

University of Stuttgart

Computational Methods for Uncertainty Quantification Institute for Applied Analysis und Numerical Simulation Allmandring 5b, D-70569 Stuttgart, Germany andreas.stein@ians.uni-stuttgart.de

Motivation

The modeling of stationary/time-dependent subsurface and fractured porous media flows by elliptic/parabolic equations, where:

- Random advection- and diffusion coefficients account for uncertain permeability and insufficient measurements.
- Random discontinuities in the coefficients are incorporated to model heterogeneous media and fractures in ground layers.

Advection-Diffusion Problem with Jump Coefficients

Partial Differential Equations with Random Discontinuous Coefficients

Andreas Stein

Multilevel Monte Carlo Moment Estimation

For practical applications, the aim is often to estimate moments of u rather than only generating pathwise approximations. Based on each sample of A, the adaptive FE approach yields a strictly decreasing sequence of stochastic refinement parameters $(h_{\ell}(\omega), \ell \in \mathbb{N}_0) \subset \mathbb{R}_{>0}$. If $u_{\ell}(\omega)$ denotes the semi-discrete FE approximation of $u(\omega)$, it holds that

 $||u(\omega) - u_{\ell}(\omega)|| \leq C_1 h_{\ell}(\omega)^{\alpha} \leq C_1 \overline{h}_{\ell}^{\alpha}, \quad \ell \in \mathbb{N}_0.$ Above, the constants $C_1, \alpha, \overline{h}_{\ell}$ are independent of $\omega, h_{\ell}(\omega) \leq \overline{h}_{\ell}$ holds

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a complete probability space, $\mathcal{D} \subset \mathbb{R}^d$ be a bounded and convex spatial domain for some $d \in \mathbb{N}$ and $\mathbb{T} = [0, T]$ with T > 0be a finite time interval. We consider the random parabolic problem to find $u : \Omega \times \mathcal{D} \times \mathbb{T} \to \mathbb{R}$ such that

 $\partial_t u(\omega, \mathbf{x}, t) + \mathbf{A}(\omega, \mathbf{x}) u(\omega, \mathbf{x}, t) = f(\omega, \mathbf{x}, t), \text{ in } \Omega \times \mathcal{D} \times \mathbb{T},$

subject suitable boundary conditions on $\partial \mathcal{D}$ and initial data u_0 . In the above equation, $A(\omega, x) : H^1(\mathcal{D}) \to H^{-1}(\mathcal{D})$ is a linear, elliptic differential operator of second order and f is a given source term.

To model uncertain permeability and fractured media, the advection and diffusion coefficients in $A := \nabla \cdot (a\nabla) + b\nabla \cdot$ admit the structure

 $a(\omega, \mathbf{x}), b(\omega, \mathbf{x}) \simeq \exp(W(\omega, \mathbf{x})) + P(\omega, \mathbf{x}),$

where

- $W : \Omega \times \mathcal{D} \to \mathbb{R}$ is a continuous Gaussian random field associated to a non-negative, symmetric trace class operator and
- $P: \Omega \times \mathcal{D} \to \mathbb{R}_{\geq 0}$ is a discontinuous jump random field which partitions the domain \mathcal{D} into non-empty subsets.

almost surely and $\overline{h}_{\ell} \to 0$ as $\ell \to \infty$. The other error contributions, i.e. the approximation of a, b and the temporal discretization, are now equilibrated to the spatial approximation error of order \overline{h}_{ℓ} and we denote by \overline{u}_{ℓ} the full approximation of u for each $\ell \in \mathbb{N}_0$. We then fix a (maximum) level $L \in \mathbb{N}$ and estimate $\mathbb{E}(u)$ by the *multilevel Monte Carlo estimator*

$$\boldsymbol{E}^{L}(\boldsymbol{u}_{L}) := \sum_{l=0}^{L} \frac{1}{M_{l}} \sum_{i=1}^{M_{l}} \overline{\boldsymbol{u}}_{\ell}^{(i)} - \overline{\boldsymbol{u}}_{\ell-1}^{(i)}$$

of $\mathbb{E}(\overline{u}_L)$, where $M_0 > \cdots > M_L$ are the decreasing numbers of sampled differences and $\overline{u}_{\ell}^{(i)} - \overline{u}_{\ell}^{(i)}$ are generated independently in *i* on each level ℓ . The number of samples on each level may now be chosen such that the mean-squared estimation error is bounded by

$$\mathbb{E}\Big(\int_0^T ||\mathbb{E}(\boldsymbol{u}) - \boldsymbol{E}^L(\overline{\boldsymbol{u}}_L)||^2 dt\Big)^{1/2} \leq C_2 h_L^{\alpha},$$

where $C_2 > 0$ is independent of h_L and α .

 \implies Combining the MLMC estimator with adaptive pathwise schemes leads to increased convergence rates and produces a lower error for any computational budget, see Figure 3 and Figure 4.

 \implies The algorithm can be further enhanced by *bootstrapping* (BS), meaning the simulated quantities $u_{\ell}^{(i)}$ are "recycled" on the next level $\ell + 1$.

Figure 1: Samples of different diffusion coefficients (top) and corresponding pathwise solutions *u* (bottom)

Adaptive Numerical Schemes

In general, for fixed $\omega \in \Omega$, the exact pathwise solution $u(\omega)$ for a given sample $A(\omega, \cdot)$ will be out of reach. To obtain approximate samples of u, we need to employ several numerical techniques:

- The advection and diffusion coefficients have to be replaced by analytically tractable random fields, i.e. with truncated KL expansions, circulant embedding methods and Fourier inversion.
- A spatial discretization of $H^1(\mathcal{D})$ using finite dimensional subspaces is necessary, for instance by the Finite Element (FE) method.
- If the problem is time-dependent, we need to employ a stable time-stepping scheme.

Especially the spatial discretization involves difficulties since $u(\omega)$ has low regularity due to the jumps in the random field P. To this end, we align the FE mesh pathwise for each ω to the discontinuities in the sample $P(\omega, \cdot)$. This pathwise adaptive FE approach is then combined with suitable approximations of a, b and an implicit time stepping scheme to approximate the samples $u(\omega)$ with increased order of convergence.

Figure 3: Coefficient for a fractured porous medium and adaptive FE grid(left), convergence plot in the $H^1(\mathcal{D})$ -norm (center), Time-to-error plot (right).

Figure 4: Coefficient for a medium with inclusions and adaptive FE grid(left), convergence plot in the $H^1(\mathcal{D})$ -norm (center), Time-to-error plot (right).

References

[1] A. Barth and A. Stein.

An adaptive multilevel Monte Carlo algorithm for advection-diffusion PDEs with random discontinuous coefficients.

Preprint, submitted to Proceedings of the 13th International Conference in Monte Carlo & Quasi-Monte Carlo Methods in Scientific Computing, 2018.

Figure 2: Sample of a diffusion/advection coefficient with adaptive FE grid (right), contour of the FE approximation to a corresponding parabolic problem (center) and convergence rates in the $L^2(\mathbb{T}; H^1(\mathcal{D}))$ -norm (left). The error curves are estimated based on 100 independent samples.

[2] A. Barth and A. Stein.

Approximation and simulation of infinite-dimensional Lévy processes. *Stochastics and Partial Differential Equations: Analysis and Computations*, 6(2):286–334, June 2018.

[3] A. Barth and A. Stein.

Numerical analysis of time-dependent advection-diffusion problems with random discontinuous coefficients.

Preprint, submitted to SIAM Journal on Numerical Analysis, 2018.

[4] A. Barth and A. Stein.

A study of elliptic partial differential equations with jump diffusion coefficients. *to appear in ASA/SIAM Journal on Uncertainty Quantification*, 2018.

