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Motivation & problem description

When modelling time-dependent subsurface flows, the description might suf-
fer from insufficient measurements or uncertain permeability. To additionally
address fractures or heterogeneities of the medium, we incorporate a random
coefficient containing discontinuities into the description.
Let (Ω,A,P) be a probability space. For D ⊂ R a compact domain and T :=
[0,T ] ⊂ R,T ∈ R>0 a time interval consider:

Stochastic Burgers’ equation

ut + (a(ω, x)
u2

2
)x = 0 ∀(x , t) ∈ R× T

u(x ,0) = u0(x) ∈ L∞(R) ∀x ∈ R

where we consider a stochastic jump coefficient of the form [2, 3]:

a(ω, x) := a(x) + φ(WD(ω, x)) + P(ω, x)

0 a ∈ C(R;R≥0) is a deterministic, uniformly bounded mean function.
0 φ ∈ C1(R;R>0). In our case: φ(w) = exp(w).
0 For a (zero-mean) Gaussian random field W ∈ L2(Ω; L2(R)) associated

to a non-negative, symmetric trace class (covariance) operator
Q : L2(R)→ L2(R), the random field WD ∈ L2(Ω; L2(R)) is defined as

WD(ω, x) =

W (ω, x), x ∈ D
min(W (ω, x), sup

x∈D
W (ω, x)), x ∈ R \ D

0 T : Ω→ B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e., the Ti

are disjoint open subsets of D with D =
⋃τ

i=1 Ti. The number of elements
in T is a random variable τ : Ω→ N on (Ω,A,P).
For Dl and Dr being the left and right boundary of D, respectively, we
define T0 := (−∞,Dl) and Tτ+1 := (Dr ,+∞).

0 (Pi, i ∈ N0) is a sequence of random variables on (Ω,A,P) with arbitrary
non-negative distribution(s), which is independent of τ (but not
necessarily i.i.d.). Further we have

P : Ω×D → R≥0, (ω, x) 7→
τ+1∑
i=0

1Ti(x)Pi(ω) .
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Squared exponential Gaussian field with random jumps.
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Exponential Gaussian field with random jumps.

The Gaussian field W admits the Karhunen-Loève expansion. Depending on
the specific construction of the jump field P, we can either evaluate it exactly
or we have to approximate it using Fourier inversion.

Pathwise well-posedness

The flux function f(ω, x ,u) = a(ω, x)u2

2 satisfies the following properties:
0 (A-1) f(ω, ·, ·) is P-a.s. continuous at all points of R \ N × R, where N is a

closed zero measure set.
0 (A-2) There exist two functions g−,g+ ∈ L2(Ω,C0(R)) such that for all

x ∈ R it holds P-a.s. that g−(ω,u) ≤ |f(ω, x ,u)| ≤ g+(ω,u), where g− is a
non-negative (non-strictly) decreasing then increasing function with
|g−(ω,±∞)| = +∞.

0 (A-3) There exists a function uM(x) : R→ R such that for x ∈ R \ N ,
f(ω, x , ·) is P-a.s. a locally Lipschitz one-to-one function from (−∞,uM(x)]
and [uM(x),+∞) to [0,+∞) that satisfies f(ω, x ,uM(x)) = 0.

For P-a.e. ω ∈ Ω, existence and uniqueness of a pathwise weak entropy
solution u(ω, ·, ·) is proved similarly as for the deterministic hyperbolic problem
[1, 4].

Numerical results

We consider the stochastic Burgers’ equation on D = [0,1] with T = 1 and
u0 = 0.3 sin(πx). The continuous part of the random field is given by ā ≡
0, where the Gaussian field W is characterized by the Matérn covariance
operator with smoothness parameter either ν =∞ or ν = 1

2, variance σ2 = 0.1
and correlation length ρ = 0.1.
The partition T is generated by τ ∼ Poi(5) + 2 resulting in at least one discon-
tinuity of the random field. The jump positions are given by κi ∼ U((0,1)) with

jump heights Pi ∼ U([3
4 + (−1)i 1

2,
5
4 + (−1)i 1

2]) =

{
U([1

4,
3
4]) i odd

U([5
4,

7
4]) i even

.

Spatial & temporal discretization
0 Finite Volume discretization with equidistant spatial mesh size ∆x > 0.
0 Equidistant time discretization {ti}M

i=0 ⊂ T with time step size ∆t > 0
0 Backward Euler scheme
0 Numerical Flux: Set f (u) = u2

2 . On grid points where a(ω, x) is
continuous, we use the classical Godunov flux:

g(u, v) =


min

w∈[v ,u]
f (w), v ≤ u

max
w∈[u,v ]

f (w), v ≥ u

 = max{f (max(u,0)), f (min(v ,0))}

Solution of the Burgers’ equation with underlying
squared-exponential Gaussian field with stochastic jumps.

Solution of the Burgers’ equation with underlying
exponential Gaussian field with stochastic jumps.

Multilevel Monte Carlo

Let (ul, l ∈ N) be a sequence of discretizations converging to the exact solu-
tion. For given discretization level l ∈ N and number of samples Ml ∈ N let
EMl denote a Monte Carlo estimator with Ml samples. We aim to approximate
the stochastic moments (expectation, variance, etc.) of the solution via the
Multilevel Monte Carlo estimator of E(uL)

EL(uL) = EM0(u0) +
L∑

l=1

EMl(ul − ul−1) .

Here, M0 > ... > ML are the number of samples computed on each level.

Multilevel Monte Carlo estimator with L = 5 levels.
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Convergence of multilevel Monte Carlo estimators
for different number of levels.
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