Prof. Dr.

Kunibert Siebert

Head of Group
Institute of Applied Analysis and Numerical Simulation
Numerical Mathematics for High Performance Computing

Contact

+49 711 685-62040
+49 711 685-65507

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 7.157

Subject

  1. 2017

    1. Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution Retrieved from https://arxiv.org/abs/1610.06814.
  2. 2016

    1. Gaspoz, Fernando D., Heine, C.-J., & Siebert, K. G. Optimal Grading of the Newest Vertex Bisection and H1-Stability of the L2-Projection. IMA Journal of Numerical Analysis, 36(3), 1217–1241.
  3. 2014

    1. Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints, 52(3), 1832–1861.
  4. 2013

    1. Heine, C.-J., Möller, C. A., Peter, M. A., & Siebert, K. G. Multiscale Adaptive Simulations of Concrete Carbonation Taking into Account the Evolution of the Microstructure. In C. Hellmich (Ed.), C. Hellmich, Poromechanics V (pp. 1964–1972). Wien: ASCE.
  5. 2012

    1. Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Estimators for Control Constrained Optimal Control Problems. In G. Leugering, S. Engell, A. Griewank, M. Hinze, & A. Griewank (Eds.), G. Leugering, S. Engell, A. Griewank, M. Hinze, & A. Griewank, Constrained Optimiziation and Optimal Control for Partial Differential Equations (pp. 431–443). Springer.
    2. Kreuzer, C., Möller, C. A., Schmidt, A., & Siebert, K. G. Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation, 32(4), 1375–1403.
    3. Siebert, K. G. Mathematically Founded Design of Adaptive Finite Element Software. In G. Naldi & G. Russo (Eds.), G. Naldi & G. Russo, Multiscale and Adaptivity (Vol. 2040, pp. 227–309). Cetraro: Springer.
    4. Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Estimators for Control Constrained Optimal Control Problems. In Leugering et al (Ed.), Leugering et al, Constrained Optimiziation and Optimal Control for Partial Differential Equations (Vol. 160, pp. 431--443). Springer.
  6. 2011

    1. Kreuzer, C., & Siebert, K. G. Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679–716.
    2. Siebert, K. G. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, 31(3), 947–970.
    3. Kreuzer, C., & Siebert, K. G. Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679--716.
    4. Siebert, K. G. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, 31(3), 947--970.
  7. 2010

    1. Kohls, K., Rösch, A., & Siebert, K. G. Analysis of Adaptive Finite Elements for Constrained Optimal Control Problems, (7, 2), 308–311.
  8. 2009

    1. Nochetto, R. H., Siebert, K. G., & Veeser, A. Theory of Adaptive Finite Element Methods: An Introduction. In R. A. DeVore & A. Kunoth (Eds.), R. A. DeVore & A. Kunoth, Multiscale, Nonlinear and Adaptive Approximation (pp. 409–542). Springer.
  9. 2008

    1. Antil, H., Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Biochips. In U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, & W. Zulehner (Eds.), U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, & W. Zulehner, Domain decomposition methods in science and engineering XVII (pp. 305–312). St. Wolfgang and Strobl, Austria: Springer.
    2. Cascon, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method, 46(5), 2524–2550.
    3. Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Elements, 18(5), 707–737.
    4. Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method. SIAM Journal on Numerical Analysis, 46(5), 2524--2550.
    5. Köster, D., Kriessl, O., & Siebert, K. G. Design of Finite Element Tools for Coupled Surface and Volume Meshes, 1(3), 245–274.
    6. Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Elements. Mathematical Models and Methods in Applied Science, 18, 707--737.
    7. Antil, H., Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio\textbackslash-chips. In L. et al (Ed.), L. et al, Domain Decomposition Methods in Science and Engineering XVII (Vol. 60, pp. 305--312). Springer.
  10. 2007

    1. Siebert, K. G., & Veeser, A. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements, 18(1), 260–289.
    2. Ganter, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Numerical Simulation of Piezoelectrically Agitated Surface Acoustic Waves on Microfluidic Biochips. Computing and Visualization in Science, 10(3), 145--161.
    3. Morin, P., Siebert, K. G., & Veeser, A. Basic convergence results for conforming adaptive finite elements. In Proceedings in applied mathematics and mechanics (pp. 1026001–1026002). Zürich.
    4. Cascon, M. J., Nochetto, R. H., & Siebert, K. G. Design and convergence of AFEM in H(DIV), 17(11), 1849–1881.
    5. Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Optimal Cardinality of an Adaptive Finite Element Method doi:10.4171/OWR/2007/29.
    6. Morin, P., Siebert, K. G., & Veeser, A. Convergence of Finite Elements Adapted for Weaker Norms. In V. Cutello, G. Fotia, & L. Puccio (Eds.), V. Cutello, G. Fotia, & L. Puccio, Applied and Industrial Matematics in Italy - II (Vol. 75, pp. 468--479). Hackensack, NJ: World Sci. Publ.
    7. Cascón, J. M., Nochetto, R. H., & Siebert, K. G. Design and Convergence of AFEM in $H^div$. Mathematical Models & Methods in Applied Sciences, 17(11), 1849--1881.
    8. Siebert, K. G., Cascon, J. M., Kreuzer, C., & Nochetto, R. H. Optimal cardinality of an adaptive finite element method. In Oberwolfach Reports (pp. 1719–1722). Oberwolfach.
    9. Morin, P., Siebert, K. G., & Veeser, A. Convergence of Finite Elements Adapted for Weak Norms. In C. Vincenzo (Ed.), C. Vincenzo, Applied and industrial mathematics in italy II (pp. 468–479). Baia Samuele: World Scientific.
    10. Morin, P., Siebert, K. G., & Veeser, A. A basic convergence result for conforming adaptive finite element methods. In Oberwolfach Reports (pp. 1705–1708). Oberwolfach.
    11. Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K., & Wixforth, A. Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, 10(3), 145–161.
    12. Siebert, K. G., & Veeser, A. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements. SIAM Journal on Optimization, 18(1), 260--289.
    13. Morin, P., Siebert, K. G., & Veeser, A. Basic Convergence Results for Conforming Adaptive Finite Elements. Proceedings in Applied Mathematics and Mechanics, 7(1), 1026001--1026002.
    14. Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Element Methods doi:10.4171/OWR/2007/29.
  11. 2006

    1. Nochetto, R. H., Schmidt, A., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations, 104(4), 515–538.
  12. 2005

    1. Siebert, K. G., & Veeser, A. Convergence of the Equidistribution Strategy. In Oberwolfach reports (pp. 37/2005; 2129–2131). Oberwolfach.
    2. Schmidt, A., & Siebert, K. G. Design of adaptive finite element software : the finite element toolbox ALBERTA. (T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, & T. Schlick, Eds., T. J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, & T. Schlick)Lecture notes in computational science and engineering. Berlin: Springer doi:10.1007/b138692.
    3. Nochetto, R. H., Siebert, K. G., & Veeser, A. Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems, 42(5), 2118–2135.
    4. Nochetto, R. H., Siebert, K. G., & Veeser, A. Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems. SIAM Journal on Numerical Analysis, 42(5), 2118--2135.
  13. 2004

    1. Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones, 84(9), 632–646.
    2. Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones. ZAMM Journal of Applied Mathematics and Mechanics, 84(9), 632–646.
    3. Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones. ZAMM Journal of Applied Mathematics and Mechanics, 84(9), 632--646.
  14. 2003

    1. Dörfler, W., & Siebert, K. G. An Adaptive Finite Element Method for Minimal Surfaces. In H. K. S. Hildebrandt (Ed.), H. K. S. Hildebrandt, Geometric Analysis and Nonlinear Partial Differential Equations (pp. 146–175). Springer.
    2. Dörfler, W., & Siebert, K. G. An Adaptive Finite Element Method for Minimal Surfaces. In S. Hildebrandt & H. Karcher (Eds.), S. Hildebrandt & H. Karcher, Geometric Analysis and Nonlinear Partial Differential Equations (pp. 146–175). Berlin: Springer.
    3. Nochetto, R. H., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Control for Elliptic Obstacle Problems. Numerische Mathematik, 95(1), 163–195.
    4. Boschert, S., Schmidt, A., Siebert, K. G., Bänsch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method.
    5. Morin, P., Nochetto, R. H., & Siebert, K. G. Local Problems on Stars: A Posteriori Error Estimators, Convergence, and Performance, 72(243), 1067–1097.
    6. Boschert, S., Schmidt, A., Siebert, K. G., Baensch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method. In W. Jäger & H. J. Krebs (Eds.), W. Jäger & H. J. Krebs, Mathematics - Key Technology for the Future (pp. 315–330). Berlin: Springer.
    7. Boschert, S., Schmidt, A., Siebert, K. G., Bänsch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman  Method.
    8. Haasdonk, B., Ohlberger, M., Rumpf, M., Schmidt, A., & Siebert, K. G. Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations, 70(3), 181–204.
    9. Morin, P., Nochetto, R. H., & Siebert, K. G. Local Problems on Stars: A Posteriori Error Estimators, Convergence, and Performance. Mathematics of Computation, 72(243), 1067--1097.
  15. 2002

    1. Lin, K.-M., Boschert, S., Dold, P., Benz, K. W., Kriessl, O., Schmidt, A., … Dziuk, G. Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te. Journal of Crystal Growth, 237–239, 1736--1740.
    2. Lin, K., Boschert, S., Dold, P., Benz, K. W., Kriessl, O., Schmidt, A., … Dziuk, D. Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te. In Journal of Crystal Growth (pp. 1736–1740). Kyōto: Elsevier.
    3. Morin, P., Nochetto, R. H., & Siebert, K. G. Convergence of Adaptive Finite Element Methods, 44(4), 631–658.
    4. Morin, P., Nochetto, R. H., & Siebert, K. G. Convergence of Adaptive Finite Element Methods. SIAM Review, 44(4), 631--658.
  16. 2001

    1. Haasdonk, B., Ohlberger, M., Rumpf, M., Schmidt, A., & Siebert, K. G. h-p-Multiresolution Visualization of Adaptive Finite Element Simulations. Preprintserie des Mathematischen Instituts. Freiburg: Mathematics Department, University of Freiburg.
    2. Schmidt, A., & Siebert, K. G. ALBERT - Software for Scientific Computations and Applications. In Acta mathematica Universitatis Comenianae (pp. 105–122). Podbanské.
    3. Schmidt, A., & Siebert, K. G. \textbackslashtextsfALBERT — Software for Scientific Computations and Applications. Acta Mathematica Universitatis Comenianae, New Ser., 70(1), 105--122.
  17. 2000

    1. Deckelnick, K., & Siebert, K. G. $W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle  Problems. IMA Journal of Numerical Analysis, 20(3), 481–498.
    2. Deckelnick, K., & Siebert, K. G. W1∞-convergence of the discrete free boundary for obstacle problems, 20(3), 481–498.
    3. Schmidt, A., & Siebert, K. G. A posteriori estimators for the h - p version of the finite element method in 1D, 35(1), 43–66.
    4. Morin, P., Nochetto, R. H., & Siebert, K. G. Data Oscillation and Convergence of Adaptive FEM. SIAM Journal on Numerical Analysis, 38(2), 466–488.
    5. Boschert, S., Schmidt, A., & Siebert, K. G. Numerical Simulation of Crystal Growth by the Vertical Bridgman Method. In J. S. Szmyd & K. Suzuki (Eds.), J. S. Szmyd & K. Suzuki, Modelling of Transport Phenomena in Crystal Growth (pp. 315–330). Southampton: WIT Press.
    6. Morin, P., Nochetto, R. H., & Siebert, K. G. Data Oscillation and Convergence of Adaptive FEM. SIAM Journal on Numerical Analysis, 38(2), 466--488.
  18. 1999

    1. Schmidt, A., & Siebert, K. G. Abstract Data Structures for a Finite Element Package: Design Principles  of ALBERT. Journal of Applied Mathematics and Mechanics, 79(1), 49–52.
    2. Schmidt, A., & Siebert, K. G. Abstract data structures for a finite element package : Design principles of ALBERTA, 79(1), 49–52.
    3. Schmidt, A., & Siebert, K. G. Abstract Data Structures for a Finite Element Package: Design Principles of ALBERT. Journal of Applied Mathematics and Mechanics, 79(1), 49--52.
  19. 1998

    1. Schmidt, A., & Siebert, K. G. Concepts of the Finite Element Toolbox ALBERT.
    2. Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen. Universität Augsburg.
    3. Schmidt, A., & Siebert, K. G. Concepts of the finite element toolbox ALBERT. Preprint Series of the Department of Mathematics / Albert Ludwigs University of Freiburg.
    4. Boschert, S., Kaiser, T., Schmidt, A., Siebert, K. G., Benz, K.-W., & Dziuk, G. Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical Bridgman Technique. In S. N. Atluri & P. O’Donoghue (Eds.), S. N. Atluri & P. O’Donoghue, Modeling and Simulation Based Engineering. Palmdale, CA: Tech Science Press.
    5. Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.
    6. Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.
    7. Schmidt, A., & Siebert, K. G. Concepts of the Finite Element Toolbox ALBERT.
  20. 1996

    1. Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement. Numerische Mathematik, 73(3), 373–398.
    2. Schmidt, A., & Siebert, K. G. Numerical Aspects of Parabolic Free Boundary Problems - Adaptive  Finite Element Methods.
    3. Rumpf, M., Schmidt, A., & Siebert, K. G. Functions Defining Arbitrary Meshes --- A Flexible Interface Between  Numerical Data and Visualization Routines. Computer Graphics Forum, 15(2), 129–141.
    4. Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement. Numerische Mathematik, 73(3), 373--398.
    5. Schmidt, A., & Siebert, K. G. Numerical Aspects of Parabolic Free Boundary Problems - Adaptive Finite Element Methods.
  21. 1995

    1. Bänsch, E., & Siebert, K. G. A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques. Preprintserie des Mathematischen Instituts. Freiburg: Mathematics Department, University of Freiburg.
    2. Rumpf, M., Schmidt, A., & Siebert, K. G. On a Unified Visualization Approach for Data from Advanced Numerical Methods. In R. Scateni, J. J. van Wijk, & P. Zanarini (Eds.), R. Scateni, J. J. van Wijk, & P. Zanarini, Visualization in scientific computing ’95 (pp. 35–44). Chia, Italy: Springer.
    3. Rumpf, M., Schmidt, A., & Siebert, K. G. On a Unified Visualization Approach for Data from Advanced Numerical Methods. In P. Z. R. Scateni, J. Van Wijk (Ed.), P. Z. R. Scateni, J. Van Wijk, Visualization in Scientific Computing ’95 (pp. 35--44). Springer.
  22. 1993

    1. Siebert, K. G. Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure. Impact of Computing in Science and Engineering, 5(4), 271–284.
    2. Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement (PhD dissertation).
    3. Siebert, K. G. Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure. IMPACT of Computing in Science and Engineering, 5(4), 271--284.
  23. 1990

    1. Siebert, K. G. Ein Finite-Elemente-Verfahren zur Lösung der inkompressiblen Euler-Gleichungen auf der Sphäre mit der Stromlinien-Diffusions-Methode.
    2. Siebert, K. G. Ein Finite-Elemente-Verfahren zur Loesung der inkompressiblen Euler-Gleichungen auf der Sphaere mit der Stromlinien-Diffusions-Methode (PhD dissertation).
  • Parallel-Adaptive Open Source Software für Diffusions dominierte Multi-Feld Prozesse
  • Adaptive Finite Elemente für Parabolische Partielle Differentialgleichungen
  • Konvergenz und Optimalität von adaptiven Finiten Elementen für Elliptische Partielle Differenzialgleichungen
  • Entwicklung und Analyse von Adaptiven Finite Elemente Diskretisierungen für Optimalsteuerungsprobleme
  • Entwicklung und Implementierung von Adaptiver Finite Elemente Software
  • Verallgemeinerte Newtonsche und elektrorheologische Fluide
  • Numerische Methoden für Flüssigkeiten mit vielen freien kapillaren Grenzen
 

Numerical Mathematics for High Performance Computing

To the top of the page