M. Sc.

Fabian Meyer

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

Pfaffenwaldring 57
70569 Stuttgart
Deutschland

  1. 2020

    1. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method,” IMA J. Numer. Anal., vol. 40, no. 2, pp. 1094–1121, 2020, doi: 10.1093/imanum/drz004.
    2. J. Giesselmann, F. Meyer, and C. Rohde, “An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws,” in Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018, 2020, vol. 10, pp. 449–456, [Online]. Available: https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf.
    3. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws,” BIT Numer. Math., 2020, [Online]. Available: https://doi.org/10.1007/s10543-019-00794-z.
  2. 2019

    1. J. Giesselmann, F. Meyer, and C. Rohde, “Error control for statistical solutions,” 2019, [Online]. Available: https://arxiv.org/abs/1912.04323.
    2. T. Kuhn, J. Dürrwächter, F. Meyer, A. Beck, C. Rohde, and C.-D. Munz, “Uncertainty quantification for direct aeroacoustic simulations of cavity flows,” J. Theor. Comput. Acoust., vol. 27, no. 1, 1850044, 2019, doi: https://doi.org/10.1142/S2591728518500445.
    3. J. Dürrwächter, F. Meyer, T. Kuhn, A. Beck, C.-D. Munz, and C. Rohde, “A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations,” 2019, [Online]. Available: https://www.researchgate.net/profile/Jakob_Duerrwaechter/publication/336702251_A_High-Order_Stochastic_Galerkin_Code_for_the_Compressible_Euler_and_Navier-Stokes_Equations/links/5dadf498299bf111d4bf8ba1/A-High-Order-Stochastic-Galerkin-Code-for-the-Compressible-Euler-and-Navier-Stokes-Equations.pdf.
  3. 2018

    1. J. Dürrwächter, T. Kuhn, F. Meyer, L. Schlachter, and F. Schneider, “A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations,” Journal of Computational and Applied Mathematics, p. 112602, 2018, doi: https://doi.org/10.1016/j.cam.2019.112602.
    2. H. Gimperlein, F. Meyer, C. Özdemir, and E. P. Stephan, “Time domain boundary elements for dynamic contact problems,” Computer Methods in Applied Mechanics and Engineering, vol. 333, pp. 147–175, 2018, doi: https://doi.org/10.1016/j.cma.2018.01.025.
    3. A. Beck, J. Dürrwächter, T. Kuhn, F. Meyer, C.-D. Munz, and C. Rohde, “$hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows,” 2018. [Online]. Available: https://arxiv.org/abs/1808.10626.
    4. H. Gimperlein, F. Meyer, C. Özdemir, D. Stark, and E. P. Stephan, “Boundary elements with mesh refinements for the wave equation.,” Numer. Math., vol. 139, no. 4, pp. 867--912, 2018, doi: https://doi.org/10.1007/s00211-018-0954-6.
2014 B.Sc. Mathematics, University of Ulm
2016 M.Sc. Mathematics, University of Hanover
since 2016 Research assistant, University of Stuttgart
To the top of the page