Hao Tang

PhD

Research assistant (A.v. Humboldt fellowship)
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.165

  1. 2021

    1. D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise,” J. Nonlinear Sci., vol. 31, no. 6, Art. no. 6, 2021, doi: doi.org/10.1007/s00332-021-09755-9.
    2. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” NoDEA Nonlinear Differential Equations Appl., vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
    3. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” J. Dynam. Differential Equations, vol. 33, pp. 1823–1852, 2021, doi: https://doi.org/10.1007/s10884-020-09872-1.
  2. 2020

    1. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, A. Bressan, M. Lewicka, D. Wang, and Y. Zheng, Eds., in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, vol. 10. AIMS Series on Applied Mathematics, 2020, pp. 449–456. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    2. L. Ostrowski and C. Rohde, “Phase field modelling for compressible droplet impingement,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, A. Bressan, M. Lewicka, D. Wang, and Y. Zheng, Eds., in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, vol. 10. AIMS Series on Applied Mathematics, 2020, pp. 586–593. [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
  3. 2013

    1. A. Barth and A. Lang, “L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations,” Stochastic Process. Appl., vol. 123, no. 5, Art. no. 5, 2013, doi: 10.1016/j.spa.2013.01.003.
    2. A. Barth, A. Lang, and C. Schwab, “Multilevel Monte Carlo method for parabolic stochastic partial  differential equations,” BIT, vol. 53, no. 1, Art. no. 1, 2013, doi: 10.1007/s10543-012-0401-5.
  4. 2012

    1. A. Barth and A. Lang, “Simulation of stochastic partial differential equations using finite  element methods,” Stochastics, vol. 84, no. 2–3, Art. no. 2–3, 2012, doi: 10.1080/17442508.2010.523466.
    2. A. Barth and A. Lang, “Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises,” Appl. Math. Optim., vol. 66, no. 3, Art. no. 3, 2012, doi: 10.1007/s00245-012-9176-y.
    3. A. Barth and A. Lang, “Multilevel Monte Carlo method with applications to stochastic  partial differential equations,” Int. J. Comput. Math., vol. 89, no. 18, Art. no. 18, 2012, doi: 10.1080/00207160.2012.701735.
  5. 2006

    1. D. Diehl and C. Rohde, “On the structure of MHD shock waves in diffusive-dispersive media,” J. Math. Fluid Mech., vol. 8, no. 1, Art. no. 1, 2006, doi: 10.1007/s00021-004-0149-z.
To the top of the page