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Motivation - subsurface flows

Description of time-dependent
subsurface flows might suffer
from:

. Insufficient measurement

. Uncertain permeability

⇒ Random coefficient
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Medium might contain:
. Fractures
. Heterogenities

⇒ Random discontinuities
are incorporated



Problem description

Let (Ω,A,P) be a complete probability space.
Consider the scalar hyperbolic conservation law with unknown u := u(ω, x, t):

ut + (a(ω, x)f(u))x = 0 ∀(x, t) ∈ DT := R× (0, T )

u(x, 0) = u0(x) ∀x ∈ R

with
. a : Ω×D 7→ R being a (possibly time-dependent) stochastic jump coefficient,
. u0 : D 7→ R being a (possibly stochastic) initial condition.



Jump coefficient Barth and Stein (2018)

We consider a stochastic jump coefficient of the following structure:

a(ω, x) := a(x) + φ(W (ω, x)) + P (ω, x) ,

where
. a ∈ C(D;R≥0) is a deterministic mean function.
. φ ∈ C1(R;R>0). In our case: φ(w) = exp(w).
. H := L2(D) and W ∈ L2(Ω;H) is a (zero-mean) Gaussian random field

associated to a non-negative, symmetric trace class (covariance) operator
Q : H → H.
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Jump coefficient Barth and Stein (2018)

We consider a stochastic jump coefficient of the following structure:

a(ω, x) := a(x) + φ(W (ω, x)) + P (ω, x) ,
where

. T : Ω→ B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e., the Ti are
disjoint open subsets of D with D =

⋃τ
i=1 Ti. The number of elements in T is

a random variable τ : Ω→ N on (Ω,A,P).
. (Pi, i ∈ N) is a sequence of random variables on (Ω,A,P) with arbitrary

non-negative distribution(s), which is independent of τ (but not necessarily
i.i.d.). Further we have

P : Ω×D → R≥0, (ω, x) 7→
τ∑
i=1

1Ti(x)Pi(ω)
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Samples of different jump coefficients

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Squared exponential Gaussian field
with random jumps.
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Exponential Gaussian field
with random jumps.



Approximation of the jump coefficient

In most cases, the coefficient a(ω, x) needs to be approximated:
. The Gaussian field W admits the Karhunen-Loève (KL) expansion

W (ω, x) =

∞∑
i=1

√
ηiei(x)Zi(ω) , Zi ∼ N (0, 1)

where ((ηi, ei), i ∈ N) are the (ordered) eigenpairs of the covariance operator
Q with ηi ≥ 0 and ei ∈ H.

. Approximation: truncate the series after the first N ∈ N terms.

. Note: The number of terms N needed for approximation depends on the
decay of the eigenvalues. Therefore, it can vary significantly for different
covariance operators.



Numerical example in 1D - Burgers’ equation

Stochastic Burgers’ equation

ut +

(
a(ω, x)

u2

2

)
x

= 0 ∀(x, t) ∈ DT := (0, 1)2

u(x, 0) = u0(x) = 0.3 sin(πx) ∀x ∈ (0, 1)

Stochastic jump coefficient a(ω, x)
. Partition T is generated by τ ∼ Poi(5) jumps with positions xi ∼ U((0, 1))

. Jump heights Pi ∼ U
(
[34 + 1

2(−1)i, 54 + 1
2(−1)i]

)
=

{
U([14 ,

3
4 ]), i odd

U([54 ,
7
4 ]), i even

. Squared exponential Gaussian field W sampled via truncated KL expansion



Numerical discretization Barth and Stein (2019b)

Spatial discretization:
. Finite Volume discretization with maximum spatial mesh size ∆x > 0.
. spatial mesh is adapted to the jump positions, i.e., at each jump position is a

cell interface
. equidistant discretization between two jumps→ piecewise equidistant mesh
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Temporal discretization:
. Equidistant time discretization {ti}Mi=0 ⊂ T with time step size ∆t > 0
. Backward Euler scheme
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Numerical flux Adimurthi, Jaffré and Gowda (2004), LeVeque (1992), Towers (2000)
Andreianov and Cancès (2012), Bürger, García, Karlsen and Towers (2008)

Grid points not corresponding to jump positions
. Numerical flux: a(ω, x)g(u, v), where g(u, v) is the Godunov flux:

g(u, v) =


min
w∈[v,u]

f(w), v ≤ u

max
w∈[u,v]

f(w), v ≥ u

 = max{f(max(u, 0)), f(min(v, 0))}

. simplification possible due to f(u) = u2

2

Grid points at jump positions
. Numerical flux: Godunov interface flux:

g(u, v, a−(x), a+(x)) = max{a−(x)f(max(u, 0)), a+(x)f(min(v, 0))}

. Here, a−(x) and a+(x) denote the left and right limit of a(x), respectively.



Numerical results

All errors are aligned in the L1 norm: ε ' ∆x ' ∆t.

Solution of the Burgers’ equation with underlying
random jump coefficient.

Convergence of the finite volume discretization.



Conclusion & Consequences

Conclusion
. We introduced a random jump

coefficient to a scalar
conservation law.

. For pathwise convergence an
adaptive discretization was
introduced.

⇒ Each sample has its own
discretization

Consequences
. Problem: Estimation of solution

via (multilevel) Monte Carlo needs
(nested) equivalent grids.

. Solution: Introduce finer reference
grid, on which every sample is
projected. This enables estimation
via standard Monte Carlo for
samples.
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