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Motivation: Sub-surface flow & Vehicular traffic

(Scalar)
Conservation laws

Insufficient measurements L. Weather data
. - ) uncertainties .
Uncertain permeabilities ) Road conditions
Fractured medium : N Varying speed limits
. > discontinuities .
Heterogeneous medium / Accidents

V(w,t,x) € QO xR x (0, T)
V(w, x) € Q x R?

U + divy f(w, t,x,u) =0
u(w, 0, X) = ug(w)

Well-posedness

® \Weak solutions not unique —> additional entropy condition necessary for
uniqueness

® Discontinuous flux setting: infinitely many different entropy conditions

Under suitable assumptions:
v Existence of pathwise entropy solution
v Uniqueness of pathwise entropy solution
X Measurability of entropy solution fails with classical proofs

Theorem (Measurability of stochastic entropy solutions)

Let uy € £I(Q; LP(RY)), with 1 < g, p < oo, be a stochastic initial condition to (1).
Furthermore, for fixed w € 2, assume that the solution u(w, -, -) takes values in a separable
subspace S C L. Then, the pathwise entropy solution to Problem (1) is strongly measurable
In the sense that the mapping u : Q2 — S Is strongly measurable.

Multiplicative flux & Stochastic jump coefficient

Multiplicative flux function

f(w, t, x,u) =a(w, X)f(u) }

( Stochastic jump coefficient \

a(w, x) :=a(x) + ¢o(Wp(w, x)) + P(w, Xx)

® 3 c C(R;R-g) is a deterministic, uniformly bounded mean function.
® ¢ c C'(R;R-q). In our case: ¢(w) = exp(w).

e For a (zero-mean) Gaussian random field W ¢ [2(Q; L?(R))
associated to a non-negative, symmetric trace class (covariance)
operator Q : L(R) — L2(R), the random field Wp € L2(Q; L(R)) is
defined as

W(w, x),

min( W(w, Xx), sup W(w, X)),

xeD

xeD

Wp(w, x) = x €R\D

7 :Q— B(D), w—A{Th,...,T.}isarandom partition of D, i.e., the 7;
are disjoint open subsets of D with D = | JI_, 7;. The number of
elements in 7 is a random variable 7 : Q@ — N on (Q, A, P).
For D, and D, being the left and right boundary of D, respectively, we
define Ty := (—o0, D) and T, 1 := (Dy, +00).

® (P;, i € Np) is a sequence of random variables on (2, A, P) with arbitrary
non-negative distribution(s), which is independent of 7 (but not
necessarily i.i.d.). Further we have

P:QxD—Rsuo, (w,X) = Y 17(x)Piw) .
i=0

Tools & Methods

® Multilevel Monte Carlo method
® Forward Euler method
® Python / Matlab

e Karhunen-Loeve expansion
® Fourier inversion
® Finite Volume method
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Numerical approximation & Jump-adapted meshing

e Truncated Karhunen-Loéeve expansion for the Gaussian random field

® Depending on the specific construction of the jump field P: either exact
evaluation possible or approximation via Fourier inversion.

® Finite Volume discretization
® Forward Euler scheme satifying the CFL stability condition
® Godunov flux: Fg(u, v) = max{f(max(u,0)), f(min(v,0))}

Jump-adapted wave-cell meshing
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Cell interface at jump discontinuity (and domain boundary)
Cell interfaces of additional wave-cells
Cell interface resulting from (piecewise equidistant) refinement

Pathwise solutions & convergence

Stochastic Burger’s equation
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Solution corresponding to a coefficient with smooth Gaussian
random field and uniformly distributed jumps.

Strong L' error for different meshing strategies in the Finite
Volume approximation.
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Strong L' error for different meshing strategies in the Finite
Volume approximation

Solution corresponding to a constant coefficient having random
inclusions.
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