This image shows David Seus

David Seus

Dr. rer.nat.

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics


Pfaffenwaldring 57
70569 Stuttgart
Room: 7.162

  1. 2022

    1. D. Seus, F. A. Radu, and C. Rohde, “Towards Hybrid Two-Phase Modelling Using Linear Domain Decomposition, accepted for publication in Numer. Methods Partial Differential Equations.” 2022. [Online]. Available:
  2. 2019

    1. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” Numerical Mathematics and Advanced Applications ENUMATH 2017, pp. 603–614, 2019, doi:
  3. 2018

    1. D. Seus, I. S. Pop, C. Rohde, K. Mitra, and F. Radu, “A linear domain decompostition method for partially saturated flow in porous media,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 331–355, 2018, doi:
  4. 2016

    1. R. Cavoretto, S. De Marchi, A. De Rossi, E. Perracchione, and G. Santin, “Partition of unity interpolation using stable kernel-based techniques,” Applied Numerical Mathematics, 2016, doi: 10.1016/j.apnum.2016.07.005.
  5. 2013

    1. D. Seus, “Spektralasymptotiken auf dem Loopgraphen,” 2013.
    2. B. Haasdonk, “Convergence Rates of the POD--Greedy Method,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 47, no. 3, Art. no. 3, 2013, doi: 10.1051/m2an/2012045.
  6. 2005

    1. R. H. Nochetto, K. G. Siebert, and A. Veeser, “Fully Localized A Posteriori Error Estimators and Barrier Sets for  Contact Problems,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, Art. no. 5, 2005, doi: 10.1137/S0036142903424404.
  7. 1999

    1. A. Schmidt and K. G. Siebert, “Abstract Data Structures for a Finite Element Package: Design Principles  of ALBERT,” Journal of Applied Mathematics and Mechanics, vol. 79, no. 1, Art. no. 1, 1999, [Online]. Available:
To the top of the page