This image shows Jim Magiera

Jim Magiera

Dr. rer. nat.

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics


Pfaffenwaldring 57
70569 Stuttgart
Room: 7.161

Office Hours

Please contact me by E-Mail

  1. 2022

    1. J. Magiera and C. Rohde, “A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces,” J. Comput. Phys., p. 111551, 2022, doi:
    2. J. Magiera and C. Rohde, “Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics,” in Droplet Dynamics under Extreme Ambient Conditions, K. Schulte, C. Tropea, and B. Weigand, Eds. Springer International Publishing, 2022. doi: 10.1007/978-3-031-09008-0_4.
  2. 2021

    1. J. Magiera, “A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow,” in Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting), 2021, vol. 41. doi: 10.14760/OWR-2021-41.
    2. M. Alkämper, J. Magiera, and C. Rohde, “An Interface Preserving Moving Mesh in Multiple SpaceDimensions,” Computing Research Repository, vol. abs/2112.11956, 2021, [Online]. Available:
    3. J. Magiera, “A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation,” Ph.D. Thesis, 2021. doi: 10.18419/opus-11797.
  3. 2020

    1. J. Magiera, D. Ray, J. S. Hesthaven, and C. Rohde, “Constraint-aware neural networks for Riemann problems,” J. Comput. Phys., vol. 409, no. 109345, Art. no. 109345, 2020, doi:
    2. D. Maier, “BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS,” OPERATORS AND MATRICES, vol. 14, no. 3, Art. no. 3, Sep. 2020, doi: 10.7153/oam-2020-14-48.
    3. D. Maier, “Construction of breather solutions for nonlinear Klein-Gordon equations    on periodic metric graphs,” JOURNAL OF DIFFERENTIAL EQUATIONS, vol. 268, no. 6, Art. no. 6, Mar. 2020, doi: 10.1016/j.jde.2019.09.035.
  4. 2018

    1. C. Chalons, J. Magiera, C. Rohde, and M. Wiebe, “A finite-volume tracking scheme for two-phase compressible flow,” Springer Proc. Math. Stat., pp. 309--322, 2018, doi:
    2. J. Magiera and C. Rohde, “A particle-based multiscale solver for compressible liquid-vapor flow,” Springer Proc. Math. Stat., pp. 291--304, 2018, doi: 10.1007/978-3-319-91548-7_23.
  5. 2016

    1. J. Magiera, C. Rohde, and I. Rybak, “A hyperbolic-elliptic model problem for coupled surface-subsurface  flow,” Transp. Porous Media, vol. 114, pp. 425–455, 2016, doi: 10.1007/S11242-015-0548-Z.
    2. I. Rybak and J. Magiera, “Decoupled schemes for free flow and porous medium systems,” in Domain Decomposition Methods in Science and Engineering XXII, 2016, vol. 104, pp. 613--621. doi: 10.1007/978-3-319-18827-0\_54.
  6. 2015

    1. I. Rybak, J. Magiera, R. Helmig, and C. Rohde, “Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems,” Comput. Geosci., vol. 19, pp. 299–309, Apr. 2015, doi: 10.1007/s10596-015-9469-8.
  7. 2014

    1. I. Rybak and J. Magiera, “A multiple-time-step technique for coupled free flow and porous medium  systems,” J. Comput. Phys., vol. 272, pp. 327--342, 2014, doi: 10.1016/
To the top of the page