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Using Lossy Compression for Linear Solver Resilience

Key objectives
. Efficient recovery from a data-loss, i.e. node-loss
. Minimal overhead in a fault-free scenario

Classical techniques
. Classical checkpoint-restart too memory-intensive (and too slow)
. Triple modular redundancy too power-hungry

Our approach
. In-memory checkpointing
. Local recovery instead of global roll-back
. Lossy compression to reduce memory overhead
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Using Lossy Compression for Linear Solver Resilience
Assumptions

. Problem is bandwidth-limited

. Matrices are stored in persistent memory or can be recomputed

. After a process failure a new process can be spawned and is able to
. Replace the old process in the communicator with a new one (ULFM1)
. Work up to the iterative solver using message logging or similar techniques2
. Receive the compressed backup from another processor

1 G. Bosilca et al., An Evaluation of User-Level Failure Mitigation Support in MPI, Computing, Springer, 2013
2 C. Cantwell and A. Nielsen, A Minimally Intrusive Low-Memory Approach to Resilience for Existing

Transient Solvers, Journal of Scientific Computing, 2019

Question
What happens if a part of the iterative data is lost?
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Multigrid and faults
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Observations
. A fault is comparable to a restart of the multigrid solver
. Multigrid converges always if the fault-rate is not to high
. Node-losses and Silent Data Corruptions show a similar behavior
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Multigrid compression
. Use multigrid transfer operators to compress checkpoint
. Data reduction in d dimensions: ∼ 2d per backup depth (regular coarsening)
. Restore lost data with prolongated (decompressed) checkpoint
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Discretisation error on coarser grids limits quality of repair
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Improved restoration
Auxiliary problem (compare Huber et al.3)

Extend faulty/lost indices F ⊂ N which are owned by the processor, e.g. by using
the connectivity pattern of operator A or an overlap, to J and solve

A(J ,J )x̃(J ) = b(J ) in F
x̃ = x on J \F

iteratively with initial guess x̃ = xcp in F .

Advantages
. Convergence behavior can be restored
. Speed-up when using better checkpoints as initial guess
. Local problem: Possible to use a ‘superman’ strategy for further speed-up

3 M. Huber, B. Gmeiner, U. Rüde, B. Wohlmuth, Resilience for Massively Parallel Multigrid Solvers, SIAM

Journal on Scientific Computing, 2016
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Summary: Multigrid compression
. Multigrid compressed checkpoints can be used to recover from faults
. Early fault: Highly compressed data is sufficient
. Late fault: Compression rate has to be decreased
. Eventually an auxiliary problem has to be solved to ensure convergence
. The decompressed data is a good initial guess for this auxiliary problem
. Same idea could be used with other hierarchic methods

But
Multigrid is good preconditioner, but rarely a standalone solver

D. Göddeke, M.A., D. Ribbrock, Fault-tolerant finite-element multigrid algorithms with hierarchically

compressed asynchronous checkpointing, Parallel Computing, 2015
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Next steps
Application-oriented solvers

. BiCGStab, CG, GMRES, . . .

. Nested solvers, Inner-outer approaches, Newton-like methods, . . .

. . . .
Evaluating impact of

. Various (lossy) compression techniques
. Multigrid compression
. SZ compression

. Variable checkpoint frequencies

. Different restoration methods
. Local restoration based on compressed checkpoint
. Global roll-back to compressed checkpoint
. Improved restoration by solving auxiliary problem
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SZ compression
How it works

. Save initial point value (with reduced accuracy): Unpredictable data

. Predict next point based on previous processed points via an interpolation
based on n layers

. Compare predicted value with real value and improve it through a
Huffman-like coding

. If still not ‘close enough’ data is stored as unpredictable and compressed via
binary-representation analysis

Advantages and disadvantages
. Adaptive controllable compression rate (via parameter)
. More computational overhead than multigrid compression
. Lower compression rate→ higher computation time

D. Tao, S. Di, Z. Chen and F. Cappello, Significantly Improving Lossy Compression for Scientific Data Sets Based

on Multidimensional Prediction and Error-Controlled Quantization, Computing Research Repository, 2017
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Numerical tests
. Anisotropic diffusion in 2D with dirichlet-boundary condition:

−∇ ·
(
1 0
0 0.01

)
∇u = b

. Linear finite elements on partitioned grid (64 ranks, overlapping Schwarz)

. 146 531 degrees of freedom per rank

. Solver: Conjugated gradient

. Preconditioner: Algebraic multigrid (9 levels, one V-cycle)

. MG compression of 2 levels; adaptive SZ compression (2.0.2.0; PW_REL):

locale_def_norm_at_backup_time /
√
def.size() ∗ 10−3

. Auxiliary solver reduction to absolute residuum norm of

locale_def_norm_at_backup_time ∗ 10−(age_of_backup+1)
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Early fault
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Early fault

Observations
. No backup: Similar to a restart; nearly 10 additional iterations
. With backup: Local restoration better than global roll-back
. Multigrid compression has lower iteration number but worse compression rate
. Auxiliary problem can restore convergence behavior:

. With zero initial guess a lot of iterations are necessary

. MG or SZ compressed backup reduces iteration count significantly
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Intermediate fault
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Intermediate fault

Observations
. Local restoration always superior than global
. Multigrid compression not competitive anymore
. SZ compression works good and still has a compression factor of 60
. A delay deteriorates the quality of repair global-rollback

But: Local recovery is only marginal deteriorated
. Auxiliary solver improves quality significantly but increases overhead
. Delayed backups increase iteration count of auxiliary solver
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Late fault
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Late fault

Observations
. Previous observations still valid

. Local restoration superior to global-rollback

. Higher delay deteriorates quality

. Auxiliary problem restores convergence behavior

. Multigrid compression is not competitive
. SZ maintains a compression rate of approximately 20

Question
What about performance and overhead?
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Performance analysis

Settings
. Same problem as described before but fault-free
. 210 917 529 degrees of freedom⇒ ca. 8 800 000 per core
. Two nodes with Intel(R) Xeon(R) Silver 4116 CPU (2 × 12 cores):

. Base frequency: 2.10 GHz

. Turbo frequency: 3.00 GHz

. L3 Cache: 16.5 MB
. 2 × 96 GB RAM
. No hyper-threading

Notable
. 97 iterations until convergence
. One iteration takes on average 98 seconds
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Performance analysis

20 40 60 80 100 1200

5

10

15

20
Ra

nk
Compression time

0.5545

0.5822

0.6113

0.6418

0.6739

0.7076

0.7430

0.7802

20 40 60 80 100 120
Iteration

0

5

10

15

20

Ra
nk

Compression rate

100

101

102

103

104

105

18



Performance analysis
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Summary

. We have combined local recovery with lossy compression

. The obtained method is able to recover in most fault-scenarios with . . .
. . . a simple local restoration and some additional global iterations.
. . . a local auxiliary problem which can be speed-up by a ‘superman’ strategy.

. Compression target is coupled to local defect norm:
. Early on a high compression rate can be achieved
. Backup quality is increased towards the end

. Communication overhead is significantly reduced

. Overhead can be further reduced by using lower checkpoint frequencies

. Asynchronous checkpointing can dispense the communication overhead
further over the iterative process
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Multigrid compression
Limits of multigrid compression
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. Discretisation error dominates at some point

. Dominates earlier for highly compressed data

. Factor between L2-quality and L2-error depends on amount of repaired data
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SZ compression (version 1.4.2, 2D)

. Predict values row by row (top to bottom, left to right)

. V = {V (i, j)}: set of already compressed point values

. Interpolation based first-phase prediction f(i, j)

1-Layer V (i, j − 1) + V (i− 1, j)− V (i− 1, j − 1)

2-Layer
2V (i, j−1)+2V (i−1, j)−4V (i−1, j−1)
−V (i, j−2)−V (i−2, j)+2V (i−2, j−1)
+ 2V (i− 1, j − 2)− V (i− 2, j − 2)

. . . . . .

. 2m intervals with size of 2×error_bound around f(i, j)

2m−12m−1 − 12m−1 − 2 2m−1 + 1 2m−1 + 2p = 1 2m

2×error bound
first-phase prediction f(i, j)

second-phase prediction

real value

. Store index p or and p = 0 and compressed binary-representation if the real
value is not in any second-phase prediction interval

. Data is decompressed via interpolation and shifted by the Huffman-code

Processed points

1-Layer

2-Layer

Next point
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Performance analysis
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Compute time vs. compression rate
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