Prof. Dr.

Christian Rohde

Head of Group
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

+49 711 685-65524
+49 711 685-65599

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.131

Office Hours

Fridays 10:30-11:30 and by appointment

  1. 2020

    1. L. Ostrowski and C. Rohde, “Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion,” Math. Meth. Appl. Sci., vol. 43, no. 7, Art. no. 7, 2020, doi: 10.1002/mma.6185.
    2. J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-aware neural networks for Riemann problems,” J. Comput. Phys., vol. 409, no. 109345, Art. no. 109345, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109345.
    3. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method,” IMA J. Numer. Anal., vol. 40, no. 2, Art. no. 2, 2020, doi: 10.1093/imanum/drz004.
    4. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 449–456, [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf.
    5. C. Rohde and H. Tang, “On the stochastic Dullin-Gottwald-Holm equation: Global existence and wave-breaking phenomena.” 2020, [Online]. Available: https://arxiv.org/abs/2003.07206.
    6. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” BIT Numer. Math., 2020, [Online]. Available: https://doi.org/10.1007/s10543-019-00794-z.
    7. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows,” accepted for publication in SIAM J. Sci. Comput., 2020, [Online]. Available: https://arxiv.org/abs/1808.10626.
    8. A. Armiti-Juber and C. Rohde, “On the well-posedness of a nonlinear fourth-order extension of Richards’ equation,” J. Math. Anal. Appl., vol. 487, no. 2, Art. no. 2, 2020, doi: https://doi.org/10.1016/j.jmaa.2020.124005.
    9. L. Ostrowski, F. C. Massa, and C. Rohde, “A phase field approach to compressible droplet impingement,” in Droplet Interactions and Spray Processes, Cham, 2020, pp. 113–126, [Online]. Available: https://doi.org/10.1007/978-3-030-33338-6_9.
    10. C. Rohde and H. Tang, “On a stochastic Camassa-Holm type equation with higher order nonlinearities,” accepted for publication in J. Dynam. Differential Equations, 2020, [Online]. Available: https://arxiv.org/abs/2001.05754.
    11. S. Burbulla and C. Rohde, “A fully conforming finite volume approach to two-phase flow in fractured porous media,” in Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Cham, 2020, pp. 547–555, doi: https://doi.org/10.1007/978-3-030-43651-3_51.
    12. L. Ostrowski and C. Rohde, “Phase field modelling for compressible droplet impingement,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 586–593, [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf.
    13. T. Hitz, J. Keim, C.-D. Munz, and C. Rohde, “A Parabolic Relaxation Model for the Navier-Stokes-Korteweg Equations,” accepted for publication in J. Comput. Phys, 2020, doi: https://doi.org/10.1016/j.jcp.2020.109714.
  2. 2019

    1. J. Giesselmann, F. Meyer, and C. Rohde, “Error control for statistical solutions,” 2019, [Online]. Available: https://arxiv.org/abs/1912.04323.
    2. C. Rohde and L. von Wolff, “A Ternary Cahn-Hilliard Navier-Stokes model for two phase flow with precipitation and dissolution,” 2019, [Online]. Available: https://arxiv.org/abs/1912.09181.
    3. R. M. Colombo, P. G. LeFloch, C. Rohde, and K. Trivisa, “Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics,” Oberwohlfach Rep., no. 16, Art. no. 16, 2019, [Online]. Available: https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2.
    4. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, 1850044, Art. no. 1, 1850044, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    5. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow,” Phys. Fluids, no. 31, 012110, Art. no. 31, 012110, 2019, doi: https://doi.org/10.1063/1.5064694.
    6. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains,” Comput. Geosci., vol. 23, no. 2, Art. no. 2, 2019, doi: https://doi.org/10.1007/s10596-018-9756-2.
    7. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous media,” Numerical Mathematics and Advanced Applications ENUMATH 2017, pp. 603–614, 2019, doi: https://doi.org/10.1007/978-3-319-96415-7_55.
    8. J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations,” 2019, [Online]. Available: https://www.researchgate.net/profile/Jakob_Duerrwaechter/publication/336702251_A_High-Order_Stochastic_Galerkin_Code_for_the_Compressible_Euler_and_Navier-Stokes_Equations/links/5dadf498299bf111d4bf8ba1/A-High-Order-Stochastic-Galerkin-Code-for-the-Compressible-Euler-and-Navier-Stokes-Equations.pdf.
    9. C. Rohde and L. von Wolff, “Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media,” 2019, [Online]. Available: https://arxiv.org/abs/1902.07100.
    10. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario,” Comput. Geosci., vol. 2, no. 23, Art. no. 23, 2019, doi: https://doi.org/10.1007/s10596-018-9785-x.
  3. 2018

    1. D. Seus, I. S. Pop, C. Rohde, K. Mitra, and F. Radu, “A linear domain decompostition method for partially saturated flow in porous media,” Comput. Methods Appl. Mech. Eng., vol. 333, pp. 331–355, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.029.
    2. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018, doi: http://dx.doi.org/10.1016/j.compfluid.2017.03.026.
    3. V. Sharanya, G. P. R. Sekhar, and C. Rohde, “The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration,” Int. J. of Multiph. Flow, vol. 107, pp. 82–103, 2018, doi: https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008.
    4. C. Rohde and C. Zeiler, “On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension,” Z. Angew. Math. Phys., no. 3, Art. no. 3, 2018, doi: https://doi.org/10.1007/s00033-018-0958-1.
    5. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A finite-volume tracking scheme for two-phase compressible flow,” Springer Proc. Math. Stat., pp. 309--322, 2018, doi: https://doi.org/10.1007/978-3-319-91545-6_25.
    6. C. Rohde, “Fully resolved compressible two-phase flow : modelling, analytical and numerical issues,” in New trends and results in mathematical description of fluid flows, M. Bulicek, E. Feireisl, and M. Pokorný, Eds. Basel: Birkhäuser, 2018, pp. 115–181.
    7. J. Magiera and C. Rohde, “A particle-based multiscale solver for compressible liquid-vapor flow,” Springer Proc. Math. Stat., pp. 291--304, 2018, doi: 10.1007/978-3-319-91548-7_23.
  4. 2017

    1. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017, doi: 10.1016/j.jcp.2017.02.001.
    2. M. Köppel, I. Kröker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” Comput. Geosci., vol. 21, pp. 807–832, 2017, doi: 10.1007/s10596-017-9662-z.
    3. C. Chalons, C. Rohde, and M. Wiebe, “A finite volume method for undercompressive shock waves in two space dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, Art. no. 5, 2017, doi: https://doi.org/10.1051/m2an/2017027.
    4. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two scale model for liquid phase epitaxy with elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, Art. no. 4, 2017, doi: 10.1007/s00161-015-0462-1.
  5. 2016

    1. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, Art. no. part 2, 2016, doi: 10.1016/j.amc.2015.11.023.
    2. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, pp. 425–455, 2016, doi: 10.1007/S11242-015-0548-Z.
    3. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, Art. no. 4, 2016, doi: 10.1007/s00033-016-0699-y.
    4. M. Redeker, I. S. Pop, and C. Rohde, “Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media,” IMA J. Appl. Math., vol. 81(5), pp. 898–939, 2016, doi: https://doi.org/10.1093/imamat/hxw023.
    5. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016, doi: https://doi.org/10.1016/j.ijthermalsci.2016.01.019.
    6. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, Art. no. 1, 2016, doi: 10.1002/pamm.201610363.
    7. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions,” Appl. Math. Comput., vol. 272, no. 2, Art. no. 2, 2016, doi: 10.1016/j.amc.2015.09.080.
    8. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016, doi: 10.4171/OWR/2016/30.
    9. F. Betancourt and C. Rohde, “Finite-volume schemes for Friedrichs systems with involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016, doi: 10.1016/j.amc.2015.03.050.
  6. 2015

    1. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299–309, 2015, doi: 10.1007/s10596-015-9469-8.
    2. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015, doi: 10.1016/j.apnum.2014.05.001.
    3. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015, doi: 10.1137/120899236.
    4. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, Art. no. 12, 2015, doi: 10.1002/fld.4065.
  7. 2014

    1. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, Art. no. 10, 2014, doi: 10.1002/zamm.201200174.
    2. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, Art. no. 7–8, 2014, doi: 10.1002/zamm.201400559.
    3. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, Art. no. 1, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732.
    4. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, Art. no. 4, 2014, [Online]. Available: http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723.
    5. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method,” 2014.
    6. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014, [Online]. Available: http://dx.doi.org/10.1016/j.jmaa.2014.01.049.
  8. 2013

    1. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” 2013.
    2. C. Rohde, W. Wang, and F. Xie, “Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model,” Mathematical Models and Methods in Applied Sciences, vol. 23, no. 03, Art. no. 03, 2013, doi: 10.1142/S0218202512500522.
  9. 2012

    1. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar conservation laws,” J. Differential Equations, vol. 253, no. 5, Art. no. 5, 2012, doi: 10.1016/j.jde.2012.05.006.
    2. P. Engel and C. Rohde, “On the Space-Time Expansion Discontinuous Galerkin Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 406--414.
    3. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    4. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, Art. no. 4, 2012, doi: 10.1016/j.apnum.2011.01.011.
    5. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, Art. no. 3, 2012, doi: 10.2136/vzj2011.0193.
  10. 2011

    1. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
  11. 2010

    1. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, Art. no. 3, 2010, doi: 10.3934/nhm.2010.5.661.
    2. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337.
  12. 2009

    1. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws,” J. Differential Equations, vol. 247, no. 12, Art. no. 12, 2009, doi: 10.1016/j.jde.2009.05.006.
  13. 2008

    1. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899.
    2. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, Art. no. 12, 2008, doi: 10.1142/S0218202508003327.
    3. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
    4. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase  transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008, [Online]. Available: https://www.researchgate.net/profile/Christian_Rohde2/publication/228406932_Local_discontinuous-Galerkin_schemes_for_model_problems_in_phase_transition_theory/links/00b4952cb030e0da90000000.pdf.
    5. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase  model,” Indiana Univ. Math. J., vol. 57, no. 2, Art. no. 2, 2008, doi: 10.1512/iumj.2008.57.3271.
  14. 2007

    1. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, Art. no. 1, 2007, doi: 10.1016/j.jde.2006.11.010.
    2. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, Art. no. 6, 2007, doi: 10.1051/m2an:2007048.
  15. 2006

    1. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, Art. no. 10–11, 2006, doi: 10.1016/j.apnum.2006.03.025.
    2. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, Art. no. 6, 2006, doi: 10.1137/S0036142903438136.
  16. 2005

    1. C. Rohde, “Scalar conservation laws with mixed local and nonlocal diffusion-dispersion  terms,” SIAM J. Math. Anal., vol. 37, no. 1, Art. no. 1, 2005, doi: 10.1137/S0036141004443300.
    2. F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems  in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, vol. 7, Eur. Math. Soc., Zürich, 2005, pp. 239--270.
    3. V. Jovanović and C. Rohde, “Finite-volume schemes for Friedrichs systems in multiple space  dimensions: a priori and a posteriori error estimates,” Numer. Methods Partial Differential Equations, vol. 21, no. 1, Art. no. 1, 2005, doi: 10.1002/num.20026.
    4. C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity  system with non-local energy,” Interfaces Free Bound., vol. 7, no. 1, Art. no. 1, 2005, doi: 10.4171/IFB/116.
    5. M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, vol. 40, Berlin: Springer, 2005, pp. 251--258.
  17. 2004

    1. A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential  equations,” Numer. Math., vol. 97, no. 3, Art. no. 3, 2004, doi: 10.1007/s00211-003-0502-9.
    2. C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational  scheme,” J. Hyperbolic Differ. Equ., vol. 1, no. 4, Art. no. 4, 2004, doi: 10.1142/S0219891604000329.
  18. 2003

    1. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
    2. A. Dedner, D. Kröner, C. Rohde, T. Schnitzer, and M. Wesenberg, “Comparison of finite volume and discontinuous Galerkin methods  of higher order for systems of conservation laws in multiple space  dimensions,” in Geometric analysis and nonlinear partial differential equations, Berlin: Springer, 2003, pp. 573--589.
    3. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas,” Phys. D, vol. 185, no. 2, Art. no. 2, 2003, doi: 10.1016/S0167-2789(03)00206-9.
    4. A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
  19. 2002

    1. A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 165--172.
    2. M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection  dominated parabolic systems,” IMA J. Numer. Anal., vol. 22, no. 2, Art. no. 2, 2002, doi: 10.1093/imanum/22.2.253.
    3. P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal., vol. 40, no. 5, Art. no. 5, 2002, doi: 10.1137/S003614290240069X.
  20. 2001

    1. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, Art. no. 3, 2001, doi: 10.1007/s211-001-8011-x.
    2. H. Freistühler, C. Fries, and C. Rohde, “Existence, bifurcation, and stability of profiles for classical and  non-classical shock waves,” in Ergodic theory, analysis, and efficient simulation of dynamical systems, Berlin: Springer, 2001, pp. 287--309, 814.
    3. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods (Oxford, 1999), Kluwer/Plenum, New York, 2001, pp. 209--216.
    4. H. Freistühler and C. Rohde, “A numerical study on viscous profiles of MHD shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 399--408.
    5. P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions  to hyperbolic systems of conservation laws,” Indiana Univ. Math. J., vol. 50, no. 4, Art. no. 4, 2001, doi: 10.1512/iumj.2001.50.2057.
    6. T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive  movement,” J. Math. Anal. Appl., vol. 260, no. 1, Art. no. 1, 2001, doi: 10.1006/jmaa.2001.7447.
    7. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, Art. no. 3, 2001, doi: 10.1007/s211-001-8011-x.
    8. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 277--286.
  21. 2000

    1. P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” SIAM J. Numer. Anal., vol. 37, no. 6, Art. no. 6, 2000, doi: 10.1137/S0036142998345256.
  22. 1999

    1. A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II, Hermes Sci. Publ., Paris, 1999, pp. 491--498.
    2. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998), vol. 129, Basel: Birkhäuser, 1999, pp. 333--342.
  23. 1998

    1. C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems  of conservation laws in 2D,” Numer. Math., vol. 81, no. 1, Art. no. 1, 1998, doi: 10.1007/s002110050385.
    2. C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, Art. no. 3, 1998, doi: 10.1007/s000000050102.
To the top of the page