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Motivation: Random partial differential equations

Given a probability space (Ω,F ,P) and a Hilbert space (H, (·, ·)H), we
consider the random partial differential equation

∂

∂t
u(t .x) = A(t , x)u(t .x) + F (u(t , x)), (t , x) ∈ T×D

on a time interval T = [0,T ] and spatial domain D ⊂ Rn equipped with
some initial and boundary conditions and

0 a stochastic operator A acting on H, for example A = ∇ · (L(t , x)∇),
where L = (L(t , ·), t ∈ T) is a H-valued stochastic process

0 a (possibly nonlinear) operator F : H → H.
This equation could be, for instance, a stochastic version of the porous
media equation. For various applications it might be more realistic to
model L discontinuously, i.e. as an infinite-dimensional Lévy process,
then also called Lévy field.

Approximation and simulation of Lévy fields

Truncated Karhunen-Loève expansions and GH fields

Let L = (L(t), t ∈ T) be a square-integrable, H-valued Lévy process on T.
Then there exists a non-negative, symmetric trace class covariance op-
erator Q on H with a sequence of orthonormal eigenpairs ((ρi,ei), i ∈ N)
and L admits the spectral decomposition

L(t) =
∑
i∈N

(L(t),ei)Hei.

The Lévy field L may then be approximated by the truncated sum

LN(t) =
∑
i∈N

√
ρiei`i(t),

where (`i, i ∈ N) is a sequence of one-dimensional Lévy processes on T.
An important subclass of Lévy fields with various applications in finance
and physics are generalized hyperbolic (GH) fields, which are based on
the generalized hyperbolic distribution. In this case, the marginal pro-
cesses `i in L resp. LN are given by one-dimensional GH processes. We
use the representation of GH processes as subordinated Brownian Mo-
tions to obtain

LN(t) =
N∑

i=1

√
ρiei

(
µt + ΓβY (t) +

√
ΓWN(Y (t))

)
i
, (1)

where µ, β ∈ RN, Γ ∈ RN×N are parameters of the GH field L, WN is
a N-dimensional Brownian motion and Y = (Y (t), t ∈ T) a generalized
inverse Gaussian process independent of WN. Formula (1) yields an effi-
cient sampling algorithm for LN whose performance is independent of the
truncation index N. Further, we have constructed LN in such a way, that
the approximation itself is a Lévy field with known marginal distributions.
In other words, we know the law of the process (LN(t , x), t ∈ T) for an
arbitrary fixed x ∈ D.
Often, as in the GH case, the processes `i have infinite activity, i.e. in-
finitely many jumps in every compact time interval for P-almost all trajec-
tories, and, therefore, need to be approximated.

Fourier inversion method for one-dimensional processes

For a broad class of one-dimensional Lévy processes `i, the characteristic
function φ`i : R → C is explicitly available. We exploit the knowledge of
φ`i and a Fourier inversion property of characteristic functions to draw
samples of the increment `i(t + ∆t) − `i(t), where ∆t > 0 is a small step
in time. This procedure results in a piecewise constant approximation˜̀i of `i on T and involves numerical integration and therefore a certain
error. With some relatively weak assumptions on φ`i, we have shown that˜̀i converges to `i in distribution. Further, if `i has a finite p − th moment
for p ≥ 1, then we have the error bound

sup
t∈T

E[|`(t)− ˜̀(t)|p] < C`,p∆t

with some constant C`,p > 0, hence ˜̀i converges in Lp(Ω;R) towards `i

uniformly on T. Since C`,p can be determined or at least bounded from
above, this new result allows us to quantify the approximation error of
infinite-dimensional Lévy processes.

Simulation of Lévy fields and mean-square error estimation

Including the aforementioned discretization, we are able to approximate
a given H-valued Lévy process L by

L̃N(t) =
∑
i∈N

√
ρiei ˜̀i(t),

where the processes ˜̀1, . . . , ˜̀N are obtained by Fourier inversion. The
mean-square approximation error in H is then bounded by

sup
t∈T
||L(t)− L̃N(t)||L2(Ω;H) <

C`,2∆t
N∑

i=1

ρi

1/2

+

T
∞∑

i=N+1

ρi

1/2

(2)

and we achieve L̃N
L2(Ω;H)−→ L on T as N →∞ and ∆t → 0.

Numerical examples

As a test for the novel approximation method, we simulate hyperbolic
Lévy fields, which is next to the normal inverse Gaussian (NIG) field
the most popular example of a GH Lévy field. In the simulations below,
T := [0,1], ∆t := 2−6 and the spatial domain is D := [0,1]. We use two
different covariance operators to show the effects of a varying roughness
of Q on the generated fields. To equilibrate both contributions in (2), N is
coupled to ∆t and the decay of the eigenvalues ρi of Q. As Table 1 in-
dicates, the truncation index decreases as the correlation throughout the
field increases.
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Figure 1 Sample and empirical distribution of a hyperbolic field with exponential covariance operator.
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Figure 2 Sample and empirical distribution of a hyperbolic field with Matérn-1.5 covariance operator.

Truncation index N
L2(Ω; H)-error in %

of the overall variance
Simulation time

Exponential
covariance

132 6.30% 0.0759 sec.

Matérn-1.5
covariance

18 6.07% 0.0752 sec.

Table 1 Approximation errors and simulation times for hyperbolic Lévy fields.
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