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Motivation - Fault-tolerance

. More components at exascale⇒ higher probability of failure

. Active debates to sacrifice reliability for energy efficiency

. Nightmare scenarios of MTBF < 1 h

#cores 1 100 10 000 1 000 000
MTBF 5 years 18 days 4 hours 3 mins

. Classical techniques:
. Reliability in hardware (ECC protection etc.) too power-hungry
. Checkpoint-restart too memory-intensive (and too slow)
. Triple modular redundancy too power-hungry, but: can be more energy-efficient

and applicable for large fault rates

Possible solution:
Exploit algorithmic properties to detect and correct faults on-the-fly (ABFT)
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Ongoing subprojects

1 Compressed checkpointing for Multigrid
. Using inherent compression from multigrid to decrease checkpoint size
. Enables repair in node-loss scenario with good initial guess

2 Fault-tolerant Multigrid
. Further increase multigrid’s inherent robustness with respect to bit-flips by using

full approximation scheme multigrid
. Apply a local smoothing stage protection to detect and repair soft faults

3 User level exception handling
. User-friendly C++ MPI interface for parallel exception handling
. Propagate exceptions with MPI to always ensure same state on all ranks
. Ready for the User level failure mitigation proposal (ULFM)
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1 Compressed checkpointing
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Evaluation
. 2D poisson problem
. V-cycle multigrid, jacobi smoother
. Node-loss simulation:

Set values in a small area to zero

Repair
. Restore lost data with compressed

checkpoint
. Compression via MG transfer operator
. Data reduction in d dimensions:

dn per level (backup depth)
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1 Compressed checkpointing
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Problem
. Recurrent and late node-losses need less

compressed checkpoints
. At the end no compression is possible

Solution
. Solve an auxiliary problem with dirichlet

boundary to improve restoration
. Use compressed data as initial guess
⇒ Reduces iteration count significantly

. Alternative:
Other compression techniques like SZ1

1 D. Tao, S. Di, Z. Chen and F. Cappello, [. . . ] Lossy Compression for Scientific Data Sets [. . . ], Computing Research Repository, 2017
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1 Compressed checkpointing

Overview
. MG compressed checkpoints can be used to recover from node-losses
. Early on high compressed data is sufficient
. Later compression rate has to be decreased
. Eventually an auxiliary problem has to be solved or another compression

technique has to be used
. The compressed data is a good initial guess for the auxiliary problem

Project was finished but we have got new ideas:
. Using MG transfer operators to compress data of an outer solver
. Compare compression quality/runtime to different lossy-compression

techniques like SZ compression

D. Göddeke, M.A., Dirk Ribbrock, Fault-tolerant finite-element multigrid algorithms with
hierarchically compressed asynchronous checkpointing, Parallel Computing, 2015
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2 Fault-tolerant Multigrid
Aim
Fault-tolerant with respect to silent data corruption

Observation
Most time is spent within the smoothing stage

Idea
. Use invariants of Full Approximation

Scheme MG (FASMG) to test output
of smoothing stage

. Don’t ensure correctness value by
value

. Only verify if output is ‘good enough’

. Protect remaining part with
checksums
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2 Fault-tolerant Multigrid

. Overhead of FASMG is approximately 20%

. Smoother protection itself results in an overhead of 4%

. Checksums lead to additional 5% (4× Jacobi smoothing)

⇒ Overall overhead of ∼ 30% compared to classical MG

unprotected
(MG)

unprotected
(FASMG)

transfer stage
(checksums)

smoothing stage
(new algorithm)

FTMG
(both)

time 35.49 43.02 45.23 44.76 46.18
factor 0.825 1 1.051 1.040 1.073
factor 1 1.212 1.274 1.261 1.301
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2 Fault-tolerant Multigrid

Protection and Repair mechanism
. Calculate thresholds based on output of smoothing stage
. Transfer them to next grid level
. Check values of next smoothing stage against them
. If not sufficient replace values by values from previous level

poisson dico andi andicore
fault-free 4 6 14 7
MG (div.) 4.225 (272) 6.268 (335) 15.111 (850) 7.466 (439)

FTMG 4.038 6.007 14.007 7.017
false-positives 13 21 27 25

Iteration count with approximately two SDC every iteration.

M.A. and D. Göddeke, Soft fault detection and correction for multigrid, International Journal of
High Performance Computing Applications, 2017
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2 Fault-tolerant Multigrid
Applicability

. Geometric and algebraic multigrid (AMG)

. Standalone and as preconditioner

. Serial and parallel:
#it 17 18 19 20 21 25 34 41 div avg

AMG 97 1 2 1 2 1 87 17.72
FTAMG 179 4 6 2 0 17.12

Parallel execution of protected algorithm on 4 procs with AMG as CG preconditioner.
. Different cycle types:

Visualisation of V-, F- and W-cycle multigrid.
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3 User level exception handling
Challenges

. Detect locally thrown exceptions

. Inform all processes of the error

. Wrap it into a user-friendly C++ compliant interface

. Support asynchronous communication (similar to C++ future concept)

. Adaptable to MPI-4 with ULFM (User-level failure-mitigation)

Code Example

try{ // scope to be protected
Guard guard(communicator );
do_computation ();
do_communication ();

}catch (...) {
// handle thrown exceptions

}

. Cheap guard object protects try
block

. Is destructed during stack
unwinding

. Propagate exception across
communicator
(uses std::uncaught_exception)
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3 User level exception handling
MPI-3 variant

. Additional communication
channel for exceptions

. Checked within each
communication operation

⇒ Both processes are in the
same state

Process 0

Process 1

Irecv(0)

Irecv(0) throw

Isend Irecv(1) Waitany(0, 1)

MPI-4 variant
. Interface is adaptable to ULFM (proposed for MPI-4 standard)
. Provides functionality for

. Hard fault detection

. Communicator revocation

. Shrinking of faulty communicator (i.e. excluding faulty processes)

⇒ Additional channel (Irecv(0)) is not needed anymore
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Recap

. We developed three ‘orthogonal’ approaches to increase fault-tolerance,
especially for multigrid algorithms:

. Efficient SDC protection with build in properties

. Partial restoration with compressed checkpoints for node-losses

. Exception-propagation to ensure same state in MPI programs
. Combination is still in progress but first tests seem promising
. ’User level exception handling’ can be used for many algorithms to develop

strategies for fault-tolerance in MPI-3 and is adaptable to MPI-ULFM
. Currently evaluating the advantages of MG compression and SZ

compression2

2 Initiated cooperation with Jon Calhoun (Clemson University, South Carolina, USA)
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What’s next?

. Integrating the new MPI interface into DUNE3

. Improving features/functionality of the interface for wider applicability

. Evaluating and combining developed concepts:
. Asynchronous checkpointing for compressed checkpoints
. Asynchrony in multigrid:

Local smoothing while restoring lost processors?
. Multigrid as preconditioner

. Compressed checkpointing for outer solver with MG hierarchy

. Adaptive combination with SZ compression
. . . .

Thinking about ideas for fault-tolerance and asynchrony in remaining PDE
solver parts, not only linear solver

3funded by DFG: German Priority Programme 1648, SPPEXA, EXADUNE
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