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Uncertainty Quantification beyond the Gaussian case

Abstract: Uncertainty quantification plays an increasingly important role in a wide range of
problems in the Engineering Sciences and Physics. Examples of sources of uncertainty are impre-
cise or insufficient measurements and noisy data. In the underlying dynamical system this is in
general reflected via a stochastic operator and/or stochastic data. These parameters are often
modeled as time-space Gaussian processes, leading to continuous random functions and thin-
tailed, symmetric Gaussian distributions. For several applications, however, it might be favorable
to model the stochastic quantities as discontinuous processes which also allow for asymmetric
and heavy-tailed distributions.
For instance, as a simplified model for subsurface flows second order elliptic equations with ran-
dom coefficients may be utilized. Insufficient measurements or uncertainty in those are modeled
by a random coefficient, which then accounts for the uncertain permeability of a given medium.
To represent transitions in heterogeneous\fractured\porous media, we model the coefficient as
the sum of a (continuous) Gaussian random field and a (discontinuous) jump part. Moments of
the solution to the resulting random partial differential equation are then estimated by a pathwi-
se numerical approximation combined with multilevel Monte Carlo (MLMC) sampling. In order
to account for the discontinuities and improve the convergence of the pathwise approximation,
the spatial domain is decomposed with respect to the jump positions in each sample, leading
to pathdependent grids. Hence, it is not possible to create a nested sequence of grids which is
suitable for each sample path a-priori. We address this issue by an adaptive multilevel algorithm,
where the discretization on each level is sample-dependent and fulfills given refinement conditi-
ons. As we will show, the adaptive MLMC algorithm may be readily applied to a time-dependent
parabolic setting with random discontinuous advection and diffusion coefficients.
As a second example, we consider stochastic partial differential equations with driving noise
term given by the source function on the right hand side. The noise is given by an infinite-
dimensional Lévy process (or Lévy field), i.e. a Hilbert-space valued stochastic process with
temporal discontinuities. Such equations arise for example in the valuation of energy forward
contracts, where the spot price is modeled by a stochastic transport problem. We focus on the
numerical approximation of the Lévy field and employ Karhunen-Loève expansions to obtain a
spectral representation with respect to the covariance operator of the field. For square integrable
fields beyond the Gaussian case, the one-dimensional distributions in this expansion are no longer
independent, but merely uncorrelated. The dependence structure among the one-dimensional
processes ensures that the resulting field exhibits the correct point-wise marginal distributions. We
derive this point-wise distributions for a specific class of subordinated Wiener processes in closed
form. Further, to approximate the respective (one-dimensional) Lévy-measures in the spectral
expansion, a numerical method, called discrete Fourier inversion, is developed. For this method,
Lp-convergence rates can be obtained and, under certain regularity assumptions, mean square
and Lp-convergence of the approximated field is proved. Numerical examples, which include
hyperbolic and normal-inverse Gaussian fields, demonstrate the efficiency of the approach.
This is joint work with Andrea Barth (SimTech, University of Stuttgart)
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