

University of Stuttgart

SimTech Cluster of Excellence

Infinite-Dimensional Lévy Processes

Approximation and Simulation

Andreas Stein

Computational Methods for Uncertainty Quantification Institut für Angewandte Analysis und Numerische Simulation Pfaffenwaldring 57, D-70569 Stuttgart, Germany andreas.stein@ians.uni-stuttgart.de

Motivation: Random partial differential equations

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a Hilbert space $(H, (\cdot, \cdot)_H)$, we consider the random partial differential equation

 $\frac{\partial}{\partial t}u(t.x) = A(t,x)u(t.x) + F(u(t,x)), \qquad (t,x) \in \mathbb{T} \times \mathcal{D}$

on a time interval $\mathbb{T} = [0, T]$ and spatial domain $\mathcal{D} \subset \mathbb{R}^n$ equipped with some initial and boundary conditions and

• a stochastic operator A acting on H, for example $A = \nabla \cdot (L(t, x)\nabla)$, where $L = (L(t, \cdot), t \in \mathbb{T})$ is a *H*-valued stochastic process

Simulation of Lévy fields and mean-square error estimation

Including the aforementioned discretization, we are able to approximate a given *H*-valued Lévy process *L* by

$$\widetilde{L}_{N}(t) = \sum_{i \in \mathbb{N}} \sqrt{\rho_{i}} e_{i} \widetilde{\ell}_{i}(t),$$

where the processes $\tilde{\ell}_1, \ldots, \tilde{\ell}_N$ are obtained by Fourier inversion. The mean-square approximation error in *H* is then bounded by

• a (possibly nonlinear) operator $F : H \rightarrow H$.

This equation could be, for instance, a stochastic version of the porous media equation. For various applications it might be more realistic to model L discontinuously, i.e. as an infinite-dimensional Lévy process, then also called *Lévy field*.

Approximation and simulation of Lévy fields

Truncated Karhunen-Loève expansions and GH fields

Let $L = (L(t), t \in \mathbb{T})$ be a square-integrable, *H*-valued Lévy process on \mathbb{T} . Then there exists a non-negative, symmetric trace class covariance operator Q on H with a sequence of orthonormal eigenpairs $((\rho_i, e_i), i \in \mathbb{N})$ and *L* admits the spectral decomposition

$$L(t) = \sum_{i\in\mathbb{N}} (L(t), e_i)_H e_i.$$

The Lévy field L may then be approximated by the truncated sum

$$L_N(t) = \sum_{i \in \mathbb{N}} \sqrt{\rho_i} e_i \ell_i(t),$$

where $(\ell_i, i \in \mathbb{N})$ is a sequence of one-dimensional Lévy processes on \mathbb{T} . An important subclass of Lévy fields with various applications in finance and physics are generalized hyperbolic (GH) fields, which are based on

$$\sup_{t\in\mathbb{T}}||L(t)-\widetilde{L}_{N}(t)||_{L^{2}(\Omega;H)} < \left(C_{\ell,2}\Delta t\sum_{i=1}^{N}\rho_{i}\right)^{1/2} + \left(T\sum_{i=N+1}^{\infty}\rho_{i}\right)^{1/2}$$
(2)
and we achieve $\widetilde{L}_{N} \xrightarrow{L^{2}(\Omega;H)} L$ on \mathbb{T} as $N \to \infty$ and $\Delta t \to 0$.

Numerical examples

As a test for the novel approximation method, we simulate hyperbolic Lévy fields, which is next to the normal inverse Gaussian (NIG) field the most popular example of a GH Lévy field. In the simulations below, $\mathbb{T} := [0, 1], \Delta t := 2^{-6}$ and the spatial domain is $\mathcal{D} := [0, 1]$. We use two different covariance operators to show the effects of a varying roughness of Q on the generated fields. To equilibrate both contributions in (2), N is coupled to Δt and the decay of the eigenvalues ρ_i of Q. As Table 1 indicates, the truncation index decreases as the correlation throughout the field increases.

the generalized hyperbolic distribution. In this case, the marginal processes ℓ_i in L resp. L_N are given by one-dimensional GH processes. We use the representation of GH processes as subordinated Brownian Motions to obtain

$$L_{N}(t) = \sum_{i=1}^{N} \sqrt{\rho_{i}} \boldsymbol{e}_{i} \left(\mu t + \Gamma \beta \boldsymbol{Y}(t) + \sqrt{\Gamma} W_{N}(\boldsymbol{Y}(t)) \right)_{i}, \qquad (1)$$

where $\mu, \beta \in \mathbb{R}^N$, $\Gamma \in \mathbb{R}^{N \times N}$ are parameters of the GH field L, W_N is a N-dimensional Brownian motion and $Y = (Y(t), t \in \mathbb{T})$ a generalized *inverse Gaussian process* independent of W_N . Formula (1) yields an efficient sampling algorithm for L_N whose performance is independent of the truncation index N. Further, we have constructed L_N in such a way, that the approximation itself is a Lévy field with known marginal distributions. In other words, we know the law of the process $(L_N(t, x), t \in \mathbb{T})$ for an arbitrary fixed $x \in \mathcal{D}$.

Often, as in the GH case, the processes ℓ_i have *infinite activity*, i.e. infinitely many jumps in every compact time interval for \mathbb{P} -almost all trajectories, and, therefore, need to be approximated.

Fourier inversion method for one-dimensional processes

For a broad class of one-dimensional Lévy processes ℓ_i , the characteristic function $\phi_{\ell_i} : \mathbb{R} \to \mathbb{C}$ is explicitly available. We exploit the knowledge of ϕ_{ℓ_i} and a Fourier inversion property of characteristic functions to draw

Figure 1 Sample and empirical distribution of a hyperbolic field with exponential covariance operator.

Figure 2 Sample and empirical distribution of a hyperbolic field with Matérn-1.5 covariance operator.

	Truncation index N	<i>L</i> ² (Ω; <i>H</i>)-error in % of the overall variance	Simulation time
Exponential covariance	132	6.30%	0.0759 sec.
Matérn-1.5 covariance	18	6.07%	0.0752 sec.

Table 1 Approximation errors and simulation times for hyperbolic Lévy fields.

References

samples of the increment $\ell_i(t + \Delta t) - \ell_i(t)$, where $\Delta t > 0$ is a small step in time. This procedure results in a piecewise constant approximation ℓ_i of ℓ_i on T and involves numerical integration and therefore a certain error. With some relatively weak assumptions on ϕ_{ℓ_i} , we have shown that ℓ_i converges to ℓ_i in distribution. Further, if ℓ_i has a finite p - th moment for $p \ge 1$, then we have the error bound

$\sup_{t\in\mathbb{T}}\mathbb{E}[|\ell(t)-\widetilde{\ell}(t)|^{p}] < C_{\ell,p}\Delta t$

with some constant $C_{\ell,p} > 0$, hence $\tilde{\ell}_i$ converges in $L^p(\Omega; \mathbb{R})$ towards ℓ_i uniformly on \mathbb{T} . Since $C_{\ell,p}$ can be determined or at least bounded from above, this new result allows us to quantify the approximation error of infinite-dimensional Lévy processes.

lans · :

[1] A. Barth and A. Stein.

Approximation and simulation of infinite-dimensional Lévy processes. Preprint, 2016.

[2] P. Hughett.

Error bounds for numerical inversion of a probability characteristic function.

SIAM Journal on Numerical Analysis, 35(4):1368–1392, 1998.

[3] S. Peszat and J. Zabczyk.

Stochastic Partial Differential Equations with Lévy Noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007.

