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Motivating Example: Energy forward markets

An approach to model energy forward dynamics is to consider first order
hyperbolic stochastic partial differential equations. An infinite-dimensional
noise term then represents the large number of idiosyncratic risk sources
in the considered markets.
Given a probability space (Ω,F ,P) and a separable Hilbert space
(H, (·, ·)H), we consider the stochastic partial differential equation

dX (t) = (AX (t) + a(t))dt + b(t)dL(t), t ∈ T (1)

on a time interval T = [0,T ], equipped with some boundary conditions
where

0 A : H → H is a first order differential operator
0 a : T→ H is a mapping with Bochner-integrable trajectories
0 L : T→ H is a square-integrable, H-valued stochastic process with

covariance operator Q ∈ L1
+(H).

0 b : T→ L(Q1/2(H),H) is an operator-valued process.
The price of a forward contract at t ∈ T with time left to maturity x ∈ T
may then be expressed by the mapping g(X (t , x)) = eX (t ,x). For various
applications it might be appropriate to model L discontinuously, i.e. as
an infinite-dimensional Lévy process, also called Lévy field. For any x ∈
T the marginal process L(·, x) is then a one-dimensional Lévy process,
meaning that L should be approximated in a way that this property is
preserved.

Approximation of Lévy fields via Fourier inversion

Let L = (L(t), t ∈ T) be a square-integrable, H-valued Lévy process on T.
Then there exists a non-negative, symmetric trace class covariance op-
erator Q on H with a sequence of orthonormal eigenpairs ((ρi,ei), i ∈ N).
Further, L admits the spectral decomposition

L(t) =
∑
i∈N

(L(t),ei)Hei.

The Lévy field L may then be approximated by the truncated sum

LN(t) =
N∑

i=1

√
ρiei`i(t), (2)

where (`i, i ∈ N) is a sequence of one-dimensional, not necessarily in-
dependent but merely uncorrelated, Lévy processes on T. An important
subclass of Lévy fields with various applications in finance and physics
are generalized hyperbolic (GH) fields, which are based on the general-
ized hyperbolic distribution. In this case, the marginal processes `i in L
resp. LN are given by one-dimensional GH processes. For this subclass,
we have constructed LN in such a way, that the approximation itself is a
Lévy field with known marginal distributions. In other words, we know the
law of the process (LN(t , x), t ∈ T) for an arbitrary fixed x ∈ T.
For a broad class of one-dimensional Lévy processes `i, the characteristic
function φ`i : R → C is explicitly available. We exploit the knowledge of
φ`i and the Fourier inversion property of characteristic functions to draw
samples of the increment `i(t + ∆t)− `i(t) for a small step in time ∆t > 0.
This procedure results in a piecewise constant approximation ˜̀i of `i on
T and involves numerical integration and therefore a certain error. If `i

has a p-th moment and under some relatively weak assumptions on φ`i,
we have shown that ˜̀i converges in Lp(Ω;R) towards `i uniformly on T as
∆t → 0 and derived an error estimte in the corresponding norm.
This new result allows us to quantify the approximation error of infinite-
dimensional Lévy processes: For a given H-valued Lévy process L, define

L̃N(t) :=
N∑

i=1

√
ρiei ˜̀i(t),

where the processes ˜̀1, . . . , ˜̀N are obtained by Fourier inversion. The
mean-square approximation error in H is then bounded by

sup
t∈T
||L(t)− L̃N(t)||L2(Ω;H) ≤

C`∆t
N∑

i=1

ρi

1/2

+

T
∑
i>N

ρi

1/2

, (3)

where C` > 0 is constant independent of ∆t . Hence, we achieve the

convergence L̃N
L2(Ω;H)−→ L on T as N →∞ and ∆t → 0.

Error estimation in the SPDE discretization scheme

Including the aforementioned approximation L̃N in the fully discrete
scheme to (1) is straightforward in a simulation. The overall order of con-
vergence then depends on the Galerkin resp. Petrov-Galerkin approxima-
tion on the semidiscrete problem as well as on the time marching scheme
in the fully discrete case. One may for example choose the streamline
diffusion method combined with a backward Euler-Maruyama scheme to
obtain a fully discrete approximation X̃h,∆t ,N of the solution X to (1). Here, h
and ∆t are the refinement sizes in space resp. time and N again indicates
the cutoff-index in the KL-expansion (2). Assuming a certain regularity on
the PDE parameters, the boundary data and the initial condition X0, it is
possible to show that

sup
t∈Θn

||X̃h,∆t ,N − X ||L2(Ω,H) = Ca,b,X0,L,T

h3/2 +
√

∆t(1 +
N∑

i=1

ρi) +

√∑
i>N

ρi

 .

where Θn is the discrete grid of points in T with maximum distance ∆t and
Ca,b,X0,L,T > 0 is an independent constant.

Numerical examples

As a test for the novel approximation method, we simulate normal inverse
Gaussian (NIG) and hyperbolic Lévy fields L and embed them in the dis-
cretization scheme for the SPDE (1). The PDE coefficients are chosen
to be a(t , x) = e−2αxσ2 and b(t , x) = e−αxσ with initial condition X0(x) =

e−αx +
∫ x

0 c(e−αs) and inflow boundary X (t ,T ) = e−αT +
∫ T

0 c(e−αs), where
c is the cumulant function of the one-dimensional NIG resp. hyperbolic
Lévy process. Both the NIG and the hyperbolic field are correlated by an
exponential covariance operator with kernel function (x , y) 7→ e−

|x−y |
r on

T × T. In the simulations below, T := [0,1], ∆t = ∆h = 2−10 and the
truncation index N has been chosen to equilibrate the error terms

∑
i>N ρi

and ∆t(1 +
∑N

i=1 ρi).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.5

1

1.5

2

2.5

3

e
x
p

(X
(t

,0
))

Figure 1 Forward surface and spot curve for a NIG Lévy field with α = 2 and σ = 0.5.
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Figure 2 Forward surface and spot curve for an hyperbolic Lévy field with α = 2 and σ = 0.5.
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