Dieses Bild zeigt Rohde

Prof. Dr.

Christian Rohde

Head of Group
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

+49 711 685-65524
+49 711 685-65599

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.131

Consultation

Friday, 10:30-11:30

  1. 2018

    1. G. P. Raja Sekhar, V. Sharanya, and C. Rohde, “Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number,” erscheint bei Int. J. Multiph. Flow, 2018.
    2. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension,” Comput. & Fluids, vol. 169, pp. 169–185, 2018.
    3. T. Kuhn, J. Dürrwächter, A. Beck, C.-D. Munz, F. Meyer, and C. Rohde, “Uncertainty Quantification for Direct Aeroacoustic Simulations of  Cavity Flows,” 2018.
    4. C. Rohde and C. Zeiler, “On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase  Flows with Surface Tension,” Z. Angew. Math. Phys., p. 69:76, 2018.
    5. M. Köppel, “Flow in heterogeneous porous media : fractures and uncertainty quantification,” Verlag Dr. Hut, München, 2018.
    6. D. Seus, K. Mitra, I. S. Pop, F. A. Radu, and C. Rohde, “A linear domain decomposition method for partially saturated flow  in porous media,” Comp. Methods in Appl. Mech. Eng, vol. 333, pp. 331--355, 2018.
  2. 2017

    1. S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler, “A sharp interface method for compressible liquid-vapor flow with  phase transition and surface tension,” J. Comput. Phys., vol. 336, pp. 347–374, 2017.
    2. M. Köppel, I. Kroeker, and C. Rohde, “Intrusive uncertainty quantification for hyperbolic-elliptic systems governing two-phase flow in heterogeneous porous media,” COMPUTATIONAL GEOSCIENCES, vol. 21, no. 4, pp. 807–832, 2017.
    3. M. Köppel, I. Kröker, and C. Rohde, “Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media,” Comput. Geosci., vol. 21, pp. 807–832, 2017.
    4. C. Chalons, C. Rohde, and M. Wiebe, “A Finite Volume Method for Undercompressive Shock Waves in Two Space  Dimensions,” ESAIM Math. Model. Numer. Anal., vol. 51, no. 5, pp. 1987–2015, 2017.
    5. M. Köppel et al., “Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario,” 2017.
    6. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with  Elasticity,” Contin. Mech. Thermodyn., vol. 29, no. 4, pp. 989–1016, 2017.
    7. A. Armiti-Juber and C. Rohde, “On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically  Flat Domains,” 2017.
    8. M. Kutter, C. Rohde, and A.-M. Sändig, “Well-posedness of a two-scale model for liquid phase epitaxy with elasticity,” CONTINUUM MECHANICS AND THERMODYNAMICS, vol. 29, no. 4, pp. 989–1016, 2017.
    9. D. Seus, F. A. Radu, and C. Rohde, “A linear domain decomposition method for two-phase flow in porous  media,” 2017.
    10. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.,” 2017.
    11. J. Magiera and C. Rohde, “A Particle-based Multiscale Solver for Compressible Liquid-Vapor  Flow,” erscheint bei Springer Proc. Math. Stat., 2017.
  3. 2016

    1. M. Dumbser, G. Gassner, C. Rohde, and S. Roller, “Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’,” Appl. Math. Comput., vol. 272, no. part 2, pp. 235--236, 2016.
    2. B. Kabil and C. Rohde, “Persistence of undercompressive phase boundaries for isothermal Euler  equations including configurational forces and surface tension,” Math. Meth. Appl. Sci., vol. 39, no. 18, pp. 5409--5426, 2016.
    3. V. Sharanya, G. P. Raja Sekhar, and C. Rohde, “Bed of polydisperse viscous spherical drops under thermocapillary  effects,” Z. Angew. Math. Phys., vol. 67, no. 4, p. 101, 2016.
    4. A. Barth, R. Bürger, I. Kröker, and C. Rohde, “Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach,” Computers & Chemical Engineering, vol. 89, pp. 11-- 26, 2016.
    5. I. Dragomirescu, K. Eisenschmidt, C. Rohde, and B. Weigand, “Perturbation solutions for the finite radially symmetric Stefan problem,” Inter. J. Thermal Sci., vol. 104, pp. 386–395, 2016.
    6. M. Köppel and C. Rohde, “Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media,” PAMM Proc. Appl. Math. Mech., vol. 16, no. 1, pp. 749–750, 2016.
    7. D. Diehl, J. Kremser, D. Kröner, and C. Rohde, “Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions,” Appl. Math. Comput., vol. 272, Part 2, pp. 309–335, 2016.
    8. R. M. Colombo, P. G. LeFloch, and C. Rohde, “Hyperbolic techniques in Modelling, Analysis and Numerics,” Oberwolfach Reports, vol. 13, pp. 1683–1751, 2016.
    9. F. Betancourt and C. Rohde, “Finite-Volume Schemes for Friedrichs Systems with Involutions,” App. Math. Comput., vol. 272, Part 2, pp. 420–439, 2016.
  4. 2015

    1. C. Rohde and C. Zeiler, “A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension,” Appl. Numer. Math., vol. 95, pp. 267--279, 2015.
    2. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case,” Multiscale Model. Simul., vol. 13 no. 4, pp. 1507–1541, 2015.
    3. J. Neusser, C. Rohde, and V. Schleper, “Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition,” J. Numer. Meth. Fluids, vol. 79, no. 12, pp. 615–639, 2015.
    4. I. Kröker, W. Nowak, and C. Rohde, “A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems,” Comput. Geosci., vol. 19, no. 2, pp. 269--284, 2015.
  5. 2014

    1. R. Bürger, I. Kröker, and C. Rohde, “A hybrid stochastic Galerkin method for uncertainty quantification  applied to a conservation law modelling a clarifier-thickener unit,” ZAMM Z. Angew. Math. Mech., vol. 94, no. 10, pp. 793–817, 2014.
    2. J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds., Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014, vol. Vol. 77/78. 2014.
    3. W. Ehlers, R. Helmig, and C. Rohde, “Editorial: Deformation and transport phenomena in porous media,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 94, no. 7–8, pp. 559--559, 2014.
    4. C. Chalons, P. Engel, and C. Rohde, “A Conservative and Convergent Scheme for Undercompressive Shock Waves,” SIAM J. Numer. Anal., vol. 52, no. 1, pp. 554–579, 2014.
    5. P. Engel, A. Viorel, and C. Rohde, “A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics,” Port. Math., vol. 70, no. 4, pp. 319–344, 2014.
    6. I. Rybak, “Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts,” in Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7, 2014, vol. 78, pp. 703--711.
    7. J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    8. M. Köppel, I. Kröker, and C. Rohde, “Stochastic Modeling for Heterogeneous Two-Phase Flow,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, vol. 77, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 353–361.
    9. S. Fechter, C. Zeiler, C.-D. Munz, and C. Rohde, “Simulation of compressible multi-phase flows at extreme ambient conditions  using a Discontinuous-Galerkin Method,” in ILASS–Europe, 26th European Conference on Liquid Atomization and  Spray Systems, 2014.
    10. B. Kabil and C. Rohde, “The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 107, no. 0, pp. 63–75, 2014.
    11. A. Armiti-Juber and C. Rohde, “Almost Parallel Flows in Porous Media,” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and  Hyperbolic Problems, vol. 78, J. Fuhrmann, M. Ohlberger, and C. Rohde, Eds. Springer International Publishing, 2014, pp. 873–881.
    12. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    13. A. Corli, C. Rohde, and V. Schleper, “Parabolic approximations of diffusive-dispersive equations.,” J. Math. Anal. Appl., vol. 414, pp. 773–798, 2014.
  6. 2013

    1. C. Eck, M. Kutter, A.-M. Sändig, and C. Rohde, “A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure,” ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift  für Angewandte Mathematik und Mechanik, vol. 93, no. 10–11, pp. 745--761, 2013.
    2. K. Eisenschmidt, P. Rauschenberger, C. Rohde, and B. Weigand, “Modelling of freezing processes in super-cooled droplets on sub-grid  scale,” in ILASS–Europe, 25th European Conference on Liquid Atomization and  Spray Systems, 2013.
    3. C. Rohde, W. Wang, and F. Xie, “Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves,” Communications on Pure and Applied Analysis, vol. 12, no. 5, pp. 2145--2171, 2013.
  7. 2012

    1. A. Corli and C. Rohde, “Singular limits for a parabolic-elliptic regularization of scalar  conservation laws,” J. Differential Equations, vol. 253, no. 5, pp. 1399--1421, 2012.
    2. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012.
    3. F. Jaegle, C. Rohde, and C. Zeiler, “A multiscale method for compressible liquid-vapor flow with surface  tension,” ESAIM: Proc., vol. 38, pp. 387–408, 2012.
    4. T. Richter et al., “ViPLab: a virtual programming laboratory for mathematics and engineering,” Interactive Technology and Smart Education, vol. 9, pp. 246–262, 2012.
    5. F. Kissling and C. Rohde, “Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method,” in Hyperbolic Problems: Theory, Numerics and Applications, 2012, pp. 469--478.
    6. I. Kröker and C. Rohde, “Finite volume schemes for hyperbolic balance laws with multiplicative  noise,” Appl. Numer. Math., vol. 62, no. 4, pp. 441--456, 2012.
    7. C. Rohde and F. Xie, “Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem,” Math. Methods Appl. Sci., vol. 35, no. 5, pp. 564--573, 2012.
    8. C. Chalons, F. Coquel, P. Engel, and C. Rohde, “Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems,” SIAM Journal on Scientific Computing, vol. 34, no. 3, pp. A1753--A1776, 2012.
    9. F. Coquel, M. Gutnic, P. Helluy, F. Lagoutière, C. Rohde, and N. Seguin, Eds., CEMRACS 2011, Multiscale Coupling of Complex Models, vol. 38. ESAIM Proceedings, 2012.
    10. F. Kissling, R. Helmig, and C. Rohde, “Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach,” Vadose Zone J., vol. 11, no. 3, p. , 2012.
  8. 2011

    1. R. Bürger, I. Kröker, and C. Rohde, “Uncertainty quantification for a clarifier-thickener model with random  feed,” in Finite volumes for complex applications. VI. Problems & perspectives.  Volume 1, 2, vol. 4, Springer, 2011, pp. 195--203.
  9. 2010

    1. F. Kissling and C. Rohde, “The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method,” Netw. Heterog. Media, vol. 5, no. 3, pp. 661--674, 2010.
    2. C. Rohde, “A local and low-order Navier-Stokes-Korteweg system,” in Nonlinear partial differential equations and hyperbolic wave phenomena, vol. 526, Providence, RI: Amer. Math. Soc., 2010, pp. 315--337.
  10. 2009

    1. F. Kissling, P. G. LeFloch, and C. Rohde, “A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws,” J. Differential Equations, vol. 247, no. 12, pp. 3338--3356, 2009.
  11. 2008

    1. C. Rohde, N. Tiemann, and W.-A. Yong, “Weak and classical solutions for a model problem in radiation hydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2008, pp. 891--899.
    2. C. Rohde and W.-A. Yong, “Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics,” Math. Models Methods Appl. Sci., vol. 18, no. 12, pp. 2151--2174, 2008.
    3. A. Dressel and C. Rohde, “A finite-volume approach to liquid-vapour fluids with phase transition,” in Finite volumes for complex applications V, ISTE, London, 2008, pp. 53--68.
    4. J. Haink and C. Rohde, “Local discontinuous-Galerkin schemes for model problems in phase  transition theory,” Commun. Comput. Phys., vol. 4, pp. 860–893, 2008.
    5. A. Dressel and C. Rohde, “Global existence and uniqueness of solutions for a viscoelastic two-phase  model,” Indiana Univ. Math. J., vol. 57, no. 2, pp. 717--755, 2008.
  12. 2007

    1. C. Rohde and W.-A. Yong, “The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem,” J. Differential Equations, vol. 234, no. 1, pp. 91--109, 2007.
    2. C. Merkle and C. Rohde, “The sharp-interface approach for fluids with phase change: Riemann  problems and ghost fluid techniques,” M2AN Math. Model. Numer. Anal., vol. 41, no. 6, pp. 1089--1123, 2007.
  13. 2006

    1. J. Haink and C. Rohde, “Phase transition in compressible media and nonlocal capillarity terms,” in Hyperbolic problems: theory, numerics and applications. I, Yokohama Publ., Yokohama, 2006, pp. 147--154.
    2. D. Diehl and C. Rohde, “On the structure of MHD shock waves in diffusive-dispersive media,” J. Math. Fluid Mech., vol. 8, no. 1, pp. 120--145, 2006.
    3. C. Merkle and C. Rohde, “Computation of dynamical phase transitions in solids,” Appl. Numer. Math., vol. 56, no. 10–11, pp. 1450--1463, 2006.
    4. V. Jovanović and C. Rohde, “Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws,” SIAM J. Numer. Anal., vol. 43, no. 6, pp. 2423--2449 (electronic), 2006.
  14. 2005

    1. F. Coquel, D. Diehl, C. Merkle, and C. Rohde, “Sharp and diffuse interface methods for phase transition problems  in liquid-vapour flows,” in Numerical methods for hyperbolic and kinetic problems, vol. 7, Eur. Math. Soc., Zürich, 2005, pp. 239--270.
    2. M. J. Gander and C. Rohde, “Overlapping Schwarz waveform relaxation for convection-dominated  nonlinear conservation laws,” SIAM J. Sci. Comput., vol. 27, no. 2, pp. 415--439, 2005.
    3. C. Rohde, “On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour  phase transitions,” ZAMM Z. Angew. Math. Mech., vol. 85, no. 12, pp. 839--857, 2005.
    4. C. Rohde, “Phase transitions and sharp-interface limits for the 1d-elasticity  system with non-local energy,” Interfaces Free Bound., vol. 7, no. 1, pp. 107--129, 2005.
    5. M. J. Gander and C. Rohde, “Nonlinear advection problems and overlapping Schwarz waveform relaxation,” in Domain decomposition methods in science and engineering, vol. 40, Berlin: Springer, 2005, pp. 251--258.
    6. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Radiation magnetohydrodynamics: analysis for model problems and efficient  3d-simulations for the full system,” in Analysis and numerics for conservation laws, Berlin: Springer, 2005, pp. 163--202.
  15. 2004

    1. A. Dedner, C. Rohde, B. Schupp, and M. Wesenberg, “A parallel, load-balanced MHD code on locally-adapted unstructured  grids in 3d,” Comput. Vis. Sci., vol. 7, no. 2, pp. 79--96, 2004.
    2. A. Dedner and C. Rohde, “Numerical approximation of entropy solutions for hyperbolic integro-differential  equations,” Numer. Math., vol. 97, no. 3, pp. 441--471, 2004.
    3. C. Rohde and M. D. Thanh, “Global existence for phase transition problems via a variational  scheme,” J. Hyperbolic Differ. Equ., vol. 1, no. 4, pp. 747--768, 2004.
  16. 2003

    1. D. Kröner, M. Küther, M. Ohlberger, and C. Rohde, “A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws,” in Trends in nonlinear analysis, Berlin: Springer, 2003, pp. 289--306.
    2. C. Rohde and W. Zajaczkowski, “On the Cauchy problem for the equations of ideal compressible MHD  fluids with radiation,” Appl. Math., vol. 48, no. 4, pp. 257--277, 2003.
    3. H. Freistühler and C. Rohde, “The bifurcation analysis of the MHD Rankine-Hugoniot equations  for a perfect gas,” Phys. D, vol. 185, no. 2, pp. 78--96, 2003.
    4. A. Dedner, C. Rohde, and M. Wesenberg, “Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 499--508.
    5. A. Dedner, C. Rohde, and M. Wesenberg, “A new approach to divergence cleaning in magnetohydrodynamic simulations,” in Hyperbolic problems: theory, numerics, applications, Berlin: Springer, 2003, pp. 509--518.
  17. 2002

    1. A. Dedner and C. Rohde, “FV-schemes for a scalar model problem of radiation magnetohydrodynamics,” in Finite volumes for complex applications, III (Porquerolles, 2002), Hermes Sci. Publ., Paris, 2002, pp. 165--172.
    2. H. Freistühler and C. Rohde, “Numerical computation of viscous profiles for hyperbolic conservation  laws,” Math. Comp., vol. 71, no. 239, pp. 1021--1042 (electronic), 2002.
    3. M. Ohlberger and C. Rohde, “Adaptive finite volume approximations for weakly coupled convection  dominated parabolic systems,” IMA J. Numer. Anal., vol. 22, no. 2, pp. 253--280, 2002.
    4. P. G. Lefloch, J. M. Mercier, and C. Rohde, “Fully discrete, entropy conservative schemes of arbitrary order,” SIAM J. Numer. Anal., vol. 40, no. 5, pp. 1968--1992 (electronic), 2002.
  18. 2001

    1. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    2. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “Godunov-type schemes for the MHD equations,” in Godunov methods (Oxford, 1999), Kluwer/Plenum, New York, 2001, pp. 209--216.
    3. P. G. LeFloch and C. Rohde, “Zero diffusion-dispersion limits for self-similar Riemann solutions  to hyperbolic systems of conservation laws,” Indiana Univ. Math. J., vol. 50, no. 4, pp. 1707--1743, 2001.
    4. T. Hillen, C. Rohde, and F. Lutscher, “Existence of weak solutions for a hyperbolic model of chemosensitive  movement,” J. Math. Anal. Appl., vol. 260, no. 1, pp. 173--199, 2001.
    5. B. Haasdonk, D. Kröner, and C. Rohde, “Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids,” Numer. Math., vol. 88, no. 3, pp. 459--484, 2001.
    6. A. Dedner, D. Kröner, C. Rohde, and M. Wesenberg, “MHD instabilities arising in solar physics: a numerical approach,” in Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000), vol. 141, Basel: Birkhäuser, 2001, pp. 277--286.
  19. 2000

    1. P. G. Lefloch and C. Rohde, “High-order schemes, entropy inequalities, and nonclassical shocks,” SIAM J. Numer. Anal., vol. 37, no. 6, pp. 2023--2060 (electronic), 2000.
  20. 1999

    1. A. Dedner, C. Rohde, and M. Wesenberg, “A MHD-simulation in solar physics,” in Finite volumes for complex applications II, Hermes Sci. Publ., Paris, 1999, pp. 491--498.
    2. H. Freistühler and C. Rohde, “Numerical methods for viscous profiles of non-classical shock waves,” in Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998), vol. 129, Basel: Birkhäuser, 1999, pp. 333--342.
  21. 1998

    1. C. Rohde, “Upwind finite volume schemes for weakly coupled hyperbolic systems  of conservation laws in 2D,” Numer. Math., vol. 81, no. 1, pp. 85--123, 1998.
    2. C. Rohde, “Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions,” Z. Angew. Math. Phys., vol. 49, no. 3, pp. 470--499, 1998.