Fault-Tolerant Multigrid Algorithms Based on Error Confinement and Full Approximation

Mirco Altenbernd and Dominik Göddeke SIAM PP '16 MS49: Resilience Towards Exascale Computing April 2016

Institute for Applied Analysis and Numerical Simulation

Chair Computational Mathematics for Complex Simulations

The resilience challenge

Some important observations

- More components at exascale \Rightarrow higher probability of failure
- Active debates to sacrifice reliability for energy efficiency
- \blacksquare MTBF $<1\,h$ \Rightarrow all simulation software must be prepared

Classical techniques

lans

- Reliability in hardware (ECC protection etc.) too power-hungry
- Checkpoint-restart too memory-intensive (and too slow)
- Triple modular redundancy too power-hungry, but: can be more energy-efficient and faster for large fault rates

Focus of this talk: ABFT for multigrid

General concept: algorithm-based fault tolerance

- Exploit algorithmic properties to detect and correct faults
- Can be more efficient than middleware

Previous work

lans

- Scenario: Node loss
- Self-stabilisation properties

In this talk: Silent Data Corruption

- Scenario: Bitflips
- Black-box smoother protection

Resilient multigrid

Silent data corruption

Silent data corruption

- Soft transient faults that lead to wrong solutions
- Sometimes noticeable a posteriori (divergence), mostly not
- Causes: radiation, leaking voltage, silicon ageing, ...

Core idea of our approach

- Use FAS multigrid to increase robustness
- Based on nonlinear MG: not just a correction on each level but a true approximation of the solution
- Linear case: numerically equivalent, less than one fine SPMV overhead per cycle
- One additional vector necessary

Focus on smoother stage

- Relative cost of the smoother stage as a function of the number of smoothing steps
- Detailed model: in the paper

Black-box smoother protection

Theoretical justification for the down-cycle

lans

- Obvious: residual r converges to zero on finest grid
- Easy to prove: residual (monotonously) converges to zero on all grids

Theoretical justification for the up-cycle

 Slightly non-trivial proof: correction vector c converges (monotonously) to zero on all grids

Consequence: good fault indicators

Both readily available without additional computation

Black-box smoother protection

lans

Practical realisation after smoothing on level k

- Compute index set of possibly faulty components of c or r by comparing against level-specific threshold from earlier iteration
- Extend by one layer of indices coupled by A
- Replace faulty components by unsmoothed values (down-cycle), or by recomputed correction from (non-faulty) coarser grid
- Adaptively update threshold

Black-box smoother protection

1	$\mathcal{L} = \texttt{detect_and_localise}(c, t_k^c)$	// detect faulty components
2	$\mathbf{if} \ \mathcal{L} \neq \emptyset \ \mathbf{then}$	
3	$\tilde{v} = \mathbf{I}_k^{k-1} v^{(0)}$	<pre>// restrict (non-faulty) initial approxima- tion</pre>
4	$\tilde{c} = u_{k-1} - \tilde{v}$	// calculate new correction vector
5	$\tilde{c} = \mathbf{P}_{k-1}^k \tilde{c}$	// prolongate new correction vector
6	for $i \in \mathcal{L}$ do	
$\overline{7}$	$c(i) = \tilde{c}(i)$	// replace faulty components
8	end	
9	$t = calc_threshold(c)$	// calculate new threshold value
10	$q = t/t_k^c$	<pre>// relative reduction of threshold value</pre>
11	if $q > 1$	// rescale other threshold values
12	then	
13	for $i \in \{0,, L\} \setminus \{k\}$ do	
14	$t_i^c = t_i^c \cdot 10 \cdot q$	
15	end	
16	end	
17	$t_k^c = t$	// store threshold value
18	else	
19	$t_k^c = calc_threshold(c)$	// calculate and store threshold value
20	end	

Checksum protection for transfer stage

Checksums

- \blacksquare Use identity $\mathbf{1}^{\mathsf{T}}(\mathsf{A}\mathsf{x}+\mathsf{y}) = (\mathbf{1}^{\mathsf{T}}\mathsf{A})\mathsf{x} + \mathbf{1}^{\mathsf{T}}\mathsf{y}$
- Precompute $\mathbf{1}^{\mathsf{T}}\mathbf{A}$ (column sums)
- Fault detection in $\mathbf{A}\mathbf{x} + \mathbf{y}$ by three dot products
- More elaborate schemes: detect and correct errors

Combined approach

- Black-box smoother protection, checksums for the rest
- Runtime comparison, fault-free case

	unprotected transfer stage smoothing stage		smoothing stage	FTMG
		(checksums)	(new algorithm)	(both)
mean time	26.1562	27.4128	26.7905	27.9090
factor	1	1.0480	1.0243	1.0670

SimTech Cluster of Excellence University of Stuttgart Germany

Numerical experiments

Test problems

- Different flavours of anisotropic diffusion-convection-reaction
- 2D, Q_1 FEM, eight levels, 263169 DOF

Solver configuration

- FAS-MG, V-cycle, 4+4 Jacobi $\omega = 0.7$ smoothing steps
- Bilinear interpolation for restriction and prolongation
- Natural injection for approximations

Fault injection

- 1% bitflip probability in current approximation after each smoothing step on each level (deliberately unrealistically high)
- Actual component and bit fully random
- 100 repetitions per experiment

Numerical experiments

Histograms of iterations for poisson, anisotropic diffusion (andi), diffusion-convection (dico) and anisotropic

diffusion-convection-reaction (andicore)

Numerical experiments (Summary)

		#detects		#iterations			
problem	#faults	direct	delayed	fault-free	FTMG	unprotected	
poisson	3.82	1.89	0.61	7	7.79	10.82	(3)
andi	10.24	4.94	0.49	18	18.25	29.09	(15)
dico	4.92	2.01	0.39	8	8.46	11.89	(4)
andicore	5.77	2.40	0.25	10	10.55	16.14	(9)

- Divergent runs in brackets
- Some faults not directly detected: delayed repair with 'faultier' correction

Detailed analysis of one andi test

- Blue bump: delayed repair with already faulty correction
- Two other significant faults: well repaired

Detailed analysis of one andi test

iter	cycle	level	step	change (%)	#det	#corr
3	up	6	1	9.99e+1	9	31
8	up	7	3	9.38e+1	25	49
18	down	7	4	1e+2	9	25

University of Stuttgart Germany

Detailed analysis of one andi test

iter	cycle	level	step	change (%)	#det	#corr
3	down	5	3	2.14e-4		
3	down	5	4	2.72e-11		
3	up	6	1	9.99e+1	9	31
5	up	5	3	5.55e-10		
8	down	7	3	1.81e-9		
8	up	7	3	9.38e+1	25	49
9	down	4	2	6.75e-3	49	81
9	up	1	2	4.47e-4	17	45
10	up	5	2	0		
15	up	1	1	1.25e-4	28	54
18	down	7	4	1e+2	9	25

- Irrelevant faults (small changes) are tolerated
- Small additional corrections (red)

Performance results

Summary

Summary and acknowledgements

- Fault tolerance becomes increasingly important
- Black-box 'computer science' techniques exist and work well, but: substantial overhead
- ABFT techniques may do better

lans

- In this talk: some (early) ideas for multigrid
- Papers and more information
 - Silent data corruption: almost submitted
 - Minimised checkpointing: Parallel Comp. 49:117–135, 2015

DFG Priority Program 1648 'Software for Exascale Computing', grants GO 1758-2/1 and -2/2