Hyperbolic conservation laws with stochastic jump coefficient
Joint work with Andrea Barth
NumHyp 2019
June 17, 2019
Motivation - subsurface flows

Description of time-dependent subsurface flows might suffer from:

- Insufficient measurement
- Uncertain permeability

⇒ Random coefficient

Medium might contain:

- Fractures
- Heterogeneities

⇒ Random discontinuities are incorporated
Problem description

Let \((\Omega, \mathcal{A}, \mathbb{P})\) be a complete probability space. Consider the scalar hyperbolic conservation law with unknown \(u := u(\omega, x, t)\):

\[
\begin{align*}
 u_t + (a(\omega, x)f(u))_x &= 0 & \forall (x, t) \in \mathcal{D}_T := \mathbb{R} \times (0, T) \\
 u(x, 0) &= u_0(x) & \forall x \in \mathbb{R}
\end{align*}
\]

with

- \(a : \Omega \times \mathcal{D} \mapsto \mathbb{R}\) being a (possibly time-dependent) stochastic jump coefficient,
- \(u_0 : \mathcal{D} \mapsto \mathbb{R}\) being a (possibly stochastic) initial condition.
Jump coefficient

We consider a stochastic jump coefficient of the following structure:

\[a(\omega, x) := \bar{a}(x) + \phi(W(\omega, x)) + P(\omega, x), \]

where

- \(\bar{a} \in C(D; \mathbb{R}_{\geq 0}) \) is a deterministic mean function.
- \(\phi \in C^1(\mathbb{R}; \mathbb{R}_{>0}) \). In our case: \(\phi(w) = \exp(w) \).
- \(H := L^2(D) \) and \(W \in L^2(\Omega; H) \) is a (zero-mean) Gaussian random field associated to a non-negative, symmetric trace class (covariance) operator \(Q : H \to H \).
Jump coefficient

We consider a stochastic jump coefficient of the following structure:

\[a(\omega, x) := \bar{a}(x) + \phi(W(\omega, x)) + P(\omega, x), \]

where

- \(\mathcal{T} : \Omega \rightarrow \mathcal{B}(\mathcal{D}), \omega \mapsto \{\mathcal{T}_1, \ldots, \mathcal{T}_\tau\} \) is a random partition of \(\mathcal{D} \), i.e., the \(\mathcal{T}_i \) are disjoint open subsets of \(\mathcal{D} \) with \(\overline{D} = \bigcup_{i=1}^{\tau} \mathcal{T}_i \). The number of elements in \(\mathcal{T} \) is a random variable \(\tau : \Omega \rightarrow \mathbb{N} \) on \((\Omega, \mathcal{A}, \mathbb{P})\).

- \((P_i, i \in \mathbb{N})\) is a sequence of random variables on \((\Omega, \mathcal{A}, \mathbb{P})\) with arbitrary non-negative distribution(s), which is independent of \(\tau \) (but not necessarily i.i.d.). Further we have

\[P : \Omega \times \mathcal{D} \rightarrow \mathbb{R}_{\geq 0}, \quad (\omega, x) \mapsto \sum_{i=1}^{\tau} 1_{\mathcal{T}_i}(x) P_i(\omega) \]
Samples of different jump coefficients

Squared exponential Gaussian field with random jumps.

Exponential Gaussian field with random jumps.
Approximation of the jump coefficient

In most cases, the coefficient $a(\omega, x)$ needs to be approximated:

- The Gaussian field W admits the Karhunen-Loève (KL) expansion

$$W(\omega, x) = \sum_{i=1}^{\infty} \sqrt{\eta_i} e_i(x) Z_i(\omega), \quad Z_i \sim \mathcal{N}(0, 1)$$

where $((\eta_i, e_i), i \in \mathbb{N})$ are the (ordered) eigenpairs of the covariance operator Q with $\eta_i \geq 0$ and $e_i \in H$.

- **Approximation:** truncate the series after the first $N \in \mathbb{N}$ terms.

- Note: The number of terms N needed for approximation depends on the decay of the eigenvalues. Therefore, it can vary significantly for different covariance operators.
Numerical example in 1D - Burgers’ equation

Stochastic Burgers’ equation

\[
 u_t + \left(a(\omega, x) \frac{u^2}{2} \right)_x = 0 \quad \forall (x, t) \in \mathcal{D}_T := (0, 1)^2
\]

\[
 u(x, 0) = u_0(x) = 0.3 \sin(\pi x) \quad \forall x \in (0, 1)
\]

Stochastic jump coefficient \(a(\omega, x) \)

- Partition \(\mathcal{T} \) is generated by \(\tau \sim \text{Poi}(5) \) jumps with positions \(x_i \sim \mathcal{U}((0, 1)) \)

- Jump heights \(P_i \sim \mathcal{U} \left(\left[\frac{3}{4} + \frac{1}{2}(-1)^i, \frac{5}{4} + \frac{1}{2}(-1)^i \right] \right) = \begin{cases} \mathcal{U}\left([\frac{1}{4}, \frac{3}{4}]\right), & i \text{ odd} \\ \mathcal{U}\left([\frac{5}{4}, \frac{7}{4}]\right), & i \text{ even} \end{cases} \)

- Squared exponential Gaussian field \(W \) sampled via truncated KL expansion
Numerical discretization

Spatial discretization:

- **Finite Volume discretization** with maximum spatial mesh size $\Delta x > 0$.
- spatial mesh is **adapted** to the jump positions, i.e., at each jump position is a cell interface.
- equidistant discretization between two jumps \rightarrow **piecewise equidistant mesh**.
Numerical discretization

Spatial discretization:
- **Finite Volume discretization** with maximum spatial mesh size $\Delta x > 0$.
- Spatial mesh is adapted to the jump positions, i.e., at each jump position is a cell interface.
- Equidistant discretization between two jumps \rightarrow **piecewise equidistant mesh**
Numerical discretization

Spatial discretization:
- **Finite Volume discretization** with maximum spatial mesh size $\Delta x > 0$.
- spatial mesh is adapted to the jump positions, i.e., at each jump position is a cell interface
- equidistant discretization between two jumps \rightarrow **piecewise equidistant mesh**
Numerical discretization

Spatial discretization:
- **Finite Volume discretization** with maximum spatial mesh size $\Delta x > 0$.
- spatial mesh is adapted to the jump positions, i.e., at each jump position is a cell interface
- equidistant discretization between two jumps \rightarrow piecewise equidistant mesh

Temporal discretization:
- Equidistant time discretization $\{t_i\}_{i=0}^{M} \subset \mathbb{T}$ with time step size $\Delta t > 0$
- **Backward Euler** scheme
Numerical flux

Grid points not corresponding to jump positions

- Numerical flux: \(a(\omega, x) g(u, v) \), where \(g(u, v) \) is the \textbf{Godunov flux}:

\[
g(u, v) = \begin{cases}
\min_{w \in [v, u]} f(w), & v \leq u \\
\max_{w \in [u, v]} f(w), & v \geq u
\end{cases} = \max\{f(\max(u, 0)), f(\min(v, 0))\}
\]

- Simplification possible due to \(f(u) = \frac{u^2}{2} \).

Grid points at jump positions

- Numerical flux: \textbf{Godunov interface flux}:

\[
g(u, v, a^-(x), a^+(x)) = \max\{a^-(x)f(\max(u, 0)), a^+(x)f(\min(v, 0))\}
\]

- Here, \(a^-(x) \) and \(a^+(x) \) denote the left and right limit of \(a(x) \), respectively.
Numerical results

All errors are aligned in the L^1 norm: $\varepsilon \simeq \Delta x \simeq \Delta t$.

Solution of the Burgers’ equation with underlying random jump coefficient.

Convergence of the finite volume discretization.
Conclusion & Consequences

Conclusion

● We introduced a random jump coefficient to a scalar conservation law.
● For pathwise convergence an adaptive discretization was introduced.

⇒ Each sample has its own discretization

Consequences

● Problem: Estimation of solution via (multilevel) Monte Carlo needs (nested) equivalent grids.
● Solution: Introduce finer reference grid, on which every sample is projected. This enables estimation via standard Monte Carlo for samples.

