
Cluster of Excellence in Data-integrated Simulation Science

Project Coordinator: Prof. Dr. Andrea Barth
Institute for Applied Analysis and Numerical Simulation

Hyperbolic Conservation Laws
with Random Discontinuous Fluxes

Analysis and Simulation

Lukas
Brencher

PN5

Motivation: Sub-surface flow & Vehicular traffic

(Scalar)
Conservation laws

Insufficient measurements
Uncertain permeabilities

}
uncertainties

{
Weather data
Road conditions

Fractured medium
Heterogeneous medium

}
discontinuities

{
Varying speed limits
Accidents

ut + divx f(ω, t ,x ,u) = 0 ∀(ω, t ,x) ∈ Ω× Rd × (0,T )

u(ω,0,x) = u0(ω) ∀(ω,x) ∈ Ω× Rd (1)

Well-posedness

0 Weak solutions not unique –> additional entropy condition necessary for
uniqueness

0 Discontinuous flux setting: infinitely many different entropy conditions
Under suitable assumptions:
3 Existence of pathwise entropy solution
3 Uniqueness of pathwise entropy solution
7 Measurability of entropy solution fails with classical proofs

Theorem (Measurability of stochastic entropy solutions)
Let u0 ∈ Lq(Ω;Lp(Rd)), with 1 ≤ q,p ≤ ∞, be a stochastic initial condition to (1).
Furthermore, for fixed ω ∈ Ω, assume that the solution u(ω, ·, ·) takes values in a separable
subspace S ⊂ L∞. Then, the pathwise entropy solution to Problem (1) is strongly measurable
in the sense that the mapping u : Ω→ S is strongly measurable.

Multiplicative flux & Stochastic jump coefficient

Multiplicative flux function

f(ω, t ,x ,u) = a(ω,x)f (u)

Stochastic jump coefficient

a(ω, x) := a(x) + φ(WD(ω, x)) + P(ω, x)

0 a ∈ C(R;R≥0) is a deterministic, uniformly bounded mean function.
0 φ ∈ C1(R;R>0). In our case: φ(w) = exp(w).
0 For a (zero-mean) Gaussian random field W ∈ L2(Ω; L2(R))

associated to a non-negative, symmetric trace class (covariance)
operator Q : L2(R)→ L2(R), the random field WD ∈ L2(Ω; L2(R)) is
defined as

WD(ω, x) =

W (ω, x), x ∈ D
min(W (ω, x), sup

x∈D
W (ω, x)), x ∈ R \ D

0 T : Ω→ B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e., the Ti

are disjoint open subsets of D with D =
⋃τ

i=1 Ti. The number of
elements in T is a random variable τ : Ω→ N on (Ω,A,P).
For Dl and Dr being the left and right boundary of D, respectively, we
define T0 := (−∞,Dl) and Tτ+1 := (Dr ,+∞).

0 (Pi, i ∈ N0) is a sequence of random variables on (Ω,A,P) with arbitrary
non-negative distribution(s), which is independent of τ (but not
necessarily i.i.d.). Further we have

P : Ω×D → R≥0, (ω, x) 7→
τ+1∑
i=0

1Ti(x)Pi(ω) .

Tools & Methods

0 Karhunen-Loève expansion
0 Fourier inversion
0 Finite Volume method

0 Multilevel Monte Carlo method
0 Forward Euler method
0 Python / Matlab

Numerical approximation & Jump-adapted meshing

0 Truncated Karhunen-Loève expansion for the Gaussian random field
0 Depending on the specific construction of the jump field P: either exact

evaluation possible or approximation via Fourier inversion.
0 Finite Volume discretization
0 Forward Euler scheme satifying the CFL stability condition
0 Godunov flux: FG(u, v) = max{f (max(u,0)), f (min(v ,0))}

Jump-adapted wave-cell meshing

Cell interface at jump discontinuity (and domain boundary)
Cell interfaces of additional wave-cells
Cell interface resulting from (piecewise equidistant) refinement

Pathwise solutions & convergence

Stochastic Burger’s equation

ut + div

(
a(ω, x)

u2

2

)
= 0 ∀(ω, t ,x) ∈ Ω× (0,1)× (0,1) (2)

Solution corresponding to a coefficient with smooth Gaussian
random field and uniformly distributed jumps.

Strong L1 error for different meshing strategies in the Finite
Volume approximation.

Solution corresponding to a constant coefficient having random
inclusions.

Strong L1 error for different meshing strategies in the Finite
Volume approximation
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