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Using Lossy Compression for Linear Solver Resilience

Key objectives
e Efficient recovery from a data-loss, i.e. node-loss
® Minimal overhead in a fault-free scenario

Classical techniques
® (lassical checkpoint-restart too memory-intensive (and too slow)
® Triple modular redundancy too power-hungry

Our approach
® |n-memory checkpointing
® | ocal recovery instead of global roll-back
® | ossy compression to reduce memory overhead
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Using Lossy Compression for Linear Solver Resilience

Assumptions
® Problem is bandwidth-limited
® Matrices are stored in persistent memory or can be recomputed
® After a process failure a new process can be spawned and is able to
® Replace the old process in the communicator with a new one (ULFM?)

e Work up to the iterative solver using message logging or similar techniques?
® Receive the compressed backup from another processor

1 G. Bosilca et al., An Evaluation of User-Level Failure Mitigation Support in MPI, Computing, Springer, 2013
2 C. Cantwell and A. Nielsen, A Minimally Intrusive Low-Memory Approach to Resilience for Existing

Transient Solvers, Journal of Scientific Computing, 2019
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® Matrices are stored in persistent memory or can be recomputed
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® Replace the old process in the communicator with a new one (ULFM?)
e Work up to the iterative solver using message logging or similar techniques?
® Receive the compressed backup from another processor
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Question
What happens if a part of the iterative data is lost?
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Multigrid and faults

1e+04 T T T T T T T T T 1e+00

1e+02 + 1e-01 ¢

1e+00 te-02 ¢
1e-03
1e-02 |
1e-04 +
1e-04 -
1e-05

1e-06

injection step 6 —&— 1e-06

injection step 4 —#—

1e-08 ¢ injection step 2 —¢— ] 1e-07
no injection =———
1e-10 . . . . . , X . 16-08 . . . . . . .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Iteration Iteration
Observations

® A fault is comparable to a restart of the multigrid solver
e Multigrid converges always if the fault-rate is not to high
® Node-losses and Silent Data Corruptions show a similar behavior
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Multigrid compression

® Use multigrid transfer operators to compress checkpoint
e Data reduction in d dimensions: ~ 2¢ per backup depth (regular coarsening)
® Restore lost data with prolongated (decompressed) checkpoint
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Multigrid compression

® Use multigrid transfer operators to compress checkpoint
e Data reduction in d dimensions: ~ 2¢ per backup depth (regular coarsening)
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Multigrid compression

® Use multigrid transfer operators to compress checkpoint
e Data reduction in d dimensions: ~ 2¢ per backup depth (regular coarsening)
® Restore lost data with prolongated (decompressed) checkpoint
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Multigrid compression

® Use multigrid transfer operators to compress checkpoint
e Data reduction in d dimensions: ~ 2¢ per backup depth (regular coarsening)
® Restore lost data with prolongated (decompressed) checkpoint
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Discretisation error on coarser grids limits quality of repair
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Improved restoration

Auxiliary problem (compare Huber et al.?)

Extend faulty/lost indices F C N which are owned by the processor, e.g. by using
the connectivity pattern of operator A or an overlap, to 7 and solve

b(J) in F

AT, TJ)z(T)
=z on J\F

iteratively with initial guess & = z, in F.

Advantages
® Convergence behavior can be restored
® Speed-up when using better checkpoints as initial guess
® Local problem: Possible to use a ‘superman’ strategy for further speed-up

3 M. Huber, B. Gmeiner, U. Riide, B. Wohlmuth, Resilience for Massively Parallel Multigrid Solvers, SIAM
Journal on Scientific Computing, 2016
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Summary: Multigrid compression

Multigrid compressed checkpoints can be used to recover from faults
Early fault: Highly compressed data is sufficient

Late fault: Compression rate has to be decreased

Eventually an auxiliary problem has to be solved to ensure convergence
The decompressed data is a good initial guess for this auxiliary problem
Same idea could be used with other hierarchic methods

But
Multigrid is good preconditioner, but rarely a standalone solver

D. Goddeke, M.A., D. Ribbrock, Fault-tolerant finite-element multigrid algorithms with hierarchically
compressed asynchronous checkpointing, Parallel Computing, 2015
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Next steps

Application-oriented solvers
e BiCGStab, CG, GMRES, ...

® Nested solvers, Inner-outer approaches, Newton-like methods, ...
o ...

Evaluating impact of

® Various (lossy) compression techniques
® Multigrid compression
® SZ compression

e Variable checkpoint frequencies

e Different restoration methods
® | ocal restoration based on compressed checkpoint
® Gilobal roll-back to compressed checkpoint
® |mproved restoration by solving auxiliary problem

niversity of Stuttgart
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SZ compression
How it works
e Save initial point value (with reduced accuracy): Unpredictable data

® Predict next point based on previous processed points via an interpolation
based on n layers

e Compare predicted value with real value and improve it through a
Huffman-like coding

e |[f still not ‘close enough’ data is stored as unpredictable and compressed via
binary-representation analysis
Advantages and disadvantages
® Adaptive controllable compression rate (via parameter)
® More computational overhead than multigrid compression
® Lower compression rate — higher computation time

D. Tao, S. Di, Z. Chen and F. Cappello, Significantly Improving Lossy Compression for Scientific Data Sets Based
on Multidimensional Prediction and Error-Controlled Quantization, Computing Research Repository, 2017
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Numerical tests

lans-

Anisotropic diffusion in 2D with dirichlet-boundary condition:

1 0
-V <0 0.01> Vu=b

Linear finite elements on partitioned grid (64 ranks, overlapping Schwarz)
146 531 degrees of freedom per rank

Solver: Conjugated gradient

Preconditioner: Algebraic multigrid (9 levels, one V-cycle)

MG compression of 2 levels; adaptive SZ compression (2.0.2.0; PW_REL):

locale_def_norm_at_backup_time / v/def.size() * 1073
Auxiliary solver reduction to absolute residuum norm of

locale_def_norm_at_backup_time s 10~ (2ge-of-backup+1)
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Early fault
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Early fault

Observations
® No backup: Similar to a restart; nearly 10 additional iterations
e With backup: Local restoration better than global roll-back
® Multigrid compression has lower iteration number but worse compression rate

® Auxiliary problem can restore convergence behavior:

® With zero initial guess a lot of iterations are necessary
® MG or SZ compressed backup reduces iteration count significantly

12
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Intermediate fault
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Intermediate fault
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Intermediate fault

Observations

Local restoration always superior than global
Multigrid compression not competitive anymore
SZ compression works good and still has a compression factor of 60

A delay deteriorates the quality of repair global-rollback
But: Local recovery is only marginal deteriorated

® Auxiliary solver improves quality significantly but increases overhead
® Delayed backups increase iteration count of auxiliary solver
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Late fault

iter090_rank042

—— Fault-free
—=—' MG_aux_frequency01 (15.96)
MG_aux_frequency03 (15.96)
MG_aux_frequency05 (15.96)
MG_global_frequency01 (15.96)
MG_global_frequency03 (15.96)
MG_global_frequency05 (15.96)
MG_local_frequency01 (15.96)
MG_local_frequency03 (15.96)
MG_local_frequency05 (15.96)
SZ_aux_frequency01 (16.34)
SZ_aux_frequency03 (18.94)
SZ_aux_frequency05 (20.96)
SZ_global_frequency01 (12.07)
SZ_global_frequency03 (13.35)
SZ_global_frequency05 (14.76)
SZ_local_frequency01 (16.34)
SZ_local_frequency03 (18.94)
SZ_local_frequency05 (20.96)
none_aux_frequency01
none_global_frequency01
none_local_frequency0l

10!

idual
=
S

ive resi
=
<

Relat

1077

100 125 150 175
Iteration 15

0 25 50 75

University of Stuttgart
Germany

SimTecr;-



Late fault

Observations
® Previous observations still valid
Local restoration superior to global-rollback
® Higher delay deteriorates quality
® Auxiliary problem restores convergence behavior
e Multigrid compression is not competitive

® SZ maintains a compression rate of approximately 20
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Late fault

Observations
® Previous observations still valid
Local restoration superior to global-rollback
® Higher delay deteriorates quality
® Auxiliary problem restores convergence behavior
e Multigrid compression is not competitive

® SZ maintains a compression rate of approximately 20

What about performance and overhead?
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Performance analysis

Settings
® Same problem as described before but fault-free
210917529 degrees of freedom =- ca. 8800 000 per core

® Two nodes with Intel(R) Xeon(R) Silver 4116 CPU (2 x 12 cores):

® Base frequency: 2.10 GHz
® Turbo frequency: 3.00 GHz
® |3 Cache: 16.5 MB

2 x 96 GB RAM
No hyper-threading

Notable
® 97 iterations until convergence
® One iteration takes on average 98 seconds

niversity of Stuttgart
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Performance analysis

Compression time
= 1

Compression rate
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Performance analysis

10 Compression rate development
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Summary

® \We have combined local recovery with lossy compression
® The obtained method is able to recover in most fault-scenarios with ...

. asimple local restoration and some additional global iterations.
. alocal auxiliary problem which can be speed-up by a ‘superman’ strategy.

® Compression target is coupled to local defect norm:

® Early on a high compression rate can be achieved
® Backup quality is increased towards the end

e Communication overhead is significantly reduced
® QOverhead can be further reduced by using lower checkpoint frequencies

® Asynchronous checkpointing can dispense the communication overhead
further over the iterative process

20
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Multigrid compression

Limits of multigrid compression
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® Discretisation error dominates at some point
® Dominates earlier for highly compressed data
® Factor between L2-quality and L?-error depends on amount of repaired data

1ans- University of Stuttgart
et Germany

SimTecr;-



SZ com pression (version 1.4.2, 2D)
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Predict values row by row (top to bottom, left to right)
V ={V(i,j)}: set of already compressed point values
Interpolation based first-phase prediction f(i, j)

1-Layer | V(i,7—1)+V(E—1,j) —V(i—1,7—1)
2V (i, j— )42V (i—1,5)—4V(i—1,j—1)

2-Layer | —V(i,j—2)—V(i—2,j)+2V(i—2,j—1)
+2V(i—1,j-2)—V(i—2,j—2)

X %% Processed points X 2-Layer

2™ intervals with size of 2xerror_bound around f (i, j)

2xerror_bound

X 1-Layer ® Next point

@ first-phase prediction f(i, j)
f f } ® } -—f second-phase prediction

p=1 eee 9gm-1_9 om—1_1 om—1 gm-119 eee om ®realvalue

Store index p or and p = 0 and compressed binary-representation if the real
value is not in any second-phase prediction interval

Data is decompressed via interpolation and shifted by the Huffman-code

23
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Performance analysis
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Compute time vs. compression rate
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