Dieses Bild zeigt Giesselmann

Priv.-Doz. Dr.

Jan Giesselmann

Research assistant
Institute of Applied Analysis and Numerical Simulation
Chair of Applied Mathematics

Contact

+49 711 685-65538

Pfaffenwaldring 57
70569  Stuttgart
Deutschland
Room: 7.165

Subject

  • Finite volume and discontinuous Galerkin schemes
  • Conservation laws
  • PDEs on Riemannian manifolds
  • Phase transitions
  • Cavitation in elastical solids
  • Asymptotic analysis
  1. J. Giesselmann, N. Kolbe, M. Lukacova-Medvidova, and N. Sfakianakis, “Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model,” Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B., 2018.
  2. J. Giesselmann and T. Pryer, “Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model,” in Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects, 2017, vol. 199.
  3. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone  pressures,” Appl. Anal., vol. 96, no. 9, pp. 1528–1546, 2017.
  4. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection  dominated problems,” Math. Models Methods Appl. Sci. (M3AS), vol. 27, no. 13, pp. 2381-- 2423, 2017.
  5. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics,” Arch. Ration. Mech. Anal., vol. 223, pp. 1427-- 1484, 2017.
  6. J. Giesselmann, F. Meyer, and C. Rohde, “A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.,” 2017.
  7. J. Giesselmann, C. Lattanzio, and A. E. Tzavaras, “Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics,” ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, vol. 223, no. 3, pp. 1427–1484, 2017.
  8. J. Giesselmann and T. Pryer, “A posteriori analysis for dynamic model adaptation in convection-dominated problems,” MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, vol. 27, no. 13, pp. 2381–2423, 2017.
  9. J. Giesselmann and A. E. Tzavaras, “Stability properties of the Euler-Korteweg system with nonmonotone pressures,” APPLICABLE ANALYSIS, vol. 96, no. 9, SI, pp. 1528–1546, 2017.
  10. A. Dedner and J. Giesselmann, “A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws,” SIAM J. Numer. Anal., vol. 54, no. 6, pp. 3523–3549, 2016.
  11. J. Giesselmann and P. G. LeFloch, “Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary,” ArXiv, 2016.
  12. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin  schemes,” Bull. Braz. Math. Soc. (N.S.), vol. 47, no. 1, pp. 359--372, 2016.
  13. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics,” IMA J. Numer. Anal., vol. 36, no. 4, pp. 1685-- 1714, 2016.
  14. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase  problems in elastodynamics,” BIT Numerical Mathematics, vol. 56, pp. 99-- 127, 2016.
  15. A. Dedner and J. Giesselmann, “A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS,” SIAM JOURNAL ON NUMERICAL ANALYSIS, vol. 54, no. 6, pp. 3523–3549, 2016.
  16. J. Giesselmann, “Relative entropy based error estimates for discontinuous Galerkin    schemes,” BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, vol. 47, no. 1, pp. 359–372, 2016.
  17. J. Gisselmann and T. Pryer, “Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 36, no. 4, pp. 1685–1714, 2016.
  18. J. Giesselmann and T. Pryer, “Reduced relative entropy techniques for a priori analysis of multiphase    problems in elastodynamics,” BIT NUMERICAL MATHEMATICS, vol. 56, no. 1, pp. 99–127, 2016.
  19. J. Giesselmann and T. Pryer, “Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model,” M2AN Math. Model. Numer. Anal., vol. 49(1), pp. 275–301, 2015.
  20. J. Giesselmann, “Low Mach asymptotic preserving scheme for the Euler-Korteweg model,” IMA J. Numer. Anal., vol. 35, no. 2, pp. 802--832, 2015.
  21. J. Giesselmann, C. Makridakis, and T. Pryer, “A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws,” SIAM J. Numer. Anal., vol. 53, pp. 1280--1303, 2015.
  22. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence  of a non-local to a local model,” J. Differential Equations, vol. 258, pp. 3589–3606, 2015.
  23. J. Giesselmann, “Entropy as a fundamental principle in hyperbolic conservation laws and related models,” PhD dissertation, Stuttgart, 2015.
  24. J. Giesselmann, “Low Mach asymptotic-preserving scheme for the Euler-Korteweg model,” IMA JOURNAL OF NUMERICAL ANALYSIS, vol. 35, no. 2, pp. 802–833, 2015.
  25. J. Giesselmann, “Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model,” JOURNAL OF DIFFERENTIAL EQUATIONS, vol. 258, no. 10, pp. 3589–3606, 2015.
  26. J. Giesselmann and T. Pryer, “ENERGY CONSISTENT DISCONTINUOUS GALERKIN METHODS FOR A    QUASI-INCOMPRESSIBLE DIFFUSE TWO PHASE FLOW MODEL,” ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION    MATHEMATIQUE ET ANALYSE NUMERIQUE, vol. 49, no. 1, pp. 275–301, 2015.
  27. J. Giesselmann and T. Pryer, “On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
  28. J. Giesselmann, “A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity,” SIAM J. Math. Anal., vol. 46, no. 5, pp. 3518--3539, 2014.
  29. W. Dreyer, J. Giesselmann, and C. Kraus, “Modeling of compressible electrolytes with phase transition,” 2014.
  30. G. L. Aki, W. Dreyer, J. Giesselmann, and C. Kraus, “A quasi-incompressible diffuse interface model with phase transition,” Math. Models Methods Appl. Sci., vol. 24, no. 5, pp. 827–861, 2014.
  31. J. Giesselmann and T. Müller, “Geometric error of finite volume schemes for conservation laws on  evolving surfaces,” Numer. Math., vol. 128, no. 3, pp. 489–516, 2014.
  32. J. Giesselmann and T. Müller, “Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions,” in Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects, 2014, vol. 77.
  33. J. Giesselmann and A. E. Tzavaras, “Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation,” Arch. Ration. Mech. Anal., vol. 212, no. 1, pp. 241–281, 2014.
  34. J. Giesselmann, C. Makridakis, and T. Pryer, “Energy consistent DG methods for the Navier-Stokes-Korteweg system,” Math. Comp., vol. 83, pp. 2071-- 2099, 2014.
  35. J. Giesselmann and A. E. Tzavaras, “On cavitation in elastodynamics,” in Hyperbolic Problems: Theory, Numerics, Applications, 2014, pp. 599–606.
  36. W. Dreyer, J. Giesselmann, and C. Kraus, “A compressible mixture model with phase transition,” Physica D, vol. 273–274, pp. 1–13, 2014.
  37. J. Giesselmann, “Cavitation and Singular Solutions in Nonlinear Elastodynamics,” in PAMM 13, 2013, pp. 363–364.
  38. J. Giesselmann, A. Miroshnikov, and A. E. Tzavaras, “The problem of dynamic cavitation in nonlinear elasticity,” in Séminaire Laurent Schwartz — EDP et applications, 2013.
  39. E. Audusse et al., “Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models,” in ESAIM Proceedings Vol. 38, 2012, pp. 78–98.
  40. J. Giesselmann, “Sharp interface limits for Korteweg Models,” in Hyperbolic Problems: Theory, Numerics, Applications, 2012, vol. 2, pp. 422–430.
  41. W. Dreyer, J. Giesselmann, C. Kraus, and C. Rohde, “Asymptotic Analysis for Korteweg Models,” Interfaces Free Bound., vol. 14, pp. 105–143, 2012.
  42. G. L. Aki, J. Daube, W. Dreyer, J. Giesselmann, M. Kränkel, and C. Kraus, “A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics,” in ESAIM Proceedings Vol. 38, 2012, pp. 54–77.
  43. J. Giesselmann and M. Wiebe, “Finite volume schemes for balance laws on time-dependent surfaces,” in Numerical Methods for Hyperbolic Equations, 2012.
  44. J. Giesselmann, “Modelling and Analysis for Curvature Driven Partial Differential  Equations,” PhD dissertation, Universität Stuttgart, 2011.
  45. J. Giesselmann, “A convergence result for finite volume schemes on Riemannian manifolds,” M2AN Math. Model. Numer. Anal., vol. 43, no. 5, pp. 929–955, 2009.
  46. J. Giesselmann, “Convergence Rate of Finite Volume Schemes for Hyperbolic Conservation  Laws on Riemannian Manifolds,” in Finite Volumes for Complex Applications 5, 2008.

10/2017-09/2018

Acting Professor at RWTH Aachen University

10/2015-09/2017

Acting Professor in Optimization and Inverse Problems, University of Stuttgart

11/2015

"Habilitation" in mathematics

since 02/2007

Research and Teaching Associate at Chair of Applied Analysis, University of Stuttgart

10/2013-09/2014 Acting Professor in Numerical Mathematics, University of Stuttgart

10/2012-03/2013 and 07-09/2013

Research Associate at Weierstrass Institute, Berlin

11/2011-04/2012 and 04-06/2013

Postdoctoral Fellow at Archimedes Center, University of Crete, Greece
02/2011 Graduation: Dr. rer. nat.
11/2006 Diploma in Mathematics
04/2002-11/2006 Mathematics Studies at University of Bielefeld
  • "Numerical methods for multi-phase flows for strongly varying Mach numbers", 2015 - 2018, funded by elite program for postdocs of Baden-Württemberg Stiftung.
  • "Mathematical modelling of compressible flows: from wild solutions to data integration", 2017- 2020, funded by Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg and University of Stuttgart.
  • "Dynamic, spatially heterogeneous model adaptation in compressible flows", 2018 - 2020, funded by German Research Foundation.