - Jan 2023 : Postdoc in numerical analysis and mathematical physics at Stuttgart's university, with Benjamin Stamm
  • 2020 - 2022 : Postdoc in mathematical physics and numerical analysis at the École des ponts, with Éric Cancès
  • 2017 - 2020 : PhD in mathematical physics at the university Paris-Dauphine, with Mathieu Lewin
  • 2012 - 2017 : Student and civil servant at the École normale supérieure in Paris. Master's degree in theoretical physics and master's degree in fundamental mathematics
To the top of the page