Contact
Subject
2017
- Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution Retrieved from https://arxiv.org/abs/1610.06814.
2016
- Gaspoz, F. D., Heine, C.-J., & Siebert, K. G. Optimal grading of the newest vertex bisection and H-1-stability of the L-2-projection. IMA JOURNAL OF NUMERICAL ANALYSIS, 36(3), 1217–1241.
2014
- Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Analysis of Optimal Control Problems with Control Constraints, 52(3), 1832–1861.
2013
- Heine, C.-J., Möller, C. A., Peter, M. A., & Siebert, K. G. Multiscale adaptive simulations of concrete carbonation taking into account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Eds.), Poromechanics (Vol. V, pp. 1964--1972). ASCE.
2012
- Kohls, K., Rösch, A., & Siebert, K. G. A Posteriori Error Estimators for Control Constrained Optimal Control Problems. In L. et al (Ed.), Constrained Optimiziation and Optimal Control for Partial Differential Equations (Vol. 160, pp. 431--443). Springer.
- Kreuzer, C., Möller, C. A., Schmidt, A., & Siebert, K. G. Design and Convergence Analysis for an Adaptive Discretization of the Heat Equation, 32(4), 1375–1403.
- Siebert, K. G. Mathematically Founded Design of Adaptive Finite Element Software. In G. Naldi & G. Russo (Eds.), Multiscale and Adaptivity (Vol. 2040, pp. 227–309). Cetraro: Springer.
2011
- Kreuzer, C., & Siebert, K. G. Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679–716.
- Siebert, K. G. A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, 31(3), 947–970.
- Kreuzer, C., & Siebert, K. G. Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679--716.
2010
- Kohls, K., Rösch, A., & Siebert, K. G. Analysis of Adaptive Finite Elements for Constrained Optimal Control Problems, (7, 2), 308–311.
2009
- Nochetto, R. H., Siebert, K. G., & Veeser, A. Theory of Adaptive Finite Element Methods: An Introduction. In R. A. DeVore & A. Kunoth (Eds.), Multiscale, Nonlinear and Adaptive Approximation (pp. 409–542). Springer.
2008
- Antil, H., Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Biochips. In U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund, & W. Zulehner (Eds.), Domain decomposition methods in science and engineering XVII (pp. 305–312). St. Wolfgang and Strobl, Austria: Springer.
- Cascon, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method, 46(5), 2524–2550.
- Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Elements, 18(5), 707–737.
- Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method. SIAM Journal on Numerical Analysis, 46(5), 2524--2550.
- Köster, D., Kriessl, O., & Siebert, K. G. Design of Finite Element Tools for Coupled Surface and Volume Meshes, 1(3), 245–274.
- Antil, H., Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio\textbackslash-chips. In L. et al (Ed.), Domain Decomposition Methods in Science and Engineering XVII (Vol. 60, pp. 305--312). Springer.
2007
- Siebert, K. G., & Veeser, A. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements, 18(1), 260–289.
- Ganter, A., Hoppe, R. H. W., Köster, D., Siebert, K. G., & Wixforth, A. Numerical Simulation of Piezoelectrically Agitated Surface Acoustic Waves on Microfluidic Biochips. Computing and Visualization in Science, 10(3), 145--161.
- Morin, P., Siebert, K. G., & Veeser, A. Basic Convergence Results for Conforming Adaptive Finite Elements. Proceedings in Applied Mathematics and Mechanics, 7(1), 1026001--1026002.
- Cascon, M. J., Nochetto, R. H., & Siebert, K. G. Design and convergence of AFEM in H(DIV), 17(11), 1849–1881.
- Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. Optimal Cardinality of an Adaptive Finite Element Method doi:10.4171/OWR/2007/29.
- Morin, P., Siebert, K. G., & Veeser, A. Convergence of Finite Elements Adapted for Weaker Norms. In V. Cutello, G. Fotia, & L. Puccio (Eds.), Applied and Industrial Matematics in Italy - II (Vol. 75, pp. 468--479). Hackensack, NJ: World Sci. Publ.
- Cascón, J. M., Nochetto, R. H., & Siebert, K. G. Design and Convergence of AFEM in $H^div$. Mathematical Models & Methods in Applied Sciences, 17(11), 1849--1881.
- Siebert, K. G., Cascon, J. M., Kreuzer, C., & Nochetto, R. H. Optimal cardinality of an adaptive finite element method. In Oberwolfach Reports (pp. 1719–1722). Oberwolfach.
- Morin, P., Siebert, K. G., & Veeser, A. Convergence of Finite Elements Adapted for Weak Norms. In C. Vincenzo (Ed.), Applied and industrial mathematics in italy II (pp. 468–479). Baia Samuele: World Scientific.
- Morin, P., Siebert, K. G., & Veeser, A. A Basic Convergence Result for Conforming Adaptive Finite Element Methods doi:10.4171/OWR/2007/29.
- Gantner, A., Hoppe, R. H. W., Köster, D., Siebert, K., & Wixforth, A. Numerical simulation of piezoelectrically agitated surface acoustic waves on microfluidic biochips, 10(3), 145–161.
2006
- Nochetto, R. H., Schmidt, A., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Estimates for Monotone Semi-linear Equations, 104(4), 515–538.
2005
- Siebert, K. G., & Veeser, A. Convergence of the Equidistribution Strategy. In Oberwolfach reports (pp. 37/2005; 2129–2131). Oberwolfach.
- Schmidt, A., & Siebert, K. G. Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA. (B. T.J., M. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, & T. Schlick, Eds.)Lecture Notes in Computational Science and Engineering (Vol. 42). Berlin: Springer doi:10.1007/b138692.
- Nochetto, R. H., Siebert, K. G., & Veeser, A. Fully Localized A Posteriori Error Estimators and Barrier Sets for Contact Problems. SIAM Journal on Numerical Analysis, 42(5), 2118--2135.
2004
- Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones, 84(9), 632–646.
- Bamberger, A., Bänsch, E., & Siebert, K. G. Experimental and numerical investigation of edge tones. ZAMM Journal of Applied Mathematics and Mechanics, 84(9), 632–646.
2003
- Dörfler, W., & Siebert, K. G. An Adaptive Finite Element Method for Minimal Surfaces. In H. K. S. Hildebrandt (Ed.), Geometric Analysis and Nonlinear Partial Differential Equations (pp. 146–175). Springer.
- Dörfler, W., & Siebert, K. G. An Adaptive Finite Element Method for Minimal Surfaces. In S. Hildebrandt & H. Karcher (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations (pp. 146–175). Berlin: Springer.
- Nochetto, R. H., Siebert, K. G., & Veeser, A. Pointwise A Posteriori Error Control for Elliptic Obstacle Problems. Numerische Mathematik, 95(1), 163–195.
- Boschert, S., Schmidt, A., Siebert, K. G., Bänsch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method.
- Morin, P., Nochetto, R. H., & Siebert, K. G. Local Problems on Stars: A Posteriori Error Estimators, Convergence, and Performance, 72(243), 1067–1097.
- Boschert, S., Schmidt, A., Siebert, K. G., Baensch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method. In W. Jäger & H. J. Krebs (Eds.), Mathematics - Key Technology for the Future (pp. 315–330). Berlin: Springer.
- Boschert, S., Schmidt, A., Siebert, K. G., Bänsch, E., Dziuk, G., Benz, K.-W., & Kaiser, T. Simulation of Industrial Crystal Growth by the Vertical Bridgman Method.
- Haasdonk, B., Ohlberger, M., Rumpf, M., Schmidt, A., & Siebert, K. G. Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations. Computing, 70, 181–204.
2002
- Lin, K.-M., Boschert, S., Dold, P., Benz, K. W., Kriessl, O., Schmidt, A., … Dziuk, G. Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te. Journal of Crystal Growth, 237–239, 1736--1740.
- Lin, K., Boschert, S., Dold, P., Benz, K. W., Kriessl, O., Schmidt, A., … Dziuk, D. Numerical Methods for Industrial Bridgman Growth of (Cd,Zn)Te. In Journal of Crystal Growth (pp. 1736–1740). Kyōto: Elsevier.
- Morin, P., Nochetto, R. H., & Siebert, K. G. Convergence of Adaptive Finite Element Methods, 44(4), 631–658.
2001
- Haasdonk, B., Ohlberger, M., Rumpf, M., Schmidt, A., & Siebert, K.-G. h-p-Multiresolution Visualization of Adaptive Finite Element Simulations (No. Preprint 01-26). Mathematics Department, University of Freiburg.
- Schmidt, A., & Siebert, K. G. ALBERT - Software for Scientific Computations and Applications. In Acta mathematica Universitatis Comenianae (pp. 105–122). Podbanské.
- Schmidt, A., & Siebert, K. G. \textbackslashtextsfALBERT — Software for Scientific Computations and Applications. Acta Mathematica Universitatis Comenianae, New Ser., 70(1), 105--122.
2000
- Deckelnick, K., & Siebert, K. G. $W^1,ınfty$-Convergence of the Discrete Free Boundary for Obstacle Problems. IMA Journal of Numerical Analysis, 20(3), 481–498.
- Deckelnick, K., & Siebert, K. G. W1∞-convergence of the discrete free boundary for obstacle problems, 20(3), 481–498.
- Schmidt, A., & Siebert, K. G. A Posteriori Estimators for the $h$-$p$ Version of the Finite Element Method in 1d. Applied Numerical Mathematics, 35(1), 43–66.
- Morin, P., Nochetto, R. H., & Siebert, K. G. Data Oscillation and Convergence of Adaptive FEM. SIAM Journal on Numerical Analysis, 38(2), 466--488.
- Boschert, S., Schmidt, A., & Siebert, K. G. Numerical Simulation of Crystal Growth by the Vertical Bridgman Method. In J. S. Szmyd & K. Suzuki (Eds.), Modelling of Transport Phenomena in Crystal Growth (Vol. 6, pp. 315–330). WIT Press.
1999
- Schmidt, A., & Siebert, K. G. Abstract Data Structures for a Finite Element Package: Design Principles of ALBERT. Journal of Applied Mathematics and Mechanics, 79(1), 49–52.
- Schmidt, A., & Siebert, K. G. Abstract Data Structures for a Finite Element Package: Design Principles of ALBERT. Journal of Applied Mathematics and Mechanics, 79(1), 49--52.
- Schmidt, A., & Siebert, K. G. Abstract data structures for a finite element package : Design principles of ALBERTA, 79(1), 49–52.
1998
- Schmidt, A., & Siebert, K. G. Concepts of the Finite Element Toolbox ALBERT.
- Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.
- Schmidt, A., & Siebert, K. G. Concepts of the finite element toolbox ALBERT. Preprint Series of the Department of Mathematics / Albert Ludwigs University of Freiburg.
- Boschert, S., Kaiser, T., Schmidt, A., Siebert, K. G., Benz, K.-W., & Dziuk, G. Global Simulation of (Cd,Zn)Te Single Crystal Growth by the Vertical Bridgman Technique. In S. N. Atluri & P. E. O’Donoghue (Eds.), Modeling and Simulation Based Engineering. Tech Science Press Retrieved from http://www.techscience.com/books/msbe_hc_rm.html.
- Siebert, K. G. Einführung in die numerische Behandlung der Navier-Stokes-Gleichungen.
1996
- Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement. Numerische Mathematik, 73(3), 373–398.
- Schmidt, A., & Siebert, K. G. Numerical Aspects of Parabolic Free Boundary Problems - Adaptive Finite Element Methods.
- Rumpf, M., Schmidt, A., & Siebert, K. G. Functions Defining Arbitrary Meshes - A Flexible Interface Between Numerical Data and Visualization Routines, 15(2), 129–141.
1995
- Bänsch, E., & Siebert, K. G. A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques.
- Rumpf, M., Schmidt, A., & Siebert, K. G. On a Unified Visualization Approach for Data from Advanced Numerical Methods. In P. Z. R. Scateni, J. Van Wijk (Ed.), Visualization in Scientific Computing ’95 (pp. 35--44). Springer.
1993
- Siebert, K. G. Local Refinement of 3D-Meshes Consisting of Prisms and Conforming Closure. Impact of Computing in Science and Engineering, 5(4), 271–284.
- Siebert, K. G. An A Posteriori Error Estimator for Anisotropic Refinement.
1990
- Siebert, K. G. Ein Finite-Elemente-Verfahren zur Lösung der inkompressiblen Euler-Gleichungen auf der Sphäre mit der Stromlinien-Diffusions-Methode.
- Siebert, K. G. Ein Finite-Elemente-Verfahren zur Loesung der inkompressiblen Euler-Gleichungen auf der Sphaere mit der Stromlinien-Diffusions-Methode (Masterarbeit).
- Parallel-Adaptive Open Source Software für Diffusions dominierte Multi-Feld Prozesse
- Adaptive Finite Elemente für Parabolische Partielle Differentialgleichungen
- Konvergenz und Optimalität von adaptiven Finiten Elementen für Elliptische Partielle Differenzialgleichungen
- Entwicklung und Analyse von Adaptiven Finite Elemente Diskretisierungen für Optimalsteuerungsprobleme
- Entwicklung und Implementierung von Adaptiver Finite Elemente Software
- Verallgemeinerte Newtonsche und elektrorheologische Fluide
- Numerische Methoden für Flüssigkeiten mit vielen freien kapillaren Grenzen