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Focus of our research

. Faults introduced by silent data corruption (SDC): Stored data is not changed
but the result of a computation, e.g., for a = b = 2 we receive c = a+ b = 5

. Node-losses which are a variation of hard faults/failures

Classical techniques
. Reliability in hardware (ECC protection etc.) too power-hungry
. Checkpoint-restart too memory-intensive (and too slow)
. Triple modular redundancy too power-hungry, but: can be more

energy-efficient and applicable for large fault rates

Another approach
Algorithm-based fault-tolerance
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Algorithm-based fault-tolerance

. Exploit algorithmic properties to detect and correct faults on-the-fly

. Can be more efficient than middleware-based solutions
Benefit: Provable error bounds possible

Challenges
. Requires custom modifications for each class of methods
. Overhead in the fault-free scenario should be small
. False-positives should be rare without much impact on convergence
. MPI: Faults can result in node-losses
⇒ Once a rank dies, the universe is dead in current MPI3

Initial focus
Multigrid because it is an optimal solver for elliptic problems.
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Multigrid and faults
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Observations (node-loss)
. A fault is comparable to a restart of the multigrid solver
. Multigrid converges always if the fault-rate is not to high
. Note: SDC and node-losses results in similar behaviour

⇒ Multigrid is provable self-stabilising:
Starting from any state the algorithm comes back to a valid state and
eventually converges afterwards
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Ongoing projects

1 Compressed checkpointing
. Using compression techniques to decrease checkpoint size
. Locally restore lost or faulty data from compressed checkpoint
. Improve restoration by solving local auxiliary problems

2 SDC-tolerant multigrid
. Increase the inherent robustness of multigrid with respect to bit-flips
. Apply a local smoothing stage protection to detect and repair soft faults

3 User level exception handling
. Propagate exceptions with MPI to always ensure same state on all ranks
. Necessary for an efficient implementation of the other projects
. User-friendly asynchronous C++ MPI interface for parallel exception handling
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Compressed checkpointing

Research goal

Reduce size of checkpoints and restore lost data efficiently



1 Compressed checkpointing
Multigrid compression

. Use multigrid transfer operators to compress checkpoint

. Data reduction in d dimensions: ∼ 2d per level (backup depth)

. Restore lost data with prolongated checkpoint
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1 Compressed checkpointing
Multigrid compression

. Use multigrid transfer operators to compress checkpoint

. Data reduction in d dimensions: ∼ 2d per level (backup depth)
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1 Compressed checkpointing
Limits of multigrid compression
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. Discretisation error dominates at some point

. Dominates earlier for highly compressed data

. Factor between L2-quality and L2-error depends on amount of repaired data
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1 Compressed checkpointing
Problem

. Late faults: Convergence cannot be restored with highly compressed backups

. Recurrent faults need even less-compressed checkpoints
Solution

. Solve an auxiliary problem with Dirichlet boundary to improve accuracy

. Use decompressed data as initial guess

Auxiliary problem (compare Huber et al.1)
Extend faulty indices F ⊂ N by connectivity
pattern of Operator A to J and solve

A(J ,J )x̃(J ) = b(J ) in F
x̃ = x on J \F

iteratively with initial guess x̃ = xcp in F . none -6 -4 -2 0

It
e

ra
ti
o

n
s

Backup depth

injection after iter 3
injection after iter 6
injection after iter 9

1M. Huber, B. Gmeiner, U. Rüde, B. Wohlmuth, Resilience for Massively Parallel Multigrid Solvers, SIAM

Journal on Scientific Computing, 2016 8



1 Compressed checkpointing

Summary: Multigrid compression
. Multigrid compressed checkpoints can be used to recover from faults
. Early fault: Highly compressed data is sufficient
. Late fault: Compression rate has to be decreased
. Eventually an auxiliary problem has to be solved to ensure convergence
. The decompressed data is a good initial guess for this auxiliary problem
. Same idea could be used with other hierarchic methods

But
Multigrid is good preconditioner, but rarely a standalone solver

D. Göddeke, M.A., D. Ribbrock, Fault-tolerant finite-element multigrid algorithms with hierarchically

compressed asynchronous checkpointing, Parallel Computing, 2015
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1 Compressed checkpointing
Aim: Extend the idea to other solvers and methods

Restore lost/faulty data from different kind of checkpoints
. Checkpoints based on different (lossy) compression techniques:

. Multigrid compression

. SZ compression
. Checkpoints with different frequency
. Different restoration approaches

. Local restoration based on compressed checkpoint

. Global roll-back to compressed checkpoint

. Improved restoration by solving auxiliary problem

Task
Compare quality and efficiency of repair using different combinations
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1 Compressed checkpointing
SZ compression

. Save initial point value (with reduced accuracy): unpredictable data

. Predict next point based on previous processed points via an interpolation
based on n layers

. Compare predicted value with real value and improve it through a
Huffman-like coding

. If still not ‘close enough’ data is stored as unpredictable and compressed via
binary-representation analysis

Advantages and disadvantages
. Adaptive controllable compression rate (via parameter)
. More computational overhead than inherent multigrid compression
. No random-access to single decompressed values

D. Tao, S. Di, Z. Chen and F. Cappello, Significantly Improving Lossy Compression for Scientific Data Sets Based

on Multidimensional Prediction and Error-Controlled Quantization, Computing Research Repository, 2017
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1 Compressed checkpointing
Numerical tests

. Anisotropic diffusion in 2D

−∇ ·
(
1 0
0 0.01

)
∇u = b

. Linear finite elements on grid with 1500× 1500 degrees of freedom

. Solver: 4-way parallel CG without overlap (slices)

. Preconditioner: Algebraic multigrid (one V-cycle)

. MG compression of 3 levels; SZ compression tolerance is adaptive:

locale_def_norm_at_backup_time / def.size() ∗ 10−3
. Auxiliary solver reduction to

global_def_norm_at_backup_time /
√
(#cores) ∗ 10−(age_of_backup+1)

Challenge
Recover from a fault in the solver with a compressed checkpoint
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1 Compressed checkpointing
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1 Compressed checkpointing

Summary (early fault)
. Early on the advantage of using a backup is small (≤ 10% runtime)
. No backup: Global restart is better than local restoration with zeros
. With backup: Local restoration seems to be superior
. Lower backup frequency (→ older backups) makes restoration worse
. MG compression is more robust with respect to age/delay
. Auxiliary problem can nearly restore convergence behaviour:

. MG and SZ compressed initial solution reduces iteration count significantly

. Age of backup is important
. In case of multiple data-losses a lower iteration count could be important
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1 Compressed checkpointing
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1 Compressed checkpointing
Summary (late fault)

. Multigrid compression seems not competitive in this scenario

. SZ compression works good and maintains a reasonable compression factor

. Local restoration works better than global roll-back

. A delay can deteriorate the quality of repair
But: Local SZ restoration with frequency 3 is better than global roll-back with
frequency 1 and has less communication and compression overhead

. Auxiliary solver improves quality significantly but increases runtime

. Greater delay/depth/compression still increases iteration count of auxiliary
solver

Open task
Develop a performance model to find the most effective combination
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SDC-tolerant multigrid

Research goal

Increase the robustness of multigrid with respect to silent data
corruption



2 SDC-tolerant multigrid
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Observation
Most time is spent within the smoothing stage

Idea
. Don’t ensure correctness value by value
. Only verify if output of the smoothing stage is ‘good enough’
. Use invariants of Full Approximation Scheme multigrid (FASMG) to test output
. Protect remaining part (transfer phase and coarse grid correction) with

traditional checksums
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2 SDC-tolerant multigrid

STMG algorithm
Call : STMG(k,A, b, u(0))

1 u(ν) = Sν
(
u(0), b

)
// pre-smoothing

2 rk = b−Aku
(ν)

3 check_and_repair_res(rk, k)
4 rk−1 = Rk

k−1rk

5 ṽ
(0)
k−1 = Ikk−1u

(ν)

6 rk−1 = rk−1 +Ak−1ṽ
(0)
k−1

7 ṽk−1 = STMG(k − 1,A, rk−1, ṽ
(0)
k−1) // coarse grid correction

8 c = ṽk−1 − ṽ
(0)
k−1

9 check_and_repair_cor(c, k − 1)
10 ũ(ν) = u(ν) +Pk−1

k (c)

11 u = Sµ
(
ũ(ν), b

)
// post-smoothing

12 if on fine grid then
13 check_and_repair_res(b−ALu, k)
14 end

. k denotes the current
grid level

. Pk−1
k is the prolongation

operator
. Sν is the smoother

which is applied ν times
. Direct solver on

coarsest grid
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2 SDC-tolerant multigrid
Check and repair algorithm (correction)

. Check output of smoother through element-wise comparison

. Threshold based on residual/correction norm (scaled by tolerance factor):
Converges monotonously to zero if operator is s.p.d.

. Transfer (scale) to next level grid with transfer operator norm

. Store ‘faulty’ indices in set L and repair:
1 if L 6= ∅ then
2 ṽk−1 = Ikk−1ṽ

(0)
k // restrict (non-faulty) initial approximation

3 c̃ = uk−1 − ṽk−1 // calculate new correction vector
4 c̃ = Pk−1

k c̃ // prolongate new correction vector
5 for i ∈ L do
6 c(i) = c̃(i) // replace faulty components
7 end
8 end

. Residual check and repair works similar but easier

. Assumption: Coarse grid solver output is fault-free
19



2 SDC-tolerant multigrid

Numerical tests
. V-cycle multigrid with 4 + 4 Jacobi smoothing steps
. 1 million degrees of freedom, Q1 Lagrange Finite Elements
. 4000 different fault scenarios per test problem
. Fault probability of 10−7 per degree of freedom
⇒ Approximately once every 10th smoothing step on fine grid
⇒ Approximately twice every multigrid iteration

diff diff-conv andiff andiff-conv-reac
fault-free 4 6 14 7
MG (div.) 4.225 (6.8%) 6.268 (8.4%) 15.111 (21.3%) 7.466 (11%)

STMG 4.038 6.007 14.007 7.017

. Nearly no false-positives: Approximately 15 in 4000 runs

M.A. and D. Göddeke, Soft fault detection and correction for multigrid, International Journal of
High Performance Computing Applications, 2017
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2 SDC-tolerant multigrid
Numerical overhead

. Overhead of FASMG is approximately 20%

. Smoother protection itself results in an overhead of 4%

. Checksums lead to additional 5% (8× Jacobi smoothing)

unprotected
(MG)

unprotected
(FASMG)

defect correction
(checksums)

smoothing stage
(new algorithm)

STMG
(both)

time 35.49 43.02 45.23 44.76 46.18
factor 0.825 1 1.051 1.040 1.073
factor 1 1.212 1.274 1.261 1.301

⇒ Overall overhead of less than 30% compared to classical MG
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2 SDC-tolerant multigrid

Applicability
. Geometric and algebraic multigrid (AMG)
. Standalone and as preconditioner
. Serial and parallel:

#it 17 18 19 20 21 25 34 41 div avg
AMG 97 1 2 1 2 1 87 17.72

STAMG 179 4 6 2 0 17.12
Parallel execution of protected algorithm on 4 procs with CG and AMG preconditioner.

. All cycle types:

22



User level exception handling

Research goal

Extend the functionality of MPI for fault-tolerant algorithms



3 User level exception handling
Challenges

. Detect locally thrown exceptions

. Inform all processes of the error

. Wrap it into a user-friendly C++ compliant interface

. Support asynchronous communication (similar to C++ future concept)

Code Example

try{ // scope to be protected
Guard guard(communicator );
Future f = init_communication ();
do_some_computation ();
f.get (); // MPI::Wait()

}catch (...) {
// handle thrown exceptions

}

. Cheap guard object protects try
block

. Is destructed during stack
unwinding

. Propagate exception across
communicator
(uses std::uncaught_exception)
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3 User level exception handling
MPI-4 variant

. Interface is using the User-level failure-mitigation extension (ULFM)

. Provides functionality for
. Hard fault detection
. Communicator revocation
. Shrinking of faulty communicator (i.e. excluding faulty processors)

MPI-3 variant
. Fall-back library which creates

additional communication channel
for exceptions

. Drawback: cannot interrupt MPI
collectives, no hard fault protection

. https://gitlab.dune-project.org/exadune/blackchannel-ulfm

Process 0

Process 1

Irecv(0)

Irecv(0) throw

Isend Irecv(1) Waitany(0, 1)

C. Engwer, M. A., N. Dreier, D. Göddeke, A High-Level C++ Approach to Manage Local Errors, Asynchrony

and Faults in an MPI Application, Proceedings of PDP 2018, 2018
24
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Summary and Outlook



Summary

. We developed three ‘orthogonal’ approaches to increase fault-tolerance,
especially for multigrid-type algorithms:

. Restoration with compressed checkpoints:
MG and SZ compression both have their (dis-)advantages

. Efficient SDC protection with built-in in properties

. Exception-propagation to ensure same state in MPI programs
. ’User level exception handling’ can be used for many algorithms to develop

MPI-4 ready fault-tolerant algorithms already in MPI-3
. Interface is ready for asynchronous algorithms (future concept):

. Asynchronous checkpointing/repair

. Local-failure local-recovery

. . . .

25



What’s next?

. Integrating the new MPI interface into DUNE1

. Improving features/functionality of the interface for wider applicability

. Local restoration for non-linear solvers

. Evaluating and combining developed concepts:
. Switch between different compression and repair techniques:

Adaptively select the most efficient one
. Asynchronous checkpointing/repair
. Asynchrony in multigrid with ideas from abstract Schwarz theory:

Local smoothing while restoring lost processors?
. . . .

Thinking about ideas for fault-tolerance and asynchrony in remaining PDE
solver parts, not only linear solver

1funded by DFG: German Priority Programme 1648, SPPEXA, EXADUNE 26
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Multigrid and faults

Assumption: Multigrid is self-stabilising

Self-stabilising
Starting from any state the solver comes back to a valid state.

P. Sao, R. Vuduc, Self-stabilizing Iterative Solvers, 2013

. Original defined by Dijkstra in 1974 for systems of distributed control

. Examples: Newton- and Jacobi-methods
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Multigrid and faults

Assumption: Multigrid is self-stabilising

Sketch of the proof
. Multigrid is a defect correction procedure, i.e., a fixed point iteration
. Hackbusch’s multigrid convergence proof is based on contraction arguments:

If the contraction property holds for a given iteration operator, then convergence of
the corresponding iteration procedure is guaranteed for any initial guess

. Basically Banach’s fixed point theorem

. The new initial guess is simply the last iterate with some faulty entries

. Matrices and grid transfer operators are fault-free
⇒ Contraction property is not affected
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1 Compressed checkpointing
SZ compression (version 1.4.2, 2D)

. Predict values row by row (top to bottom, left to right)

. V = {V (i, j)}: set of already compressed point values

. Interpolation based first-phase prediction f(i, j)
1-Layer V (i, j − 1) + V (i− 1, j)− V (i− 1, j − 1)

2-Layer
2V (i, j−1)+2V (i−1, j)−4V (i−1, j−1)
−V (i, j−2)−V (i−2, j)+2V (i−2, j−1)
+ 2V (i− 1, j − 2)− V (i− 2, j − 2)

. . . . . .

. 2m intervals with size of 2×error_bound around f(i, j)

2m−12m−1 − 12m−1 − 2 2m−1 + 1 2m−1 + 2p = 1 2m

2×error bound
first-phase prediction f(i, j)

second-phase prediction

real value

. Store index p or and p = 0 and compressed binary-representation if the real
value is not in any second-phase prediction interval

. Data is decompressed via interpolation and shifted by the Huffman-code

Processed points

1-Layer

2-Layer

Next point

30



1 Compressed checkpointing
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1 Compressed checkpointing
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2 SDC-tolerant multigrid
Differences between MG and FASMG

. Multigrid’s correction problem is given by

Ak(uk + vk) = bk

. Classic MG uses linearity and searches on the next coarser level for the
correction vk only

Ak−1vk−1 = Rk
k−1(bk −Akuk)

. FASMG searches always for the full solution ṽk := uk + vk

Ak−1ṽk−1 = Rk
k−1(bk −Akuk) +Ak−1I

k
k−1uk

. ṽk−1 is an approximation to the fine grid problem but with lower resolution

. We can interpret ṽk−1 as a compressed backup of ṽk

. Rk
k−1 and Ikk−1 are different restriction operators
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. FAS correction problem

Ak−1ṽk−1 = Rk
k−1rk +Ak−1ṽ

(0)
k−1

. Using linearity of the operator and ck−1 = ṽk−1 − ṽ(0)k−1 yields

‖ck−1‖ ≤ ‖(Ak−1)
−1‖‖Rk

k−1‖‖rk‖
. rk = bk −Aku

(ν)
k on fine grid converges monotonously to zero if A is s.p.d.

. On coarser grid levels bk = Rk+1
k (bk+1 −Ak+1u

(ν)
k+1) +AkI

k+1
k u

(ν)
k+1 gives

rk = Rk+1
k (bk+1 −Ak+1u

(ν)
k+1) +AkI

k+1
k u

(ν)
k+1 −Aku

(ν)
k

= Rk+1
k (bk+1 −Ak+1u

(ν)
k+1) +Ak(u

(0)
k − u

(ν)
k )

⇒ ‖rk‖ ≤ ‖Rk+1
k ‖‖bk+1 −Ak+1u

(ν)
k+1‖+ ‖Ak‖ ‖u(0)k − u

(ν)
k ‖

. Operators are bounded, multigrid converges, smoothing property holds:
‖rk‖ → 0 and by this ‖ck‖ → 0
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