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Motivation

The modeling of stationary/time-dependent subsurface and fractured
porous media flows by elliptic/parabolic equations, where:

0 Random advection- and diffusion coefficients account for uncertain
permeability and insufficient measurements.

0 Random discontinuities in the coefficients are incorporated to model
heterogeneous media and fractures in ground layers.

Advection-Diffusion Problem with Jump Coefficients

Let (Ω,A,P) be a complete probability space, D ⊂ Rd be a bounded
and convex spatial domain for some d ∈ N and T = [0, T ] with T > 0
be a finite time interval. We consider the random parabolic problem to
find u : Ω×D × T→ R such that

∂tu(ω, x, t) + A(ω, x)u(ω, x, t) = f (ω, x, t), in Ω×D × T,
subject suitable boundary conditions on ∂D and initial data u0. In the
above equation, A(ω, x) : H1(D) → H−1(D) is a linear, elliptic differen-
tial operator of second order and f is a given source term.
To model uncertain permeability and fractured media, the advection and
diffusion coefficients in A := ∇ · (a∇) + b∇· admit the structure

a(ω, x), b(ω, x) ' exp(W (ω, x)) + P(ω, x),

where
0 W : Ω×D → R is a continuous Gaussian random field associated

to a non-negative, symmetric trace class operator and
0 P : Ω×D → R≥0 is a discontinuous jump random field which

partitions the domain D into non-empty subsets.

Figure 1: Samples of different diffusion coefficients (top) and corresponding pathwise solutions u (bottom).

Adaptive Numerical Schemes

In general, for fixed ω ∈ Ω, the exact pathwise solution u(ω) for a given
sample A(ω, ·) will be out of reach. To obtain approximate samples of u,
we need to employ several numerical techniques:

0 The advection and diffusion coefficients have to be replaced by
analytically tractable random fields, i.e. with truncated KL expansions,
circulant embedding methods and Fourier inversion.

0 A spatial discretization of H1(D) using finite dimensional subspaces
is necessary, for instance by the Finite Element (FE) method.

0 If the problem is time-dependent, we need to employ a stable
time-stepping scheme.

Especially the spatial discretization involves difficulties since u(ω) has
low regularity due to the jumps in the random field P. To this end, we
align the FE mesh pathwise for each ω to the discontinuities in the sam-
ple P(ω, ·). This pathwise adaptive FE approach is then combined with
suitable approximations of a, b and an implicit time stepping scheme to
approximate the samples u(ω) with increased order of convergence.
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Figure 2: Sample of a diffusion/advection coefficient with adaptive FE grid (right), contour of the FE approximation to a corresponding parabolic
problem (center) and convergence rates in the L2(T; H1(D))-norm (left). The error curves are estimated based on 100 independent samples.

Multilevel Monte Carlo Moment Estimation

For practical applications, the aim is often to estimate moments of u rather
than only generating pathwise approximations. Based on each sample
of A, the adaptive FE approach yields a strictly decreasing sequence of
stochastic refinement parameters (h`(ω), ` ∈ N0) ⊂ R>0. If u`(ω) de-
notes the semi-discrete FE approximation of u(ω), it holds that

||u(ω)− u`(ω)|| ≤ C1h`(ω)α ≤ C1h
α

` , ` ∈ N0.

Above, the constants C1, α, h` are independent of ω, h`(ω) ≤ h` holds
almost surely and h` → 0 as ` → ∞. The other error contributions, i.e.
the approximation of a, b and the temporal discretization, are now equi-
librated to the spatial approximation error of order h` and we denote by
u` the full approximation of u for each ` ∈ N0. We then fix a (maximum)
level L ∈ N and estimate E(u) by the multilevel Monte Carlo estimator

EL(uL) :=
L∑

l=0

1
Ml

Ml∑
i=1

u(i)
` − u(i)

`−1,

of E(uL), where M0 > · · · > ML are the decreasing numbers of sampled
differences and u(i)

` − u(i)
` are generated independently in i on each level

`. The number of samples on each level may now be chosen such that
the mean-squared estimation error is bounded by

E
( ∫ T

0
||E(u)− EL(uL)||2dt

)1/2
≤ C2hαL ,

where C2 > 0 is independent of hL and α.

=⇒ Combining the MLMC estimator with adaptive pathwise schemes
leads to increased convergence rates and produces a lower error for any
computational budget, see Figure 3 and Figure 4.
=⇒ The algorithm can be further enhanced by bootstrapping (BS), mean-
ing the simulated quantities u(i)

` are "recycled" on the next level ` + 1.
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Figure 3: Coefficient for a fractured porous medium and adaptive FE grid(left), convergence plot in the H1(D)-norm (center), Time-to-error plot (right).
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Figure 4: Coefficient for a medium with inclusions and adaptive FE grid(left), convergence plot in the H1(D)-norm (center), Time-to-error plot (right).
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