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Motivation

The modeling of stationary subsurface and fractured porous media flows
by elliptic equations, where:

0 A random diffusion coefficient accounts for uncertain permeability
and insufficient measurements.

0 Random discontinuities in the diffusion coefficient are incorporated to
model heterogeneous media and fractures in ground layers.

Elliptic Problem with Jump Diffusion Coefficient

Let (Ω,A,P) be a probability space and D ⊂ Rd a bounded, connected
Lipschitz domain for some d ∈ N. We consider the random elliptic prob-
lem

−∇ · (a(ω, x)∇u(ω, x)) = f (ω, x) in Ω×D,
u(ω, x) = 0 on Ω× Γ1,

a(ω, x)
#»n · ∇u(ω, x) = g(ω, x) on Ω× Γ2,

where
0 a : Ω×D → R is a stochastic jump diffusion coefficient,
0 f : Ω×D → R is a random source function,
0 ∂D = Γ1

.
∪ Γ2 with |Γ1| > 0 and Γ2 such that the exterior normal

derivative #»n · ∇u is well-defined for any u ∈ C1(D) and
0 g : Ω× Γ2 → R is the Neumann part of the boundary conditions.

Tthe diffusion coefficient takes the following shape:

a(ω, x) := a(x) + Φ(W (ω, x)) + P(ω, x),

where H := L2(D) and
0 a,Φ ∈ C1(D;R>0) (i.e. Φ(w) = exp(w)).
0 W is a (zero-mean) Gaussian random field associated to a

non-negative, symmetric trace class operator Q : H → H.
0 T : Ω→ B(D), ω 7→ {T1, . . . ,Tτ} is a random partition of D,

where the number τ of elements in T is a N-valued random variable
τ : Ω→ N on (Ω,A,P).

0 (Pi)i∈N is a sequence of random variables on (Ω,A,P) with arbitrary
non-negative distribution(s) and

P : Ω×D → R≥0, (ω, x) 7→
τ (ω)∑
i=1

1{Ti}(x)Pi(ω).

The sequence (Pi)i∈N is independent of τ (but not necessarily i.i.d.).

=⇒ Under natural assumptions on a, f and g, it can be shown that there
exists P-a.s. a unique weak solution u ∈ L2(Ω; H1(D)).
=⇒ In general, this solution is not available in closed form and it is not
possible to draw unbiased samples from u.

Approximation of a and Finite Element Method

In order to draw approximate samples of u, it is usually necessary to
approximate the diffusion coefficient a. First, the Gaussian random field
W is replaced by WN, where N ∈ N represents the cutoff-index of the
Karhúnen-Loève expansion of W . In addition, only biased samples P̃i of
the jump heights Pi might be generated such that

||P̃i − Pi||L2(Ω;R) ≤
√
ε, for some ε > 0.

For example, if Pi follows a non-standard distribution, this error may
stem from Fourier Inversion sampling, see [?]. This yields an approxima-
tion aN,ε of a, which is then utilized to simulate pathwise FEM solutions
uN,ε,h(ω, ·) ≈ u(ω, ·). The parameter h > 0 refers to the mesh width of
the corresponding FEM triangulation.

=⇒ Given that u ∈ L2(Ω; Hm(D)) for some m ∈ (1, 2],

||u − uN,ε,h||L2(Ω;H1(D)) ≤ C1

√∑
i>N

ηi +
√
ε + hm−1

 ,
where (ηi)i∈N are the eigenvalues of Q and C1 > 0 a constant.
=⇒ To increase the order of convergence with respect to h in the finite
dimensional approximation, the FEM triangulation should be chosen path-
wise accordingly to the sampled diffusion coefficient, see Fig. 1 and 2.

Examples of 2D Diffusion Coefficients

The specific structure of a allows for a very flexible modeling of the ran-
dom diffusion coefficient. Changes in permeability may be captured by
the random partition T and distribution of the jump heights Pi. Uncertain
diffusivities within the partition elements are represented by the contin-
uous Gaussian part Φ(W ). This allows, for instance, the modeling of
fractured media as in Fig. 1 or media with inclusions, see Fig. 2.

Figure 1: Sample of a medium with fractures and plot of the sampled FEM solution.

Figure 2: Sample of a medium with inclusions and plot of the sampled FEM solution.

Multilevel Monte Carlo Moment Estimation

The moments of u (expected value, variance etc.) are estimated using
the Multilevel Monte Carlo (MLMC) method: Let L ∈ N and consider the
sequences of approximation parameters h0 > · · · > hL, ε0 > · · · > εL
and N0 < · · · < NL. The MLMC estimator of E(u) is then defined as

EL(uNL,εL,hL) :=
L∑

l=0

1
Ml

Ml∑
i=1

u(i)
Nl,εl,hl

− u(i)
Nl−1,εl−1,hl−1

,

where M0 > · · · > ML are the decreasing numbers of sampled differ-
ences and u(i)

Nl,εl,hl
−u(i)

Nl−1,εl−1,hl−1
are generated independently in i on each

level l . It is possible to adjust the truncation indices Nl, the sampling bias
εl and the number of samples Ml throughout the levels to obtain an overall
error of

||E(u)− EL(uNL,εL,hL)||L2(Ω;H1(D))) ≤ C2hm−1
L ,

where C2 > 0 is independent of NL, εL, hL and ML.

Numerical Results

=⇒ Combining the MLMC estimator with an adaptive pathwise triangula-
tion leads to faster convergence to the expected value E(u) and produces
a lower error for any computational budget, see Fig. 3.
=⇒ The non-adaptive algorithm can be further enhanced by bootstrap-
ping (BS), meaning the simulated quantities u(i)

Nl,εl,hl
are "recycled" on the

next level l + 1.
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Figure 3: Numerical results for the example of a medium with fractures. Left: Convergence of the root-mean-squared error. Right: Time-to-error plot.
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