This image shows Gaspard Kemlin

Gaspard Kemlin


Postdoc, research assistant
Institute of Applied Analysis and Numerical Simulation
Numerical Mathematics for High Performance Computing


+49 711 685 65538
+49 711 685 65507


Pfaffenwaldring 57
70569 Stuttgart
Room: 7.152

Office Hours

Consultation hours: Tuesday, 16:00–17:00 p.m.

(no consultation hour on 09.05, 23.05, 30.05, 20.06.23)

  1. Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics, 113(1), Article 1.
  2. Kemlin, G. (2022). Analyse numérique pour la théorie de la fonctionnelle de densité (Theses 2022ENPC0042, École des Ponts ParisTech; Issue 2022ENPC0042).
  3. Cancès, E., Dusson, G., Kemlin, G., & Levitt, A. (2022). Practical error bounds for properties in plane-wave electronic structure calculations. SIAM Journal on Scientific Computing, 44(5), Article 5.
  4. Cancès, E., Dusson, G., Kemlin, G., & Vidal, L. (2022). On basis set optimisation in quantum chemistry.
  5. Cancès, E., Kemlin, G., & Levitt, A. (2022). A priori error analysis of linear and nonlinear periodic Schrödinger equations with analytic potentials.
  6. Cancès, E., Kemlin, G., & Levitt, A. (2021). Convergence analysis of direct minimization and self-consistent iterations. SIAM Journal on Matrix Analysis and Applications, 42(1), Article 1.
  7. Caldas Steinstraesser, J. G., Kemlin, G., & Rousseau, A. (2019). A domain decomposition method for linearized Boussinesq-type equations. Journal of Mathematical Study, 52(3), Article 3.

2023: Postdoc student with Benjamin Stamm and Christof Melcher at IANS - NMH, University of Stuttgart.

2019 - 2022: PhD student, Numerical analysis for Kohn-Sham DFT, with Eric Cances and Antoine Levitt at CERMICS and Inria MATHERIALS team.

2015 - 2019: Engineering student at Ecole des Ponts ParisTech, Applied mathematics and computer science.

2018 - 2019: MSc Mathematics of modelling at Sorbonne University (Jussieu), Numerical analysis and partial differential equations.

To the top of the page