This image shows Christian Rohde

Christian Rohde

Prof. Dr.

Head of Group
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

+49 711 685 65524
+4971168565599

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.131

Office Hours

Fridays 1:30 - 2:30 pm and by appointment

  1. 2023

    1. Miao, Y., Rohde, C., & Tang, H. (2023). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. Accepted by Stoch. Partial Differ. Equ. Anal. Comput. https://arxiv.org/abs/2105.08607
    2. Keim, J., Schwarz, A., Chiocchetti, S., Rohde, C., & Beck, A. (2023). A Reinforcement Learning Based Slope Limiter for Two-Dimensional Finite Volume Schemes. https://doi.org/10.13140/RG.2.2.18046.87363
    3. Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numer. Methods Partial Differential Equations, 39(1), 622–656. https://doi.org/10.1002/num.22906
    4. Mel’nyk, T., & Rohde, C. (2023). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. In arXiv e-prints. https://doi.org/10.48550/arXiv.2302.10105
    5. Keim, J., Munz, C.-D., & Rohde, C. (2023). A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains. J. Comput. Phys., 474, 111830. https://doi.org/10.1016/j.jcp.2022.111830
    6. Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. Accepted by SIAM J. Sci. Comput. https://doi.org/10.48550/arXiv.2207.09301
    7. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443--450). Springer International Publishing.
    8. Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Engrg., 403. https://doi.org/10.1016/j.cma.2022.115699
    9. Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), A49–A73. https://doi.org/10.1137/21M1415005
  2. 2022

    1. Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys., 111031. https://doi.org/10.1016/j.jcp.2022.111031
    2. Magiera, J., & Rohde, C. (2022). A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces. J. Comput. Phys., 111551. https://doi.org/10.1016/j.jcp.2022.111551
    3. Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2022). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
    4. Mel’nyk, T., & Rohde, C. (2022). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. In arXiv e-prints. https://doi.org/10.48550/ARXIV.2208.05812
    5. Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. J. Open Source Softw., 7(74), 3959. https://doi.org/10.21105/joss.03959
    6. Magiera, J., & Rohde, C. (2022). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Eds.), Droplet Dynamics under Extreme Ambient Conditions. Springer International Publishing. https://doi.org/10.1007/978-3-031-09008-0_4
  3. 2021

    1. Alonso-Orán, D., Rohde, C., & Tang, H. (2021). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. J. Nonlinear Sci., 31, Paper No. 98, 55.
    2. Alkämper, M., Magiera, J., & Rohde, C. (2021). An Interface Preserving Moving Mesh in Multiple SpaceDimensions. Computing Research Repository, abs/2112.11956. https://arxiv.org/abs/2112.11956
    3. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 355--371). Springer International Publishing.
    4. Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.-D., & Rohde, C. (2021). A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations. Computers & Fluids, 228, 1850044, 20. https://doi.org/10.1016/j.compfluid.2021.105039
    5. von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transp. Porous Media, 137(2), 327--343. https://doi.org/10.1007/s11242-021-01560-y
    6. Rohde, C., & von Wolff, L. (2021). A Ternary Cahn-Hilliard-Navier-Stokes model for two phase flow with precipitation and dissolution. Math. Models Methods Appl. Sci., 31(1), 1--35. https://doi.org/10.1142/S0218202521500019
    7. Giesselmann, J., Meyer, F., & Rohde, C. (2021). Error control for statistical solutions of hyperbolic systems of conservation laws. Calcolo, 58(2), Paper No. 23, 29. https://doi.org/10.1007/s10092-021-00417-6
    8. Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Paper No. 5, 34. https://doi.org/10.1007/s00030-020-00661-9
    9. Rohde, C., & Tang, H. (2021). On a stochastic Camassa-Holm type equation with higher order nonlinearities. J. Dynam. Differential Equations, 33, 1823–1852. https://doi.org/10.1007/s10884-020-09872-1
    10. Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
  4. 2020

    1. Ostrowski, L., & Rohde, C. (2020). Compressible multicomponent flow in porous media with Maxwell-Stefan diffusion. Math. Meth. Appl. Sci., 43(7), 4200–4221. https://doi.org/10.1002/mma.6185
    2. Magiera, J., Ray, D., Hesthaven, J. S., & Rohde, C. (2020). Constraint-aware neural networks for Riemann problems. J. Comput. Phys., 409(109345), Article 109345. https://doi.org/10.1016/j.jcp.2020.109345
    3. Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method. IMA J. Numer. Anal., 40(2), 1094–1121. https://doi.org/10.1093/imanum/drz004
    4. Rohde, C., & von Wolff, L. (2020). Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media. SIAM J. Math. Anal., 52(6), 6155–6179. https://doi.org/10.1137/19M1242434
    5. Giesselmann, J., Meyer, F., & Rohde, C. (2020). An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Eds.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Vol. 10, pp. 449–456). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    6. Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numer. Math. https://doi.org/10.1007/s10543-019-00794-z
    7. Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), B1067–B1091. https://doi.org/10.1137/18M1210575
    8. Armiti-Juber, A., & Rohde, C. (2020). On the well-posedness of a nonlinear fourth-order extension of Richards’ equation. J. Math. Anal. Appl., 487(2), 124005. https://doi.org/10.1016/j.jmaa.2020.124005
    9. Ostrowski, L., Massa, F. C., & Rohde, C. (2020). A phase field approach to compressible droplet impingement. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Eds.), Droplet Interactions and Spray Processes (pp. 113–126). Springer International Publishing. https://doi.org/10.1007/978-3-030-33338-6_9
    10. Burbulla, S., & Rohde, C. (2020). A fully conforming finite volume approach to two-phase flow in fractured porous media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (pp. 547–555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_51
    11. Ostrowski, L., & Rohde, C. (2020). Phase field modelling for compressible droplet impingement. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Eds.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Vol. 10, pp. 586–593). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    12. Hitz, T., Keim, J., Munz, C.-D., & Rohde, C. (2020). A parabolic relaxation model for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 421, 109714. https://doi.org/10.1016/j.jcp.2020.109714
  5. 2019

    1. Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, 1419–1497. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    2. Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1), 1850044, 20. https://doi.org/10.1142/S2591728518500445
    3. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2019). Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Physics of Fluids, 31(1), 012110. https://doi.org/10.1063/1.5064694
    4. Armiti-Juber, A., & Rohde, C. (2019). On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains. Comput. Geosci., 23(2), 285–303. https://doi.org/10.1007/s10596-018-9756-2
    5. Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. Appl., 477(1), 592–612. https://doi.org/10.1016/j.jmaa.2019.04.049
    6. Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
    7. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Computational Geosciences, 23(2), 339--354. https://doi.org/10.1007/s10596-018-9785-x
  6. 2018

    1. Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number. International Journal of Multiphase Flow, 107, 82–103. http://arxiv.org/abs/1609.03410
    2. Seus, D., Pop, I. S., Rohde, C., Mitra, K., & Radu, F. (2018). A linear domain decompostition method for partially saturated flow in porous media. Comput. Methods Appl. Mech. Eng., 333, 331–355. https://doi.org/10.1016/j.cma.2018.01.029
    3. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
    4. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, 82–103. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
    5. Rohde, C., & Zeiler, C. (2018). On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension. Z. Angew. Math. Phys., 3, 69, Art. 76. https://doi.org/10.1007/s00033-018-0958-1
    6. Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2018). A finite-volume tracking scheme for two-phase compressible flow. Springer Proc. Math. Stat., 309--322. https://doi.org/10.1007/978-3-319-91545-6_25
    7. Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow  in porous media. Comp. Methods Appl. Mech. Eng., 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    8. Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Eds.), New trends and results in mathematical description of fluid flows (pp. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
    9. Magiera, J., & Rohde, C. (2018). A particle-based multiscale solver for compressible liquid-vapor flow. Springer Proc. Math. Stat., 291--304. https://doi.org/10.1007/978-3-319-91548-7_23
  7. 2017

    1. Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
    2. Köppel, M., Kröker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
    3. Chalons, C., Rohde, C., & Wiebe, M. (2017). A finite volume method for undercompressive shock waves in two space dimensions. ESAIM Math. Model. Numer. Anal., 51(5), 1987–2015. https://doi.org/10.1051/m2an/2017027
    4. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    5. Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-posedness of a two scale model for liquid phase epitaxy with elasticity. Contin. Mech. Thermodyn., 29(4), 989–1016. https://doi.org/10.1007/s00161-015-0462-1
    6. Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Wittwar, D., Santin, G., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827
  8. 2016

    1. Dumbser, M., Gassner, G., Rohde, C., & Roller, S. (2016). Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’. Appl. Math. Comput., 272(part 2), 235--236. https://doi.org/10.1016/j.amc.2015.11.023
    2. Kabil, B., & Rohde, C. (2016). Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension. Math. Meth. Appl. Sci., 39(18), 5409--5426. https://doi.org/10.1002/mma.3926
    3. Magiera, J., Rohde, C., & Rybak, I. (2016). A hyperbolic-elliptic model problem for coupled surface-subsurface  flow. Transp. Porous Media, 114, 425–455. https://doi.org/10.1007/S11242-015-0548-Z
    4. Barth, A., Bürger, R., Kröker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach. Computers & Chemical Engineering, 89, 11-- 26. http://dx.doi.org/10.1016/j.compchemeng.2016.02.016
    5. Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2016). Bed of polydisperse viscous spherical drops under thermocapillary    effects. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 67(4), Article 4. https://doi.org/10.1007/s00033-016-0699-y
    6. Redeker, M., Pop, I. S., & Rohde, C. (2016). Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media. IMA J. Appl. Math., 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
    7. Dragomirescu, I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. Inter. J. Thermal Sci., 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    8. Köppel, M., & Rohde, C. (2016). Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media. PAMM Proc. Appl. Math. Mech., 16(1), 749–750. https://doi.org/10.1002/pamm.201610363
    9. Dragomirescu, F. I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    10. Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), 309–335. https://doi.org/10.1016/j.amc.2015.09.080
    11. Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by local discontinuous Galerkin methods in multiple space dimensions. Appl. Math. Comput., 272(2), 309–335. https://doi.org/10.1016/j.amc.2015.09.080
    12. Colombo, R. M., LeFloch, P. G., & Rohde, C. (2016). Hyperbolic techniques in Modelling, Analysis and Numerics. Oberwolfach Reports, 13, 1683–1751. https://doi.org/10.4171/OWR/2016/30
    13. Betancourt, F., & Rohde, C. (2016). Finite-volume schemes for Friedrichs systems with involutions. APPLIED MATHEMATICS AND COMPUTATION, 272(2), 420–439. https://doi.org/10.1016/j.amc.2015.03.050
  9. 2015

    1. Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci., 19, 299–309. https://doi.org/10.1007/s10596-015-9469-8
    2. Rohde, C., & Zeiler, C. (2015). A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension. Appl. Numer. Math., 95, 267--279. https://doi.org/10.1016/j.apnum.2014.05.001
    3. Kissling, F., & Rohde, C. (2015). THE COMPUTATION OF NONCLASSICAL SHOCK WAVES IN POROUS MEDIA WITH A    HETEROGENEOUS MULTISCALE METHOD: THE MULTIDIMENSIONAL CASE. MULTISCALE MODELING & SIMULATION, 13(4), 1507–1541. https://doi.org/10.1137/120899236
    4. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg equations for compressible    two-phase flow with phase transition. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 79(12), 615–639. https://doi.org/10.1002/fld.4065
    5. Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition. J. Numer. Meth. Fluids, 79(12), 615–639. https://doi.org/10.1002/fld.4065
    6. Kroeker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems. COMPUTATIONAL GEOSCIENCES, 19(2), 269–284. https://doi.org/10.1007/s10596-014-9464-5
    7. Kröker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems. Comput. Geosci., 19(2), 269--284. https://doi.org/10.1007/s10596-014-9464-5
  10. 2014

    1. Bürger, R., Kröker, I., & Rohde, C. (2014). A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech., 94(10), 793–817. https://doi.org/10.1002/zamm.201200174
    2. Ehlers, W., Helmig, R., & Rohde, C. (2014). Editorial: Deformation and transport phenomena in porous media. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift F�r Angewandte Mathematik Und Mechanik, 94(7–8), 559--559. https://doi.org/10.1002/zamm.201400559
    3. Chalons, C., Engel, P., & Rohde, C. (2014). A Conservative and Convergent Scheme for Undercompressive Shock Waves. SIAM J. Numer. Anal., 52(1), 554–579. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    4. Engel, P., Viorel, A., & Rohde, C. (2014). A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics. Port. Math., 70(4), 319–344. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    5. Köppel, M., Kröker, I., & Rohde, C. (2014). Stochastic Modeling for Heterogeneous Two-Phase Flow. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77, pp. 353–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-05684-5_34
    6. Fechter, S., Zeiler, C., Munz, C.-D., & Rohde, C. (2014). Simulation of compressible multi-phase flows at extreme ambient conditions using a Discontinuous-Galerkin method. ILASS Europe, 26th European Conference on Liquid Atomization and Spray Systems.
    7. Kabil, B., & Rohde, C. (2014). The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces. Nonlinear Analysis: Theory, Methods & Applications, 107(0), 63–75. http://dx.doi.org/10.1016/j.na.2014.04.003
    8. Armiti-Juber, A., & Rohde, C. (2014). Almost Parallel Flows in Porous Media. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems (Vol. 78, pp. 873–881). Springer International Publishing. https://doi.org/10.1007/978-3-319-05591-6_88
    9. Corli, A., Rohde, C., & Schleper, V. (2014). Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl., 414, 773–798. http://dx.doi.org/10.1016/j.jmaa.2014.01.049
  11. 2013

    1. Eck, Ch., Kutter, M., Sändig, A.-M., & Rohde, Ch. (2013). A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(10–11), 745--761. https://doi.org/10.1002/zamm.201200238
    2. Eisenschmidt, K., Rauschenberger, P., Rohde, C., & Weigand, B. (2013). Modelling of freezing processes in super-cooled droplets on sub-grid  scale. ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems.
    3. Rohde, C., Wang, W., & Xie, F. (2013). Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model. Mathematical Models and Methods in Applied Sciences, 23(03), 441--469. https://doi.org/10.1142/S0218202512500522
    4. Rohde, C., Wang, W., & Xie, F. (2013). Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 12(5), 2145--2171. https://doi.org/10.3934/cpaa.2013.12.2145
  12. 2012

    1. Corli, A., & Rohde, C. (2012). Singular limits for a parabolic-elliptic regularization of scalar conservation laws. J. Differential Equations, 253(5), 1399--1421. https://doi.org/10.1016/j.jde.2012.05.006
    2. Dreyer, W., Giesselmann, J., Kraus, C., & Rohde, C. (2012). Asymptotic Analysis for Korteweg Models. Interfaces Free Bound., 14, 105–143. http://www.ems-ph.org/journals/show_pdf.php?issn=1463-9963&vol=14&iss=1&rank=4
    3. Engel, P., & Rohde, C. (2012). On the Space-Time Expansion Discontinuous Galerkin Method. In T. Li & S. Jiang (Eds.), Hyperbolic Problems: Theory, Numerics and Applications (pp. 406--414).
    4. Jaegle, F., Rohde, C., & Zeiler, C. (2012). A multiscale method for compressible liquid-vapor flow with surface  tension. ESAIM: Proc., 38, 387–408. https://doi.org/10.1051/proc/201238022
    5. Kissling, F., & Rohde, C. (2012). Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method. In T. Li & S. Jiang (Eds.), Hyperbolic Problems: Theory, Numerics and Applications (pp. 469--478).
    6. Richter, T., Rudlof, S., Adjibadji, B., Bernlöhr, H., Gröninger, C., Munz, C.-D., Stock, A., Rohde, C., & Helmig, R. (2012). ViPLab: a virtual programming laboratory for mathematics and engineering. Interactive Technology and Smart Education, 9, 246–262. https://doi.org/10.1108/17415651211284039
    7. Kröker, I., & Rohde, C. (2012). Finite volume schemes for hyperbolic balance laws with multiplicative  noise. Appl. Numer. Math., 62(4), 441--456. https://doi.org/10.1016/j.apnum.2011.01.011
    8. Rohde, C., & Xie, F. (2012). Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem. Math. Methods Appl. Sci., 35(5), 564--573. https://doi.org/10.1002/mma.1593
    9. Chalons, C., Coquel, F., Engel, P., & Rohde, C. (2012). Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems. SIAM Journal on Scientific Computing, 34(3), A1753--A1776. https://doi.org/10.1137/110848815
    10. Kissling, F., Helmig, R., & Rohde, C. (2012). Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach. Vadose Zone J., 11(3). https://doi.org/10.2136/vzj2011.0193
  13. 2011

    1. Bürger, R., Kröker, I., & Rohde, C. (2011). Uncertainty quantification for a clarifier-thickener model with random  feed. In Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2 (Vol. 4, pp. 195--203). Springer. https://doi.org/10.1007/978-3-642-20671-9_21
    2. Richter, Th., Rudlof, S., Adjibadji, B., Berlohr, H., Gruninger, Ch., Munz, C.-D., Rohde, Ch., & Helmig, R. (2011). ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering. Proceedings of the 2011 IEEE International Symposium on Multimedia, 537--542. https://doi.org/10.1109/ISM.2011.95
  14. 2010

    1. Kissling, F., & Rohde, C. (2010). The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method. Netw. Heterog. Media, 5(3), 661--674. https://doi.org/10.3934/nhm.2010.5.661
    2. Rohde, C. (2010). A local and low-order Navier-Stokes-Korteweg system. In Nonlinear partial differential equations and hyperbolic wave phenomena (Vol. 526, pp. 315--337). Amer. Math. Soc. https://doi.org/10.1090/conm/526/10387
  15. 2009

    1. Kissling, F., LeFloch, P. G., & Rohde, C. (2009). A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws. J. Differential Equations, 247(12), 3338--3356. https://doi.org/10.1016/j.jde.2009.05.006
  16. 2008

    1. Rohde, C., Tiemann, N., & Yong, W.-A. (2008). Weak and classical solutions for a model problem in radiation hydrodynamics. In Hyperbolic problems: theory, numerics, applications (pp. 891--899). Springer. https://doi.org/10.1007/978-3-540-75712-2_93
    2. Rohde, C., & Yong, W.-A. (2008). Dissipative entropy and global smooth solutions in radiation hydrodynamics  and magnetohydrodynamics. Math. Models Methods Appl. Sci., 18(12), 2151--2174. https://doi.org/10.1142/S0218202508003327
    3. Dressel, A., & Rohde, C. (2008). A finite-volume approach to liquid-vapour fluids with phase transition. In Finite volumes for complex applications V (pp. 53--68). ISTE, London.
    4. Haink, J., & Rohde, C. (2008). Local discontinuous-Galerkin schemes for model problems in phase  transition theory. Commun. Comput. Phys., 4, 860–893. https://www.researchgate.net/profile/Christian_Rohde2/publication/228406932_Local_discontinuous-Galerkin_schemes_for_model_problems_in_phase_transition_theory/links/00b4952cb030e0da90000000.pdf
    5. Dressel, A., & Rohde, C. (2008). Global existence and uniqueness of solutions for a viscoelastic two-phase  model. Indiana Univ. Math. J., 57(2), 717--755. https://doi.org/10.1512/iumj.2008.57.3271
  17. 2007

    1. Rohde, C., & Yong, W.-A. (2007). The nonrelativistic limit in radiation hydrodynamics. I. Weak  entropy solutions for a model problem. J. Differential Equations, 234(1), 91--109. https://doi.org/10.1016/j.jde.2006.11.010
    2. Merkle, C., & Rohde, C. (2007). The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques. M2AN Math. Model. Numer. Anal., 41(6), 1089--1123. https://doi.org/10.1051/m2an:2007048
  18. 2006

    1. Haink, J., & Rohde, C. (2006). Phase transition in compressible media and nonlocal capillarity terms. In Hyperbolic problems: theory, numerics and applications. I (pp. 147--154). Yokohama Publ., Yokohama.
    2. Diehl, D., & Rohde, C. (2006). On the structure of MHD shock waves in diffusive-dispersive media. J. Math. Fluid Mech., 8(1), 120--145. https://doi.org/10.1007/s00021-004-0149-z
    3. Merkle, C., & Rohde, C. (2006). Computation of dynamical phase transitions in solids. Appl. Numer. Math., 56(10–11), 1450--1463. https://doi.org/10.1016/j.apnum.2006.03.025
    4. Jovanović, V., & Rohde, C. (2006). Error estimates for finite volume approximations of classical solutions  for nonlinear systems of hyperbolic balance laws. SIAM J. Numer. Anal., 43(6), 2423--2449 (electronic). https://doi.org/10.1137/S0036142903438136
  19. 2005

    1. Rohde, C. (2005). Scalar conservation laws with mixed local and nonlocal diffusion-dispersion  terms. SIAM J. Math. Anal., 37(1), 103--129 (electronic). https://doi.org/10.1137/S0036141004443300
    2. Coquel, F., Diehl, D., Merkle, C., & Rohde, C. (2005). Sharp and diffuse interface methods for phase transition problems  in liquid-vapour flows. In Numerical methods for hyperbolic and kinetic problems (Vol. 7, pp. 239--270). Eur. Math. Soc., Zürich. https://doi.org/10.4171/012-1/11
    3. Gander, M. J., & Rohde, C. (2005). Overlapping Schwarz waveform relaxation for convection-dominated  nonlinear conservation laws. SIAM J. Sci. Comput., 27(2), 415--439. https://doi.org/10.1137/030601090
    4. Jovanović, V., & Rohde, C. (2005). Finite-volume schemes for Friedrichs systems in multiple space  dimensions: a priori and a posteriori error estimates. Numer. Methods Partial Differential Equations, 21(1), 104--131. https://doi.org/10.1002/num.20026
    5. Rohde, C. (2005). On local and non-local Navier-Stokes-Korteweg systems for liquid-vapour  phase transitions. ZAMM Z. Angew. Math. Mech., 85(12), 839--857. https://doi.org/10.1002/zamm.200410211
    6. Rohde, C. (2005). Phase transitions and sharp-interface limits for the 1d-elasticity  system with non-local energy. Interfaces Free Bound., 7(1), 107--129. https://doi.org/10.4171/IFB/116
    7. Gander, M. J., & Rohde, C. (2005). Nonlinear advection problems and overlapping Schwarz waveform relaxation. In Domain decomposition methods in science and engineering (Vol. 40, pp. 251--258). Springer. https://doi.org/10.1007/3-540-26825-1_23
    8. Dedner, A., Kröner, D., Rohde, C., & Wesenberg, M. (2005). Radiation magnetohydrodynamics: analysis for model problems and efficient  3d-simulations for the full system. In Analysis and numerics for conservation laws (pp. 163--202). Springer. https://doi.org/10.1007/3-540-27907-5_8
  20. 2004

    1. Dedner, A., Rohde, C., Schupp, B., & Wesenberg, M. (2004). A parallel, load-balanced MHD code on locally-adapted unstructured  grids in 3d. Comput. Vis. Sci., 7(2), 79--96. https://doi.org/10.1007/s00791-004-0140-5
    2. Dedner, A., & Rohde, C. (2004). Numerical approximation of entropy solutions for hyperbolic integro-differential  equations. Numer. Math., 97(3), 441--471. https://doi.org/10.1007/s00211-003-0502-9
    3. Rohde, C., & Thanh, M. D. (2004). Global existence for phase transition problems via a variational  scheme. J. Hyperbolic Differ. Equ., 1(4), 747--768. https://doi.org/10.1142/S0219891604000329
  21. 2003

    1. Kröner, D., Küther, M., Ohlberger, M., & Rohde, C. (2003). A posteriori error estimates and adaptive methods for hyperbolic  and convection dominated parabolic conservation laws. In Trends in nonlinear analysis (pp. 289--306). Springer.
    2. Dedner, A., Kröner, D., Rohde, C., Schnitzer, T., & Wesenberg, M. (2003). Comparison of finite volume and discontinuous Galerkin methods  of higher order for systems of conservation laws in multiple space  dimensions. In Geometric analysis and nonlinear partial differential equations (pp. 573--589). Springer.
    3. Rohde, C., & Zajaczkowski, W. (2003). On the Cauchy problem for the equations of ideal compressible MHD  fluids with radiation. Appl. Math., 48(4), 257--277. https://doi.org/10.1023/A:1026010631074
    4. Freistühler, H., & Rohde, C. (2003). The bifurcation analysis of the MHD Rankine-Hugoniot equations for a perfect gas. Phys. D, 185(2), 78--96. https://doi.org/10.1016/S0167-2789(03)00206-9
    5. Dedner, A., Rohde, C., & Wesenberg, M. (2003). Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics. In Hyperbolic problems: theory, numerics, applications (pp. 499--508). Springer.
    6. Dedner, A., Rohde, C., & Wesenberg, M. (2003). A new approach to divergence cleaning in magnetohydrodynamic simulations. In Hyperbolic problems: theory, numerics, applications (pp. 509--518). Springer.
  22. 2002

    1. Dedner, A., & Rohde, C. (2002). FV-schemes for a scalar model problem of radiation magnetohydrodynamics. In Finite volumes for complex applications, III (Porquerolles, 2002) (pp. 165--172). Hermes Sci. Publ., Paris.
    2. Freistühler, H., & Rohde, C. (2002). Numerical computation of viscous profiles for hyperbolic conservation  laws. Math. Comp., 71(239), 1021--1042 (electronic). https://doi.org/10.1090/S0025-5718-01-01340-0
    3. Ohlberger, M., & Rohde, C. (2002). Adaptive finite volume approximations for weakly coupled convection  dominated parabolic systems. IMA J. Numer. Anal., 22(2), 253--280. https://doi.org/10.1093/imanum/22.2.253
    4. Lefloch, P. G., Mercier, J. M., & Rohde, C. (2002). Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal., 40(5), 1968--1992 (electronic). https://doi.org/10.1137/S003614290240069X
  23. 2001

    1. Haasdonk, B., Kröner, D., & Rohde, C. (2001). Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids. Numer. Math., 88(3), 459--484. https://doi.org/10.1007/s211-001-8011-x
    2. Freistühler, H., Fries, C., & Rohde, C. (2001). Existence, bifurcation, and stability of profiles for classical and  non-classical shock waves. In Ergodic theory, analysis, and efficient simulation of dynamical systems (pp. 287--309, 814). Springer.
    3. Dedner, A., Kröner, D., Rohde, C., & Wesenberg, M. (2001). Godunov-type schemes for the MHD equations. In Godunov methods (Oxford, 1999) (pp. 209--216). Kluwer/Plenum, New York.
    4. Freistühler, H., & Rohde, C. (2001). A numerical study on viscous profiles of MHD shock waves. In Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000) (Vol. 141, pp. 399--408). Birkhäuser.
    5. LeFloch, P. G., & Rohde, C. (2001). Zero diffusion-dispersion limits for self-similar Riemann solutions  to hyperbolic systems of conservation laws. Indiana Univ. Math. J., 50(4), 1707--1743. https://doi.org/10.1512/iumj.2001.50.2057
    6. Hillen, T., Rohde, C., & Lutscher, F. (2001). Existence of weak solutions for a hyperbolic model of chemosensitive  movement. J. Math. Anal. Appl., 260(1), 173--199. https://doi.org/10.1006/jmaa.2001.7447
    7. Haasdonk, B., Kröner, D., & Rohde, C. (2001). Convergence of a staggered Lax-Friedrichs scheme for nonlinear  conservation laws on unstructured two-dimensional grids. Numer. Math., 88(3), 459--484. https://doi.org/10.1007/s211-001-8011-x
    8. Dedner, A., Kröner, D., Rohde, C., & Wesenberg, M. (2001). MHD instabilities arising in solar physics: a numerical approach. In Hyperbolic problems: theory, numerics, applications, Vol. I,  II (Magdeburg, 2000) (Vol. 141, pp. 277--286). Birkhäuser.
  24. 2000

    1. Lefloch, P. G., & Rohde, C. (2000). High-order schemes, entropy inequalities, and nonclassical shocks. SIAM J. Numer. Anal., 37(6), 2023--2060 (electronic). https://doi.org/10.1137/S0036142998345256
  25. 1999

    1. Dedner, A., Rohde, C., & Wesenberg, M. (1999). A MHD-simulation in solar physics. In Finite volumes for complex applications II (pp. 491--498). Hermes Sci. Publ., Paris.
    2. Freistühler, H., & Rohde, C. (1999). Numerical methods for viscous profiles of non-classical shock waves. In Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich,  1998) (Vol. 129, pp. 333--342). Birkhäuser.
  26. 1998

    1. Rohde, C. (1998). Upwind finite volume schemes for weakly coupled hyperbolic systems  of conservation laws in 2D. Numer. Math., 81(1), 85--123. https://doi.org/10.1007/s002110050385
    2. Rohde, C. (1998). Entropy solutions for weakly coupled hyperbolic systems in several  space dimensions. Z. Angew. Math. Phys., 49(3), 470--499. https://doi.org/10.1007/s000000050102
To the top of the page