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Andreas
Stein

Motivation

The modeling of time-dependent/stationary subsurface and fractured
porous media flows by parabolic/elliptic equations, where:

0 Random advection- and diffusion coefficients account for uncertain
permeability and insufficient measurements.

0 Random discontinuities in the coefficients are incorporated to model
heterogeneous media and fractures in ground layers.

Advection-Diffusion Problem with Jump Coefficients

Let (Ω,A,P) be a probability space, D ⊂ Rd a bounded, connected
Lipschitz domain for some d ∈ N and T = [0, T ] with T > 0 be a finite
time interval. We consider the random parabolic problem

−∇ · (a(ω, x, t)∇u(ω, x, t)) + b(ω, x, t)∇u(ω, x, t) = f (ω, x, t)

in Ω×D × T, subject to the initial-boundary conditions
u(ω, x, 0) = u0(ω, x) in Ω×D,
u(ω, x, t) = 0 on Ω× Γ1 × T,

a(ω, x, t)
#»n · ∇u(ω, x, t) = g(ω, x, t) on Ω× Γ2 × T,

where
0 a, b : Ω×D × T→ R are the stochastic jump diffusion resp. jump

advection coefficients,
0 f : Ω×D × T→ R is a random source function,
0 u0 : Ω×D → R is the stochastic initial condition,
0 ∂D = Γ1

.
∪ Γ2 with |Γ1| > 0 and Γ2 are such that the exterior normal

derivative #»n · ∇u is well-defined for any u ∈ C1(D) and
0 g : Ω× Γ2×T→ R is the Neumann part of the boundary conditions.

We consider the following structure for the diffusion coefficient:

a(ω, x, t) := a(x, t) + Φ(W (ω, x)) + P(ω, x),

where H := L2(D) and
0 a,Φ ∈ C1(D × T;R>0) (i.e. Φ(w) = exp(w)).
0 W is a (zero-mean) Gaussian random field associated to a

non-negative, symmetric trace class operator Q : H → H.
0 T : Ω→ B(D), ω 7→ {T1, . . . ,Tτ} is a random partition of D,

where the number τ of elements in T is a N-valued random variable
τ : Ω→ N on (Ω,A,P).

0 (Pi)i∈N is a sequence of random variables on (Ω,A,P) with arbitrary
non-negative distribution(s) and

P : Ω×D → R≥0, (ω, x) 7→
τ (ω)∑
i=1

1{Ti}(x)Pi(ω).

The sequence (Pi)i∈N is independent of τ (but not necessarily i.i.d.).
The advection coefficient depends on a and is given by

b(ω, x, t) = Ψ(a(ω, x, t), x, t),

where the mapping Ψ : R>0 × D × T → R is affine linear with respect
to the diffusion coefficient a.

=⇒ Under natural assumptions on a, f , Ψ and the initial-boundary data,
there exists P-a.s. a unique weak solution u ∈ L2(Ω; L2(T,H1(D))).
=⇒ In general, this solution is not available in closed form and it is not
possible to draw unbiased samples from u.

Example of Jump Diffusion and Advection coefficients

The specific structure of a allows for a very flexible modeling of the ran-
dom diffusion coefficient. For instance, changes in permeability may be
modeled by a log-Gaussian diffusion coefficient with incorporated jumps.
The discontinuities are random with respect to their spatial position and
magnitude and the corresponding pathwise solution reflects the behavior
of the coefficients, see Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Sample of a time-independent log-Gaussian diffusion coefficient a (left) and corresponding sample of u with b(ω, x, t) := −2a(ω, x, t).

Approximation of a and Finite Element Method

In order to draw approximate samples of u, it is in general necessary to
approximate the coefficients a and b. First, the Gaussian random field
W is replaced by WN, where N ∈ N represents the cutoff-index of the
Karhúnen-Loève expansion of W . In addition, only biased samples P̃i of
the jump heights Pi might be generated such that

||P̃i − Pi||L2(Ω;R) ≤
√
ε, for some ε > 0.

For example, if Pi follows a non-standard distribution, this error may stem
from Fourier Inversion sampling, see [1].
This yields approximations aN,ε of a and bN,ε = Ψ(aN,ε, ·, ·) of b, which
are utilized to simulate pathwise FEM solutions uN,ε,h,∆(ω, ·) ≈ u(ω, ·).
The parameter h > 0 refers to the mesh width of the FEM triangulation
and ∆t > 0 to the stepsize of the employed Backward Euler scheme.

=⇒ Given that u ∈ L2(Ω; L2(T,Hm(D))) for some m ∈ (1, 2],

||u − uN,ε,h,∆||L2(Ω;H1(D)) ≤ C1

√∑
i>N

ηi +
√
ε + hm−1 + ∆

 ,
where (ηi)i∈N are the eigenvalues of Q and C1 > 0 a constant.
=⇒ To increase the order of convergence with respect to h in the finite
dimensional approximation, the FEM triangulation should be chosen path-
wise accordingly to the sampled diffusion coefficient, see Fig. 1.

Multilevel Monte Carlo Moment Estimation

The moments of u (expected value, variance etc.) are estimated using
the Multilevel Monte Carlo (MLMC) method: Let L ∈ N and consider the
sequences of approximation parameters h0 > · · · > hL, ∆0 > · · · >
∆L, ε0 > · · · > εL and N0 < · · · < NL. The MLMC estimator of E(u) is
then defined as

EL(uNL,εL,hL,∆L) :=
L∑

l=0

1
Ml

Ml∑
i=1

u(i)
Nl,εl,hl,∆l

− u(i)
Nl−1,εl−1,hl−1,∆l−1

,

where M0 > · · · > ML are the decreasing numbers of sampled differ-
ences and u(i)

Nl,εl,hl,∆l
− u(i)

Nl−1,εl−1,hl−1,∆l−1
are generated independently in i

on each level l . It is possible to adjust the truncation indices Nl, the sam-
pling bias εl and the number of samples Ml throughout the levels to obtain
an overall error of

||E(u)− EL(uNL,εL,hL,∆L)||L2(Ω;L2(T,H1(D))) ≤ C2hm−1
L ,

where C2 > 0 is independent of NL, εL, hL,∆L and ML.

Numerical Results

=⇒ Combining the MLMC estimator with an adaptive pathwise triangula-
tion leads to faster convergence to the expected value E(u) and produces
a lower error for any computational budget, see Fig. 2.
=⇒ The algorithm can be further enhanced by bootstrapping (BS), mean-
ing the simulated quantities u(i)

Nl,εl,hl
are "recycled" on the next level l + 1.
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Figure 2: Convergence of different error norms (left), Time-to-error plot (right).
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