
Department of Mathematics

Multigrid and
fault-tolerance
8th JLESC Workshop

April 17, 2018Mirco
Altenbernd

Motivation - Fault-tolerance

. More components at exascale ⇒ higher probability of failure

. Active debates to sacrifice reliability for energy efficiency

. Nightmare scenarios of MTBF < 1 h

#cores 1 100 10 000 1 000 000
MTBF 5 years 18 days 4 hours 3 mins

. Classical techniques:
. Reliability in hardware (ECC protection etc.) too power-hungry
. Checkpoint-restart too memory-intensive (and too slow)
. Triple modular redundancy too power-hungry, but: can be more energy-efficient

and faster for large fault rates

Possible solution:
Exploit algorithmic properties to detect and correct faults on-the-fly (ABFT)

What we did
Compressed checkpointing for Multigrid

. Using inherent compression from multigrid to decrease checkpoint size

. Enables repair in node-loss scenario with good initial guess

Fault-tolerant Multigrid
. Further increase multigrid’s robustness with respect to bit-flips by using full

approximation scheme
. Apply a local smoother protection to detect and repair soft faults

User level exception handling
. User-friendly C++ MPI interface for parallel exception handling
. Propagate exceptions with MPI to always ensure same state on all ranks
. Ready for the User level failure mitigation proposal (ULFM)

Compressed checkpointing

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

injection step 8
injection step 6
injection step 4
injection step 2

no injection

1e-12

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

no injection
backup depth 0

backup depth -2
backup depth -4
backup depth -6

no correction

1e-10

1e-08

1e-06

1e-04

1e-02

1e+00

1e+02

1e+04

 0 2 4 6 8 10 12 14 16 18 20

Iteration

backup depth 0
backup depth -2
backup depth -4
backup depth -6

no correction

none -6 -4 -2 0
It

e
ra

ti
o

n
s

Backup depth

injection after iter 3
injection after iter 6
injection after iter 9

Fault-tolerant Multigrid
. Switching from MG to FAS-MG allows additional SDC protection (FTMG)
. Numerical overhead of around 20%
. Protecting smoothing stage (> 80% of numerical operations)
. Repair faults with available resources from other levels

poisson dico andi andicore
fault-free 4 6 14 7
MG (div.) 4.225 (272) 6.268 (335) 15.111 (850) 7.466 (439)

FTMG 4.038 6.007 14.007 7.017

. Also working in parallel and with algebraic multigrid (AMG)

#it 17 18 19 20 21 25 34 41 div avg
AMG 97 1 2 1 2 1 87 17.72

FTAMG 179 4 6 2 0 17.12

User level exception handling
Challenges

. Detect locally thrown exceptions

. Inform all processes of the error

. Wrap it into a user-friendly C++ compliant interface

. Support asynchronous communication (similar to C++ future concept)

. Adaptable to MPI-4 with ULFM (User-level failure-mitigation)

Code Example

try{ // scope to be protected
Guard guard(communicator);
do_computation ();
do_communication ();

}catch (...) {
// handle thrown exceptions

}

. Cheap guard object protects try
block

. Is destructed during stack
unwinding

. Propagate exception across
communicator
(uses std::uncaught_exception)

User level exception handling
MPI-3 variant

. Additional communication
channel for exceptions

. Checked within each
communication operation

⇒ Both processes are in the
same state

Process 0

Process 1

Irecv(0)

Irecv(0) throw

Isend Irecv(1) Waitany(0, 1)

MPI-4 variant
. Interface is adaptable to ULFM (proposed for MPI-4 standard)
. Provides functionality for

. Hard fault detection

. Communicator revocation

. Shrinking of faulty communicator (i.e. excluding faulty processes)

⇒ Additional channel (Irecv(0)) is not needed anymore

What we want to do

. Integrating the new MPI interface into DUNE1

. Improving features/functionality of the interface for wider applicability

. Evaluating and combining developed concepts
. Asynchronous checkpointing for compressed checkpoints
. Asynchrony in multigrid:

Local smoothing while restoring lost processors?
. Multigrid as preconditioner:

Compressed checkpointing for outer solver with MG hierarchy?
. . . .

Thinking about ideas for fault-tolerance and asynchrony in remaining PDE
solver parts, not only linear solver

1funded by DFG: German Priority Programme 1648, SPPEXA, EXADUNE

Ideas for concrete cooperation

Fault-tolerance
. How to protect the assembly procedure?
. Other options to secure matrix-vector multiplication than checksums?
. How to ensure correctness of matrix-free operators?
. . . .

Asynchrony
. Asynchrony in multigrid methods?
. Concepts for asynchronous checkpointing?
. . . .

Jointly apply our techniques to your linear solvers?

Further questions

. Do you anticipate/have you seen reasons for FT?

. What types/frequencies of failures/faults are you expecting in future exascale
systems?

. How to evaluate/simulate fault-tolerant methods in a serious way?

. How would your schemes break if you can no longer assume receiving correct
results?

. What functions do you expect from a fault-tolerant C++ MPI interface with
exception handling?

