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Motivation

The modeling of stationary subsurface and fractured porous media flows
by elliptic equations, where:

® A random diffusion coefficient accounts for uncertain permeability
and insufficient measurements.

® Random discontinuities in the diffusion coefficient are incorporated to
model heterogeneous media and fractures in ground layers.

Elliptic Problem with Jump Diffusion Coefficient

et (R, A, P) be a probability space and D C RY a bounded, connected
_ipschitz domain for some d € IN. We consider the random elliptic prob-
em

—V - (a(w, x)Vu(w, x)) = f(w,x) inQ x D,
U(w,x) =0 onQ x Iy,
a(w, x)n - Vu(w, x) = g(w,x) onQ x o,
where
® a: Q) X D — R is a stochastic jump diffusion coefficient,
e f:Q X D — Risarandom source function,

® 9D = Iy U Ny with |4 > 0 and Iz such that the exterior normal
derivative n - Vu is well-defined for any u € C'(D) and

® g: Q X Is — Risthe Neumann part of the boundary conditions.
Tthe diffusion coefficient takes the following shape:
a(w, x) := a(x) + ®(W(w, x)) + P(w, x),
where H := L?(D) and
® 3, d c C'(D;Ryo) (i.e. P(w) = exp(w)).
® W is a (zero-mean) Gaussian random field associated to a
non-negative, symmetric trace class operator Q : H — H.
7T :Q— B(D), w— {T1,..., T} is arandom partition of D,
where the number 7 of elements in 7 is a IN-valued random variable
7:Q — INon (22, A, P).
® (Pj)icn Is a sequence of random variables on (€2, A, IP) with arbitrary
non-negative distribution(s) and
7(w)
P:QxD— RZO, (w,X) — Z 1{77}(X)P,-(w).
i=1
The sequence (Pj)icn is independent of = (but not necessarily i.i.d.).

— Under natural assumptions on a, f and g, it can be shown that there
exists P-a.s. a unique weak solution u € L?(Q; H'(D)).

—> In general, this solution is not available in closed form and it is not
possible to draw unbiased samples from u.

Approximation of a and Finite Element Method

In order to draw approximate samples of u, it is usually necessary to
approximate the diffusion coefficient a. First, the Gaussian random field
W is replaced by Wy, where N € IN represents the cutoff-index of the
Karhunen-Loeve expansion of W. In addition, only biased samples P; of
the jump heights P; might be generated such that

|Pi — Pil|i2i:r) < Ve, for some e > 0.

For example, if P; follows a non-standard distribution, this error may
stem from Fourier Inversion sampling, see [?]. This yields an approxima-
tion an of a, which is then utilized to simulate pathwise FEM solutions
Unen(w, ) = u(w,-). The parameter h > 0 refers to the mesh width of
the corresponding FEM triangulation.

— Given that u € L?(Q2; H™(D)) for some m € (1, 2],

[|U — UN,e.nl|2(:1 (D)) < C Z ni+ve+h" 1],
i>N
where (n;)icn are the eigenvalues of Q and C; > 0 a constant.
—> To increase the order of convergence with respect to h in the finite
dimensional approximation, the FEM triangulation should be chosen path-
wise accordingly to the sampled diffusion coefficient, see Fig. 1 and 2.
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The specific structure of a allows for a very flexible modeling of the ran-
dom diffusion coefficient. Changes in permeability may be captured by
the random partition 7 and distribution of the jump heights P;. Uncertain
diffusivities within the partition elements are represented by the contin-
uous Gaussian part ®(W). This allows, for instance, the modeling of
fractured media as in Fig. 1 or media with inclusions, see Fig. 2.

X-Y view with adaptive triangulation and hy,.,.=0.1126

g n an Interpolated FEM solution to the 2D elliptic problem
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Figure 1: Sample of a medium with fractures and plot of the sampled FEM solution.

X-Y view with adaptive triangulation and h,0,=0.0599 Interpolated FEM solution to the 2D elliptic problem
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Figure 2: Sample of a medium with inclusions and plot of the sampled FEM solution.

Multilevel Monte Carlo Moment Estimation

The moments of u (expected value, variance etc.) are estimated using
the Multilevel Monte Carlo (MLMC) method: Let L € IN and consider the
sequences of approximation parameters hg > -+ > h;, eg > --+ > €L
and Np < - -+ < N;. The MLMC estimator of E(u) is then defined as

L 1N ) (i

E (uNL,ﬁL,hL) = Z MI Z uN,,e,,h, T uN,_1,e,_1,h,_1’
/=0 i=1

where My > --- > M, are the decreasing numbers of sampled differ-
ences and ”I(\;,),e,,h, — ”I(\;:)_1,e,_1,h,_1 are generated independently in i on each
level I. It is possible to adjust the truncation indices N, the sampling bias
e; and the number of samples M, throughout the levels to obtain an overall
error of

[ E(u) — EL(UNL,eL,hL)||L2(Q;H1(D))) < C2h;_n_1v

where Co > 0 is independent of N, ¢, hy and M.

Numerical Results

—> Combining the MLMC estimator with an adaptive pathwise triangula-
tion leads to faster convergence to the expected value IE(u) and produces
a lower error for any computational budget, see Fig. 3.

— The non-adaptive algorithm can be further enhanced by bootstrap-
ping (BS), meaning the simulated quantities ”I(\;,),e,,h, are "recycled" on the
next level I + 1.

Residual vs. FEM stepsize

Residual vs. simulation time
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Figure 3: Numerical results for the example of a medium with fractures. Left: Convergence of the root-mean-squared error. Right: Time-to-error plot.
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