

### University of Stuttgart

Department of Mathematics







### Focus of our research

- Faults introduced by *silent data corruption* (SDC): Stored data is not changed but the result of a computation, e.g., for a = b = 2 we receive c = a + b = 5
- Node-losses which are a variation of hard faults/failures

### **Classical techniques**

- Reliability in hardware (ECC protection etc.) too power-hungry
- Checkpoint-restart too memory-intensive (and too slow)
- Triple modular redundancy too power-hungry, but: can be more energy-efficient and applicable for large fault rates

#### Another approach

Algorithm-based fault-tolerance







### Algorithm-based fault-tolerance

- Exploit algorithmic properties to detect and correct faults on-the-fly
- Can be more efficient than middleware-based solutions Benefit: Provable error bounds possible

#### Challenges

- Requires custom modifications for each class of methods
- Overhead in the fault-free scenario should be small
- False-positives should be rare without much impact on convergence
- MPI: Faults can result in node-losses
   ⇒ Once a rank dies, the universe is dead in current MPI3

#### Initial focus

Multigrid because it is an optimal solver for elliptic problems.









#### Observations (node-loss)

- A fault is comparable to a restart of the multigrid solver
- Multigrid converges always if the fault-rate is not to high
- Note: SDC and node-losses results in similar behaviour









#### Observations (node-loss)

- A fault is comparable to a restart of the multigrid solver
- Multigrid converges always if the fault-rate is not to high
- Note: SDC and node-losses results in similar behaviour







Δ



#### Observations (node-loss)

- A fault is comparable to a restart of the multigrid solver
- Multigrid converges always if the fault-rate is not to high
- Note: SDC and node-losses results in similar behaviour
- ⇒ Multigrid is provable self-stabilising: Starting from any state the algorithm comes back to a valid state and eventually converges afterwards







### **Ongoing projects**

### Compressed checkpointing

- Using compression techniques to decrease checkpoint size
- Locally restore lost or faulty data from compressed checkpoint
- Improve restoration by solving local auxiliary problems

### O SDC-tolerant multigrid

- Increase the inherent robustness of multigrid with respect to bit-flips
- Apply a local smoothing stage protection to detect and repair soft faults

### User level exception handling

- Propagate exceptions with MPI to always ensure same state on all ranks
- Necessary for an efficient implementation of the other projects
- User-friendly asynchronous C++ MPI interface for parallel exception handling







**Research goal** 

Reduce size of checkpoints and restore lost data efficiently

### Multigrid compression

- Use multigrid transfer operators to compress checkpoint
- Data reduction in d dimensions:  $\sim 2^d$  per level (backup depth)
- Restore lost data with prolongated checkpoint









### Multigrid compression

- Use multigrid transfer operators to compress checkpoint
- Data reduction in d dimensions:  $\sim 2^d$  per level (backup depth)
- Restore lost data with prolongated checkpoint









### Multigrid compression

- Use multigrid transfer operators to compress checkpoint
- Data reduction in d dimensions:  $\sim 2^d$  per level (backup depth)
- Restore lost data with prolongated checkpoint



SimTec





#### Limits of multigrid compression



- Discretisation error dominates at some point
- Dominates earlier for highly compressed data
- Factor between  $L^2$ -quality and  $L^2$ -error depends on amount of repaired data







#### Problem

- Late faults: Convergence cannot be restored with highly compressed backups
- Recurrent faults need even less-compressed checkpoints

Solution

- Solve an auxiliary problem with Dirichlet boundary to improve accuracy
- Use decompressed data as initial guess

Auxiliary problem (compare Huber et al.<sup>1</sup>) Extend faulty indices  $\mathcal{F} \subset \mathbb{N}$  by connectivity pattern of Operator A to  $\mathcal{J}$  and solve

$$\mathbf{A}(\mathcal{J}, \mathcal{J})\tilde{x}(\mathcal{J}) = b(\mathcal{J}) \qquad \text{in } \mathcal{F} \\ \tilde{x} = x \qquad \text{on } \mathcal{J} \backslash \mathcal{F}$$

iteratively with initial guess  $\tilde{x} = x_{cp}$  in  $\mathcal{F}$ .



<sup>1</sup>M. Huber, B. Gmeiner, U. Rüde, B. Wohlmuth, **Resilience for Massively Parallel Multigrid Solvers**, SIAM Journal on Scientific Computing, 2016







#### Summary: Multigrid compression

- Multigrid compressed checkpoints can be used to recover from faults
- Early fault: Highly compressed data is sufficient
- Late fault: Compression rate has to be decreased
- Eventually an auxiliary problem has to be solved to ensure convergence
- The decompressed data is a good initial guess for this auxiliary problem
- Same idea could be used with other hierarchic methods

### But

Multigrid is good preconditioner, but rarely a standalone solver

D. Göddeke, M.A., D. Ribbrock, Fault-tolerant finite-element multigrid algorithms with hierarchically compressed asynchronous checkpointing, Parallel Computing, 2015







#### Aim: Extend the idea to other solvers and methods

Restore lost/faulty data from different kind of checkpoints

- Checkpoints based on different (lossy) compression techniques:
  - Multigrid compression
  - SZ compression
- Checkpoints with different frequency
- Different restoration approaches
  - Local restoration based on compressed checkpoint
  - Global roll-back to compressed checkpoint
  - Improved restoration by solving auxiliary problem

#### Task

Compare quality and efficiency of repair using different combinations







### SZ compression

- Save initial point value (with reduced accuracy): unpredictable data
- Predict next point based on previous processed points via an interpolation based on *n* layers
- Compare predicted value with real value and improve it through a *Huffman*-like coding
- If still not 'close enough' data is stored as unpredictable and compressed via binary-representation analysis

### Advantages and disadvantages

- Adaptive controllable compression rate (via parameter)
- More computational overhead than inherent multigrid compression
- No random-access to single decompressed values

D. Tao, S. Di, Z. Chen and F. Cappello, Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization, Computing Research Repository, 2017







Numerical tests

• Anisotropic diffusion in 2D

$$-\nabla \cdot \begin{pmatrix} 1 & 0 \\ 0 & 0.01 \end{pmatrix} \nabla u = b$$

- Linear finite elements on grid with  $1500 \times 1500$  degrees of freedom
- Solver: 4-way parallel CG without overlap (slices)
- Preconditioner: Algebraic multigrid (one V-cycle)
- MG compression of 3 levels; SZ compression tolerance is adaptive:

locale\_def\_norm\_at\_backup\_time / def.size()  $\ast\,10^{-3}$ 

Auxiliary solver reduction to

global\_def\_norm\_at\_backup\_time /  $\sqrt{(\texttt{#cores})}*10^{-(\texttt{age_of_backup}+1)}$ 

### Challenge

Recover from a fault in the solver with a compressed checkpoint















#### Summary (early fault)

- Early on the advantage of using a backup is small ( $\leq 10\%$  runtime)
- No backup: Global restart is better than local restoration with zeros
- With backup: Local restoration seems to be superior
- Lower backup frequency ( $\rightarrow$  older backups) makes restoration worse
- MG compression is more robust with respect to age/delay
- Auxiliary problem can nearly restore convergence behaviour:
  - MG and SZ compressed initial solution reduces iteration count significantly
  - Age of backup is important
- In case of multiple data-losses a lower iteration count could be important















### Summary (late fault)

- Multigrid compression seems not competitive in this scenario
- SZ compression works good and maintains a reasonable compression factor
- Local restoration works better than global roll-back
- A delay can deteriorate the quality of repair
   But: Local SZ restoration with frequency 3 is better than global roll-back with frequency 1 and has less communication and compression overhead
- Auxiliary solver improves quality significantly but increases runtime
- Greater delay/depth/compression still increases iteration count of auxiliary solver

### Open task

Develop a performance model to find the most effective combination







### **Research goal**

Increase the robustness of multigrid with respect to silent data corruption

Observation Most time is spent within the smoothing stage



#### Idea

- Don't ensure correctness value by value
- Only verify if output of the smoothing stage is 'good enough'
- Use invariants of Full Approximation Scheme multigrid (FASMG) to test output
- Protect remaining part (transfer phase and coarse grid correction) with traditional checksums







### STMG algorithm

**Call** : STMG $(k, \mathcal{A}, b, u^{(0)})$ 1  $u^{(\nu)} = S^{\nu} (u^{(0)}, b)$ // pre-smoothing 2  $r_k = b - \mathbf{A}_k u^{(\nu)}$ 3 check\_and\_repair\_res $(r_k, k)$ 4  $r_{k-1} = \mathbf{R}_{k-1}^{k} r_{k}$ 5  $\tilde{v}_{h-1}^{(0)} = \mathbf{I}_{h-1}^{k} u^{(\nu)}$ 6  $r_{k-1} = r_{k-1} + \mathbf{A}_{k-1} \tilde{v}_{k-1}^{(0)}$ 7  $\tilde{v}_{k-1} = \text{STMG}(k-1, \mathcal{A}, r_{k-1}, \tilde{v}_{k-1}^{(0)})$  // coarse grid correction 8  $c = \tilde{v}_{k-1} - \tilde{v}_{k-1}^{(0)}$ 9 check\_and\_repair\_cor(c, k-1) 10  $\tilde{u}^{(\nu)} = u^{(\nu)} + \mathbf{P}_{L}^{k-1}(c)$ 11  $u = S^{\mu} (\tilde{u}^{(\nu)}, b)$ // post-smoothing 12 if on fine grid then check\_and\_repair\_res $(b - \mathbf{A}_L u, k)$ 13 14 end

- *k* denotes the current grid level
- $\mathbf{P}_{k}^{k-1}$  is the prolongation operator
- S<sup>ν</sup> is the smoother which is applied ν times
- Direct solver on coarsest grid







Check and repair algorithm (correction)

- Check output of smoother through element-wise comparison
- Threshold based on residual/correction norm (scaled by tolerance factor): Converges monotonously to zero if operator is s.p.d.
- Transfer (scale) to next level grid with transfer operator norm
- Store 'faulty' indices in set  ${\cal L}$  and repair:

- Residual check and repair works similar but easier
- Assumption: Coarse grid solver output is fault-free







### Numerical tests

- V-cycle multigrid with 4 + 4 Jacobi smoothing steps
- 1 million degrees of freedom,  $Q_1$  Lagrange Finite Elements
- 4000 different fault scenarios per test problem
- Fault probability of  $10^{-7}$  per degree of freedom
  - $\Rightarrow$  Approximately once every 10th smoothing step on fine grid
  - $\Rightarrow$  Approximately twice every multigrid iteration

|            | diff         | diff-conv    | andiff         | andiff-conv-reac |
|------------|--------------|--------------|----------------|------------------|
| fault-free | 4            | 6            | 14             | 7                |
| MG (div.)  | 4.225 (6.8%) | 6.268 (8.4%) | 15.111 (21.3%) | 7.466 (11%)      |
| STMG       | 4.038        | 6.007        | 14.007         | 7.017            |

• Nearly no false-positives: Approximately 15 in 4000 runs

M.A. and D. Göddeke, **Soft fault detection and correction for multigrid**, International Journal of High Performance Computing Applications, 2017







#### Numerical overhead

- Overhead of FASMG is approximately 20%
- Smoother protection itself results in an overhead of 4%
- Checksums lead to additional 5% (8× Jacobi smoothing)

|        | unprotected<br>(MG) | unprotected<br>(FASMG) | defect correction<br>(checksums) | smoothing stage<br>(new algorithm) | STMG<br>(both) |
|--------|---------------------|------------------------|----------------------------------|------------------------------------|----------------|
| time   | 35.49               | 43.02                  | 45.23                            | 44.76                              | 46.18          |
| factor | 0.825               | 1                      | 1.051                            | 1.040                              | 1.073          |
| factor | 1                   | 1.212                  | 1.274                            | 1.261                              | 1.301          |

 $\Rightarrow$  Overall overhead of less than 30% compared to classical MG







#### Applicability

- Geometric and algebraic multigrid (AMG)
- Standalone and as preconditioner
- Serial and parallel:

| #it   | 17  | 18 | 19 | 20 | 21 | 25 | 34 | 41 | div | avg   |
|-------|-----|----|----|----|----|----|----|----|-----|-------|
| AMG   | 97  | 1  |    |    | 2  | 1  | 2  | 1  | 87  | 17.72 |
| STAMG | 179 | 4  | 6  | 2  |    |    |    |    | 0   | 17.12 |

Parallel execution of protected algorithm on 4 procs with CG and AMG preconditioner.

• All cycle types:







# **User level exception handling**

**Research goal** 

Extend the functionality of MPI for fault-tolerant algorithms

# O User level exception handling

### Challenges

- Detect locally thrown exceptions
- Inform all processes of the error
- Wrap it into a user-friendly C++ compliant interface
- Support asynchronous communication (similar to C++ future concept)

### Code Example

```
try{ // scope to be protected
Guard guard(communicator);
Future f = init_communication();
do_some_computation();
f.get(); // MPI::Wait()
}catch(...) {
   // handle thrown exceptions
}
```

- Cheap guard object protects *try* block
- Is destructed during stack unwinding
- Propagate exception across communicator (uses std::uncaught\_exception)







# Output User level exception handling

### MPI-4 variant

- Interface is using the User-level failure-mitigation extension (ULFM)
- Provides functionality for
  - Hard fault detection
  - Communicator revocation
  - *Shrinking* of faulty communicator (i.e. excluding faulty processors)

### MPI-3 variant

- Fall-back library which creates additional communication channel for exceptions
- Drawback: cannot interrupt MPI collectives, no hard fault protection



https://gitlab.dune-project.org/exadune/blackchannel-ulfm

C. Engwer, M. A., N. Dreier, D. Göddeke, A High-Level C++ Approach to Manage Local Errors, Asynchrony and Faults in an MPI Application, Proceedings of PDP 2018, 2018







# **Summary and Outlook**

### Summary

- We developed three 'orthogonal' approaches to increase fault-tolerance, especially for multigrid-type algorithms:
  - Restoration with compressed checkpoints: MG and SZ compression both have their (dis-)advantages
  - Efficient SDC protection with built-in in properties
  - Exception-propagation to ensure same state in MPI programs
- 'User level exception handling' can be used for many algorithms to develop MPI-4 ready fault-tolerant algorithms already in MPI-3
- Interface is ready for asynchronous algorithms (future concept):
  - Asynchronous checkpointing/repair
  - Local-failure local-recovery
  - ...







### What's next?

- Integrating the new MPI interface into DUNE<sup>1</sup>
- Improving features/functionality of the interface for wider applicability
- Local restoration for non-linear solvers
- Evaluating and combining developed concepts:
  - Switch between different compression and repair techniques: Adaptively select the most efficient one
  - Asynchronous checkpointing/repair
  - Asynchrony in multigrid with ideas from abstract Schwarz theory: Local smoothing while restoring lost processors?

• ...

lans

Thinking about ideas for fault-tolerance and asynchrony in remaining PDE solver parts, not only linear solver

<sup>1</sup>funded by DFG: German Priority Programme 1648, SPPEXA, EXADUNE





### **Acknowledgements**

#### Joint work with

- Dominik Göddeke (University of Stuttgart)
- Nils-Arne Dreier and Christian Engwer (University of Münster)
- Jon C. Calhoun (Clemson University, South Carolina, USA)

#### Funded by

 DFG Priority Program 1648 'Software for Exascale Computing', grant GO 1758/2-2









Assumption: Multigrid is self-stabilising

### Self-stabilising

Starting from any state the solver comes back to a valid state.

P. Sao, R. Vuduc, Self-stabilizing Iterative Solvers, 2013

- Original defined by Dijkstra in 1974 for systems of distributed control
- Examples: Newton- and Jacobi-methods







Assumption: Multigrid is self-stabilising

#### Sketch of the proof

- Multigrid is a defect correction procedure, i.e., a fixed point iteration
- Hackbusch's multigrid convergence proof is based on contraction arguments:

If the contraction property holds for a given iteration operator, then convergence of the corresponding iteration procedure is guaranteed for any initial guess

- Basically Banach's fixed point theorem
- The new initial guess is simply the last iterate with some faulty entries
- Matrices and grid transfer operators are fault-free
   ⇒ Contraction property is not affected







### SZ compression (version 1.4.2, 2D)

 $2^{m-1} - 2$ 

- Predict values row by row (top to bottom, left to right)
- $\mathcal{V} = \{V(i, j)\}$ : set of already compressed point values
- Interpolation based first-phase prediction f(i, j)

 $2^{m-1} - 1$ 

| 1-Layer | V(i, j - 1) + V(i - 1, j) - V(i - 1, j - 1)                                                                               |
|---------|---------------------------------------------------------------------------------------------------------------------------|
| 2-Layer | $\begin{array}{l} 2V(i,j-1)+2V(i-1,j)-4V(i-1,j-1)\\ -V(i,j-2)-V(i-2,j)+2V(i-2,j-1)\\ +2V(i-1,j-2)-V(i-2,j-2) \end{array}$ |
|         |                                                                                                                           |

•  $2^m$  intervals with size of  $2 \times \texttt{error\_bound}$  around f(i, j)

2 xerror bound

3m-1



real value

9m

• Store index *p* or and *p* = 0 and compressed binary-representation if the real value is not in any second-phase prediction interval

 $2^{m-1} + 1$ 

 $2^{m-1} + 2$ 

• Data is decompressed via interpolation and shifted by the Huffman-code























#### Differences between MG and FASMG

• Multigrid's correction problem is given by

$$\mathbf{A}_k(u_k + v_k) = b_k$$

• Classic MG uses linearity and searches on the next coarser level for the correction  $v_k$  only

$$\mathbf{A}_{k-1}v_{k-1} = \mathbf{R}_{k-1}^k(b_k - \mathbf{A}_k u_k)$$

• FASMG searches always for the full solution  $\tilde{v}_k := u_k + v_k$ 

$$\mathbf{A}_{k-1}\tilde{v}_{k-1} = \mathbf{R}_{k-1}^k(b_k - \mathbf{A}_k u_k) + \mathbf{A}_{k-1}\mathbf{I}_{k-1}^k u_k$$

- $\tilde{v}_{k-1}$  is an approximation to the fine grid problem but with lower resolution
- We can interpret  $\tilde{v}_{k-1}$  as a compressed backup of  $\tilde{v}_k$
- $\mathbf{R}_{k-1}^k$  and  $\mathbf{I}_{k-1}^k$  are different restriction operators





Justification of soft fault detection mechanism

• FAS correction problem

$$\mathbf{A}_{k-1}\tilde{v}_{k-1} = \mathbf{R}_{k-1}^k r_k + \mathbf{A}_{k-1}\tilde{v}_{k-1}^{(0)}$$

• Using linearity of the operator and  $c_{k-1} = \tilde{v}_{k-1} - \tilde{v}_{k-1}^{(0)}$  yields  $\|c_{k-1}\| < \|(\mathbf{A}_{k-1})^{-1}\| \| \mathbf{R}_{k-1}^k \| \|r_k\|$ 

•  $r_k = b_k - \mathbf{A}_k u_k^{(\nu)}$  on fine grid converges monotonously to zero if  $\mathbf{A}$  is s.p.d.

• On coarser grid levels  $b_k = \mathbf{R}_k^{k+1}(b_{k+1} - \mathbf{A}_{k+1}u_{k+1}^{(\nu)}) + \mathbf{A}_k\mathbf{I}_k^{k+1}u_{k+1}^{(\nu)}$  gives

$$\begin{aligned} r_k &= \mathbf{R}_k^{k+1}(b_{k+1} - \mathbf{A}_{k+1}u_{k+1}^{(\nu)}) + \mathbf{A}_k \mathbf{I}_k^{k+1}u_{k+1}^{(\nu)} - \mathbf{A}_k u_k^{(\nu)} \\ &= \mathbf{R}_k^{k+1}(b_{k+1} - \mathbf{A}_{k+1}u_{k+1}^{(\nu)}) + \mathbf{A}_k(u_k^{(0)} - u_k^{(\nu)}) \\ \Rightarrow \qquad \|r_k\| \leq \|\mathbf{R}_k^{k+1}\| \|b_{k+1} - \mathbf{A}_{k+1}u_{k+1}^{(\nu)}\| + \|\mathbf{A}_k\| \|u_k^{(0)} - u_k^{(\nu)}\| \end{aligned}$$

• Operators are bounded, multigrid converges, smoothing property holds:  $||r_k|| \to 0$  and by this  $||c_k|| \to 0$ 





