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Motivation & problem description

When modelling time-dependent subsurface flows, the description might suf-
fer from insufficient measurements or uncertain permeability. To additionally
address fractures or heterogeneities of the medium, we incorporate a random
coefficient containing discontinuities into the description.

Let (2, A, IP) be a probability space. For D C R a compact domain and T :=
0, T] € R, T € R.g a time interval consider:

Stochastic Burgers’ equation

2
us + (a(w, x)U?)X =0 V(x,t) e RxT
u(x,0) = up(x) € L>(R) Vx € R
where we consider a stochastic jump coefficient of the form [2, 3]:

a(w, x) == a(x) + o(Wp(w, x)) + P(w, x)

® ac C(R;R-g) is a deterministic, uniformly bounded mean function.
® ¢ c C'(R;R.p). Inourcase: ¢(w) = exp(w).

e For a (zero-mean) Gaussian random field W ¢ L2(Q; L?(R)) associated
to a non-negative, symmetric trace class (covariance) operator
Q : L?(R) — L%(R), the random field Wp € L%(Q; L?(R)) is defined as

W(w, Xx), xeD
min( W(w, x), sup W(w, x)), x € R\ D

xeD

Wp(w, X) =

® 7:Q— B(D), w—{T1,...,7:} is a random partition of D, i.e., the T;
are disjoint open subsets of D with D = | J/_; 7;. The number of elements
in 7" is a random variable 7 : Q@ — N on (£, A, P).
For D, and D, being the left and right boundary of D, respectively, we
define 7y := (—o0, D)) and T, 1 := (D,, +0).

® (P;.i € Np)is asequence of random variables on (€2, A, IP) with arbitrary
non-negative distribution(s), which is independent of 7 (but not
necessarily i.1.d.). Further we have

P:QxD— R, (w,X) > 17(X)Pi(w).
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Squared exponential Gaussian field with random jumps. Exponential Gaussian field with random jumps.

The Gaussian field W admits the Karhunen-Loeve expansion. Depending on
the specific construction of the jump field P, we can either evaluate it exactly
or we have to approximate it using Fourier inversion.

Pathwise well-posedness

The flux function f(w, x, u) = a(w, x)%2 satisfies the following properties:

® (A-1) f(w, -, -) is P-a.s. continuous at all points of R\ N x R, where N is a
closed zero measure set.

® (A-2) There exist two functions g_, g, € L?(Q, C°(R)) such that for all
x € R it holds P-a.s. that g_(w, u) < |f(w, X, U)| < g.(w, u), where g_is a
non-negative (non-strictly) decreasing then increasing function with
\g_(w, ::OO)‘ = +0Q.

® (A-3) There exists a function uy(x) : R — R such that for x € R\ NV,
f(w, X, ) iIs P-a.s. a locally Lipschitz one-to-one function from (—oo, up(x)]
and [up(x), +oo) to [0, +o0) that satisfies f(w, x, uy(x)) = 0.

For P-a.e. w € (2, existence and uniqueness of a pathwise weak entropy
solution u(w, -, -) is proved similarly as for the deterministic hyperbolic problem
[1, 4].
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Numerical results

We consider the stochastic Burgers’ equation on D = [0, 1] with T = 1 and
up = 0.3sin(mx). The continuous part of the random field is given by a =
0, where the Gaussian field W is characterized by the Matern covariance
operator with smoothness parameter either v = cc or v = % variance ¢° = 0.1
and correlation length p = 0.1.

The partition 7 is generated by 7 ~ Poi(5) + 2 resulting in at least one discon-
tinuity of the random field. The jump positions are given by s ~ U((0, 1)) with

(U([L,3]) iodd

jump heights P; ~ U([2 + (—1)'3,2 4+ (—=1)3]) = ¢ .
jump heights P; ~ U([3 + (—1)'3,7 + (—1)'3]) Ul i aven
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Spatial & temporal discretization

Finite Volume discretization with equidistant spatial mesh size Ax > 0.
Equidistant time discretization {t;}¥, C T with time step size At > 0
Backward Euler scheme

Numerical Flux: Set f(u) = . On grid points where a(w, x) is
continuous, we use the classical Godunov flux:

min f(w), v<u

) welv,y] B :
g(u,v) = m[ax] (W), veu( max{ f(max(u, 0)), f(min(v,0))}
welu,v
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Solution of the Burgers’ equation with underlying
exponential Gaussian field with stochastic jumps.

Solution of the Burgers’ equation with underlying
squared-exponential Gaussian field with stochastic jumps.

Multilevel Monte Carlo

Let (u;, ] € N) be a sequence of discretizations converging to the exact solu-
tion. For given discretization level /| € N and number of samples M, € N let
Ey, denote a Monte Carlo estimator with M; samples. We aim to approximate
the stochastic moments (expectation, variance, etc.) of the solution via the
Multilevel Monte Carlo estimator of E(u;)

L
EL(UL) — EMO(UO) -+ Z EM/(U/ — U/_1) .
=1
Here, My > ... > M, are the number of samples computed on each level.
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