Dieses Bild zeigt Giesselmann

Priv.-Doz. Dr.

Jan Giesselmann

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

+49 711 685-65538

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Room: 7.165

Subject

  • Finite volume and discontinuous Galerkin schemes
  • Conservation laws
  • PDEs on Riemannian manifolds
  • Phase transitions
  • Cavitation in elastical solids
  • Asymptotic analysis
  1. 2018

    1. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018.
  2. 2017

    1. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, 2017, vol. 199.
    2. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, pp. 1528–1546, 2017.
    3. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection  dominated problems,” Math. Models Methods Appl. Sci. (M3AS), vol. 27, no. 13, pp. 2381-- 2423, 2017.
    4. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.,” 2017.
    5. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics,” Arch. Ration. Mech. Anal., vol. 223, pp. 1427-- 1484, 2017.
  3. 2016

    1. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, pp. 1685-- 1714, 2016.
    2. A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,” SIAM JOURNAL ON NUMERICAL ANALYSIS, vol. 54, no. 6, pp. 3523–3549, 2016.
    3. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, pp. 1685–1714, 2016.
    4. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, pp. 3523–3549, 2016.
    5. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, pp. 359--372, 2016.
    6. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016.
    7. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016.
  4. 2015

    1. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” PhD dissertation, Stuttgart, 2015.
    2. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015.
    3. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, pp. 802--832, 2015.
    4. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence  of a non-local to a local model,” J. Differential Equations, vol. 258, pp. 3589–3606, 2015.
    5. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015.
  5. 2014

    1. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, pp. 241–281, 2014.
    2. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, pp. 827–861, 2014.
    3. J. Giesselmann and T. Müller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, pp. 489–516, 2014.
    4. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014.
    5. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014.
    6. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606.
    7. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014.
    8. J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    9. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
    10. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, pp. 3518--3539, 2014.
  6. 2013

    1. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364.
    2. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in Séminaire Laurent Schwartz — EDP et applications, 2013.
  7. 2012

    1. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012.
    2. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
    3. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
    4. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77.
    5. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98.
  8. 2011

    1. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” PhD dissertation, Universität Stuttgart, 2011.
  9. 2009

    1. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, pp. 929–955, 2009.
  10. 2008

    1. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation  Laws on Riemannian Manifolds,” in Finite Volumes for Complex Applications 5, 2008.

10/2017-09/2018

Acting Professor at RWTH Aachen University

10/2015-09/2017

Acting Professor in Optimization and Inverse Problems, University of Stuttgart

11/2015

"Habilitation" in mathematics

since 02/2007

Research and Teaching Associate at Chair of Applied Analysis, University of Stuttgart

10/2013-09/2014 Acting Professor in Numerical Mathematics, University of Stuttgart

10/2012-03/2013 and 07-09/2013

Research Associate at Weierstrass Institute, Berlin

11/2011-04/2012 and 04-06/2013

Postdoctoral Fellow at Archimedes Center, University of Crete, Greece
02/2011 Graduation: Dr. rer. nat.
11/2006 Diploma in Mathematics
04/2002-11/2006 Mathematics Studies at University of Bielefeld
  • "Numerical methods for multi-phase flows for strongly varying Mach numbers", 2015 - 2018, funded by elite program for postdocs of Baden-Württemberg Stiftung.
  • "Mathematical modelling of compressible flows: from wild solutions to data integration", 2017- 2020, funded by Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg and University of Stuttgart.
  • "Dynamic, spatially heterogeneous model adaptation in compressible flows", 2018 - 2020, funded by German Research Foundation.