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** The resilience challenge

Some important observations
m More components at exascale = higher probability of failure
m Active debates to sacrifice reliability for energy efficiency
m MTBF < 1h = all simulation software must be prepared

Classical techniques
m Reliability in hardware (ECC protection etc.) too
power-hungry
m Checkpoint-restart too memory-intensive (and too slow)

m Triple modular redundancy too power-hungry, but: can be
more energy-efficient and faster for large fault rates
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General concept: algorithm-based fault tolerance
m Exploit algorithmic properties to detect and correct faults

m Can be more efficient than middleware

Previous work
m Scenario: Node loss

m Self-stabilisation properties

In this talk: Silent Data Corruption
m Scenario: Bitflips

m Black-box smoother protection
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Resilient multigrid
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““" Silent data corruption

Silent data corruption
m Soft transient faults that lead to wrong solutions
m Sometimes noticeable a posteriori (divergence), mostly not

m Causes: radiation, leaking voltage, silicon ageing, ...

Core idea of our approach
m Use FAS multigrid to increase robustness

m Based on nonlinear MG: not just a correction on each level
but a true approximation of the solution

m Linear case: numerically equivalent, less than one fine SPMV
overhead per cycle

m One additional vector necessary
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Focus on smoother stage

relative cost of the smoothing stage

0.4 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16
number of smoothing steps

m Relative cost of the smoother stage as a function of the
number of smoothing steps
m Detailed model: in the paper
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Black-box smoother protection
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Theoretical justification for the down-cycle
m Obvious: residual r converges to zero on finest grid

m Easy to prove: residual (monotonously) converges to zero on
all grids

Theoretical justification for the up-cycle

m Slightly non-trivial proof: correction vector ¢ converges
(monotonously) to zero on all grids

Consequence: good fault indicators

m Both readily available without additional computation
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Black-box smoother protection

Practical realisation after smoothing on level k

m Compute index set of possibly faulty components of ¢ or r by
comparing against level-specific threshold from earlier iteration

m Extend by one layer of indices coupled by A

m Replace faulty components by unsmoothed values
(down-cycle), or by recomputed correction from (non-faulty)
coarser grid

m Adaptively update threshold
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£ = detect_and_localise(e,t])

if £+ () then

U= Ii_li,‘([]]
E=uk-1=1

e=Pf_ ¢

for i € £ do

efi) = é(i)

end

t = calc_thresheld(c)
q=t/t}

ifg>1

then
for i € {0,..., L} \{k} do
| t=t-10.q
end

end

=t

else

ti = calc_threshold(e)
end
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Black-box smoother protection

detect faulty components

restrict (non-faulty) initial approxima-
tion

calculate new correction vector
prolongate new correction vector

replace faulty components
calculate new threshold value
relative reduction of threshold

value
rescale other threshold values

store threshold value

calculate and store threshold value
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Checksums
m Use identity 1T(Ax+y) = (1TA)x+ 1Ty
m Precompute 1TA (column sums)
m Fault detection in Ax +y by three dot products
m More elaborate schemes: detect and correct errors
Combined approach
m Black-box smoother protection, checksums for the rest
m Runtime comparison, fault-free case
unprotected | transfer stage | smoothing stage | FTMG
(checksums) (new algorithm) (both)
mean time 26.1562 27.4128 26.7905 27.9090
factor 1 1.0480 1.0243 1.0670
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Numerical experiments

Test problems
m Different flavours of anisotropic diffusion-convection-reaction
m 2D, Q1 FEM, eight levels, 263169 DOF

Solver configuration
m FAS-MG, V-cycle, 4+4 Jacobi w = 0.7 smoothing steps
m Bilinear interpolation for restriction and prolongation

m Natural injection for approximations

Fault injection

m 1% bitflip probability in current approximation after each
smoothing step on each level (deliberately unrealistically high)

m Actual component and bit fully random

m 100 repetitions per experiment
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Histograms of iterations for poisson, anisotropic diffusion (andi), diffusion-convection (dico) and anisotropic

diffusion-convection-reaction (andicore)
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Fdetects #titerations
problem H #faults | direct \ delayed | fault-free \ FTMG \ unprotected
poisson 3.82 1.89 0.61 7 7.79 | 10.82 (3)
andi 1024 | 404 0.49 18 | 1825 | 20.09 (15)
dico 4.92 2.01 0.39 8 8.46 | 11.89 (4)
andicore 5.77 2.40 0.25 10 10.55 | 16.14 (9)

m Divergent runs in brackets

m Some faults not directly detected: delayed repair with
‘faultier’ correction
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" Detailed analysis of one andi test

fault-free —+—
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fault e

residual norm
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iteration

m Blue bump: delayed repair with already faulty correction

m Two other significant faults: well repaired
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" Detailed analysis of one andi test

16400 : :
fault-free ——
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fault e
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iteration
] iter \ cycle \ level \ step \ change (%) \ #det \ #£corr ‘
3 up 6 1 9.99e+1 9 31
8 up 7 3 9.38e+1 25 49
18 | down 7 4 le+42 9 25
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" Detailed analysis of one andi test

’ iter ‘ cycle ‘ level ‘ step ‘ change (%) ‘ #det ‘ F#corr ‘

3 | down 5 3 2.14e-4
3 | down 5 4 2.72e-11
3 up 6 1 9.9%e+1 9 31
5 up 5 3 5.55e-10
8 | down 7 3 1.81e-9
8 up 7 3 9.38e+1 25 49
9 | down 4 2 6.75e-3 49 81
9 up 1 2 4.47e-4 17 45
10 up 5 2 0
15 up 1 1 1.25e-4 28 54
18 | down 7 4 le+2 9 25

m Irrelevant faults (small changes) are tolerated

m Small additional corrections (red)
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Summary and acknowledgements

m Fault tolerance becomes increasingly important

m Black-box ‘computer science' techniques exist and work well,
but: substantial overhead

ABFT techniques may do better

In this talk: some (early) ideas for multigrid

Papers and more information

m Silent data corruption: almost submitted
m Minimised checkpointing: Parallel Comp. 49:117-135, 2015
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