Contact
+49 711 685-65524
+49 711 685-65599
Email
Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.131
Office Hours
Fridays 13:00 - 14:00 and by appointment
2021
- L. von Wolff, F. Weinhardt, H. Class, J. Hommel, and C. Rohde, “Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling,” Transp. Porous Media, vol. 137, no. 2, Art. no. 2, 2021, doi: 10.1007/s11242-021-01560-y.
- C. Rohde and L. von Wolff, “A Ternary Cahn-Hilliard-Navier-Stokes model for two phase flow with precipitation and dissolution,” Math. Models Methods Appl. Sci., vol. 31, no. 1, Art. no. 1, 2021, doi: 10.1142/S0218202521500019.
- C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena,” NoDEA Nonlinear Differential Equations Appl., vol. 28, no. 1, Art. no. 1, 2021, doi: 10.1007/s00030-020-00661-9.
2020
- L. Ostrowski and C. Rohde, “Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion,” Math. Meth. Appl. Sci., vol. 43, no. 7, Art. no. 7, 2020, doi: 10.1002/mma.6185.
- J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-aware neural networks for Riemann problems,” J. Comput. Phys., vol. 409, no. 109345, Art. no. 109345, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109345.
- J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method,” IMA J. Numer. Anal., vol. 40, no. 2, Art. no. 2, 2020, doi: 10.1093/imanum/drz004.
- C. Rohde and L. von Wolff, “Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media,” SIAM J. Math. Anal., vol. 52, no. 6, Art. no. 6, 2020, doi: 10.1137/19M1242434.
- J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 449–456, [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf.
- J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” BIT Numerical Mathematics, vol. 60, no. 3, Art. no. 3, 2020, doi: 10.1007/s10543-019-00794-z.
- A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows,” SIAM J. Sci. Comput., vol. 42, no. 4, Art. no. 4, 2020, doi: https://doi.org/10.1137/18M1210575.
- A. Armiti-Juber and C. Rohde, “On the well-posedness of a nonlinear fourth-order extension of Richards’ equation,” J. Math. Anal. Appl., vol. 487, no. 2, Art. no. 2, 2020, doi: https://doi.org/10.1016/j.jmaa.2020.124005.
- L. Ostrowski, F. C. Massa, and C. Rohde, “A phase field approach to compressible droplet impingement,” in Droplet Interactions and Spray Processes, Cham, 2020, pp. 113–126, [Online]. Available: https://doi.org/10.1007/978-3-030-33338-6_9.
- C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” accepted for publication in J. Dynam. Differential Equations, 2020, [Online]. Available: https://arxiv.org/abs/2001.05754.
- S. Burbulla and C. Rohde, “A fully conforming finite volume approach to two-phase flow in fractured porous media,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Cham, 2020, pp. 547–555, doi: https://doi.org/10.1007/978-3-030-43651-3_51.
- L. Ostrowski and C. Rohde, “Phase field modelling for compressible droplet impingement,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 586–593, [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf.
- D. Alonso-Orán, C. Rohde, and H. Tang, “A local-in-time theory for singular SDEs with applications to fluid models with transport noise.” 2020, [Online]. Available: https://arxiv.org/abs/2010.09972.
- T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A parabolic relaxation model for the Navier-Stokes-Korteweg equations,” J. Comput. Phys, vol. 421, p. 109714, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
2019
- J. Giesselmann, F. Meyer, and C. Rohde, “Error control for statistical solutions,” 2019, [Online]. Available: https://arxiv.org/abs/1912.04323.
- R. M. Colombo, P. G. LeFloch, C. Rohde, and K. Trivisa, “Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics,” Oberwohlfach Rep., no. 16, Art. no. 16, 2019, [Online]. Available: https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2.
- T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, 1850044, Art. no. 1, 1850044, 2019, doi: https://doi.org/10.1142/S2591728518500445.
- V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow,” Phys. Fluids, no. 31, 012110, Art. no. 31, 012110, 2019, doi: https://doi.org/10.1063/1.5064694.
- A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains,” Comput. Geosci., vol. 23, no. 2, Art. no. 2, 2019, doi: https://doi.org/10.1007/s10596-018-9756-2.
- D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” Numerical Mathematics and Advanced Applications ENUMATH 2017, pp. 603–614, 2019, doi: https://doi.org/10.1007/978-3-319-96415-7_55.
- J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations,” 2019, [Online]. Available: https://www.researchgate.net/profile/Jakob_Duerrwaechter/publication/336702251_A_High-Order_Stochastic_Galerkin_Code_for_the_Compressible_Euler_and_Navier-Stokes_Equations/links/5dadf498299bf111d4bf8ba1/A-High-Order-Stochastic-Galerkin-Code-for-the-Compressible-Euler-and-Navier-Stokes-Equations.pdf.
- M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario,” Comput. Geosci., vol. 2, no. 23, Art. no. 23, 2019, doi: https://doi.org/10.1007/s10596-018-9785-x.
2018
- D. Seus, I. S. Pop, C. Rohde, K. Mitra, and F. Radu, “A linear domain decompostition method for partially saturated flow in porous media,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 331–355, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.029.
- S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018, doi: http://dx.doi.org/10.1016/j.compfluid.2017.03.026.
- V. Sharanya, G. P. R. Sekhar, and C. Rohde, “The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration,” Int. J. of Multiph. Flow, vol. 107, pp. 82–103, 2018, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008.
- C. Rohde and C. Zeiler, “On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension,” Z. Angew. Math. Phys., no. 3, Art. no. 3, 2018, doi: https://doi.org/10.1007/s00033-018-0958-1.
- C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A finite-volume tracking scheme for two-phase compressible flow,” Springer Proc. Math. Stat., pp. 309--322, 2018, doi: https://doi.org/10.1007/978-3-319-91545-6_25.
- C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181.
- J. Magiera and C. Rohde, “A particle-based multiscale solver for compressible liquid-vapor flow,” Springer Proc. Math. Stat., pp. 291--304, 2018, doi: 10.1007/978-3-319-91548-7_23.
2017
- S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017, doi: 10.1016/j.jcp.2017.02.001.
- M. Köppel, I. Kröker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” Comput. Geosci., vol. 21, pp. 807–832, 2017, doi: 10.1007/s10596-017-9662-z.
- C. Chalons, C. Rohde, and M. Wiebe, “A finite volume method for undercompressive shock waves in two space dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, Art. no. 5, 2017, doi: https://doi.org/10.1051/m2an/2017027.
2016
- M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, Art. no. part 2, 2016, doi: 10.1016/j.amc.2015.11.023.
- J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface flow,” Transp. Porous Media, vol. 114, pp. 425–455, 2016, doi: 10.1007/S11242-015-0548-Z.
- V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary effects,” Z. Angew. Math. Phys., vol. 67, no. 4, Art. no. 4, 2016, doi: 10.1007/s00033-016-0699-y.
- M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016, doi: https://doi.org/10.1093/imamat/hxw023.
- I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016, doi: https://doi.org/10.1016/j.ijthermalsci.2016.01.019.
- M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, Art. no. 1, 2016, doi: 10.1002/pamm.201610363.
- D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
- R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016, doi: 10.4171/OWR/2016/30.
- F. Betancourt and C. Rohde, “Finite-volume schemes for Friedrichs systems with involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016, doi: 10.1016/j.amc.2015.03.050.
2015
- I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299–309, 2015, doi: 10.1007/s10596-015-9469-8.
- C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015, doi: 10.1016/j.apnum.2014.05.001.
- F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015, doi: 10.1137/120899236.
- J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, Art. no. 12, 2015, doi: 10.1002/fld.4065.
2014
- R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, Art. no. 10, 2014, doi: 10.1002/zamm.201200174.
- W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, Art. no. 7–8, 2014, doi: 10.1002/zamm.201400559.
- C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732.
- P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition Dynamics,” Port. Math., vol. 70, no. 4, Art. no. 4, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723.
- S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” 2014.
- A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.jmaa.2014.01.049.
2013
- K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid scale,” 2013.
- C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, Art. no. 03, 2013, doi: 10.1142/S0218202512500522.
2012
- A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” J. Differential Equations, vol. 253, no. 5, Art. no. 5, 2012, doi: 10.1016/j.jde.2012.05.006.
- P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 406--414.
- F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
- I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative noise,” Appl. Numer. Math., vol. 62, no. 4, Art. no. 4, 2012, doi: 10.1016/j.apnum.2011.01.011.
- F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, Art. no. 3, 2012, doi: 10.2136/vzj2011.0193.
2011
- R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random feed,” in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
2010
- F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.3934/nhm.2010.5.661.
- C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337.
2009
- F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local Conservation Laws,” J. Differential Equations, vol. 247, no. 12, Art. no. 12, 2009, doi: 10.1016/j.jde.2009.05.006.
2008
- C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899.
- C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, Art. no. 12, 2008, doi: 10.1142/S0218202508003327.
- A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
- J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008, [Online]. Available: https://www.researchgate.net/profile/Christian_Rohde2/publication/228406932_Local_discontinuous-Galerkin_schemes_for_model_problems_in_phase_transition_theory/links/00b4952cb030e0da90000000.pdf.
- A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase model,” Indiana Univ. Math. J., vol. 57, no. 2, Art. no. 2, 2008, doi: 10.1512/iumj.2008.57.3271.
2007
- C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, Art. no. 1, 2007, doi: 10.1016/j.jde.2006.11.010.
- C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, Art. no. 6, 2007, doi: 10.1051/m2an:2007048.
2006
- C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, Art. no. 10–11, 2006, doi: 10.1016/j.apnum.2006.03.025.
- V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, Art. no. 6, 2006, doi: 10.1137/S0036142903438136.
2005
- C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion terms,” SIAM J. Math. Anal., vol. 37, no. 1, Art. no. 1, 2005, doi: 10.1137/S0036141004443300.
- F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, vol. 7, Eur. Math. Soc., Zürich, 2005, pp. 239--270.
- V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space dimensions: a priori and a posteriori error estimates,” Numer. Methods Partial Differential Equations, vol. 21, no. 1, Art. no. 1, 2005, doi: 10.1002/num.20026.
- C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity system with non-local energy,” Interfaces Free Bound., vol. 7, no. 1, Art. no. 1, 2005, doi: 10.4171/IFB/116.
- M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, vol. 40, Berlin: Springer, 2005, pp. 251--258.
2004
- A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential equations,” Numer. Math., vol. 97, no. 3, Art. no. 3, 2004, doi: 10.1007/s00211-003-0502-9.
- C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational scheme,” J. Hyperbolic Differ. Equ., vol. 1, no. 4, Art. no. 4, 2004, doi: 10.1142/S0219891604000329.
2003
- D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
- A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods of higher order for systems of conservation laws in multiple space dimensions,” in Geometric analysis and nonlinear partial differential equations, Berlin: Springer, 2003, pp. 573--589.
- H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,” Phys. D, vol. 185, no. 2, Art. no. 2, 2003, doi: 10.1016/S0167-2789(03)00206-9.
- A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
2002
- A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 165--172.
- M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems,” IMA J. Numer. Anal., vol. 22, no. 2, Art. no. 2, 2002, doi: 10.1093/imanum/22.2.253.
- P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal., vol. 40, no. 5, Art. no. 5, 2002, doi: 10.1137/S003614290240069X.
2001
- B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, Art. no. 3, 2001, doi: 10.1007/s211-001-8011-x.
- H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and non-classical shock waves,” in Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 287--309, 814.
- A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods (Oxford, 1999), Kluwer/Plenum, New York, 2001, pp. 209--216.
- H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 399--408.
- P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions to hyperbolic systems of conservation laws,” Indiana Univ. Math. J., vol. 50, no. 4, Art. no. 4, 2001, doi: 10.1512/iumj.2001.50.2057.
- T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive movement,” J. Math. Anal. Appl., vol. 260, no. 1, Art. no. 1, 2001, doi: 10.1006/jmaa.2001.7447.
- B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, Art. no. 3, 2001, doi: 10.1007/s211-001-8011-x.
- A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in Hyperbolic problems: theory, numerics, applications, Vol. I, II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 277--286.
2000
- P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” SIAM J. Numer. Anal., vol. 37, no. 6, Art. no. 6, 2000, doi: 10.1137/S0036142998345256.
1999
- A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II, Hermes Sci. Publ., Paris, 1999, pp. 491--498.
1998
- C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems of conservation laws in 2D,” Numer. Math., vol. 81, no. 1, Art. no. 1, 1998, doi: 10.1007/s002110050385.
- C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, Art. no. 3, 1998, doi: 10.1007/s000000050102.
- Winter term 2020/21:
- Summer term 2020: none
- Winter term 2019/20:
- Introduction to the numerics of partial differential equations,
- Stochastik und Angewandte Mathematik sowie
- MSc-Seminar für Mehrphasenströmungen