

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Project Coordinator: Prof. Dr. Andrea Barth Institute for Applied Analysis and Numerical Simulation

Motivation

random coefficient containing discontinuities

Stochastic conservation law

 $egin{aligned} & u_t + (\mathfrak{f}(\omega, x, u))_x = 0 & & orall (\omega, x, t) \in \Omega imes \mathbb{R} imes [0, T] \ & u(\cdot, 0) = u_0 \in L^\infty(\mathbb{R}) \end{aligned}$

We assume that the flux function f has the form $f(\omega, x, u) = a(\omega, x)f(u)$.

Hyperbolic conservation laws with stochastic jump coefficient

Lukas Brencher

PN5

Pathwise well-posedness

- (A-1) $f(\omega, \cdot, \cdot)$ is \mathbb{P} -a.s. continuous at all points of $\mathbb{R} \setminus \mathcal{N}(\omega) \times \mathbb{R}$, where $\mathcal{N}(\omega)$ is a closed set with measure zero.
- (A-2) There exist two functions $g_-, g_+ \in L^2(\Omega, C^0(\mathbb{R}))$ such that for all $x \in \mathbb{R}$ it holds \mathbb{P} -a.s. that $g_-(\omega, u) \leq |\mathfrak{f}(\omega, x, u)| \leq g_+(\omega, u)$, where g_- is a non-negative (non-strictly) decreasing then increasing function with $|g_-(\omega, \pm \infty)| = +\infty$.
- (A-3) There exists a function $u_m : \mathbb{R} \to \mathbb{R}$ such that for $x \in \mathbb{R} \setminus \mathcal{N}(\omega)$, $\mathfrak{f}(\omega, x, \cdot)$ is \mathbb{P} -a.s. a locally Lipschitz one-to-one function from $(-\infty, u_m(x)]$ and $[u_m(x), +\infty)$ to $[0, +\infty)$ such that $\mathfrak{f}(\omega, x, u_m(x)) = 0$.

Stochastic jump coefficient

(A-3') For x ∈ ℝ \ N(ω), the flux function f(ω, x, ·) is ℙ-a.s. a locally Lipschitz one-to-one function from ℝ to ℝ.

Under the assumptions (A-1) - (A-3), or alternatively (A-1) - (A-3'), there exists \mathbb{P} -a.s. a unique pathwise adapted entropy solution to the Cauchy problem of the stochastic conservation law.

Numerical approximation

- Truncated Karhunen-Loève expansion for the Gaussian random field
- Depending on the specific construction of the jump field *P*: either exact evaluation possible or approximation via **Fourier inversion**.
- Finite Volume discretization with equidistant spatial mesh size
- Backward Euler scheme on an equidistant time discretization
- **Godunov flux**: $F_{G}(u, v) = \max\{f(\max(u, 0)), f(\min(v, 0))\}$

$a(\omega, x) := \overline{a}(x) + \phi(W_{\mathcal{D}}(\omega, x)) + P(\omega, x)$

- $\overline{a} \in C(\mathbb{R}; \mathbb{R}_{\geq 0})$ is a deterministic, uniformly bounded mean function.
- $\phi \in C^1(\mathbb{R}; \mathbb{R}_{>0})$. In our case: $\phi(w) = \exp(w)$.
- For a (zero-mean) Gaussian random field $W \in L^2(\Omega; L^2(\mathbb{R}))$ associated to a non-negative, symmetric trace class (covariance) operator $Q: L^2(\mathbb{R}) \to L^2(\mathbb{R})$, the random field $W_{\mathcal{D}} \in L^2(\Omega; L^2(\mathbb{R}))$ is defined as

$$\mathcal{W}_{\mathcal{D}}(\omega, x) = egin{cases} \mathcal{W}(\omega, x), & x \in \mathcal{D} \ \min(\mathcal{W}(\omega, x), \sup_{x \in \mathcal{D}} \mathcal{W}(\omega, x)), & x \in \mathbb{R} \setminus \mathcal{D} \end{cases}$$

- *T* : Ω → B(D), ω ↦ {*T*₁,...,*T*_τ} is a random partition of D, i.e., the *T_i* are disjoint open subsets of D with D
 = U^τ_{i=1} *T̄_i*. The number of elements in *T* is a random variable *τ* : Ω → N on (Ω, A, P). For D_l and D_r being the left and right boundary of D, respectively, we define *T*₀ := (-∞, D_l) and *T*_{τ+1} := (D_r, +∞).
- (*P_i*, *i* ∈ ℕ₀) is a sequence of random variables on (Ω, A, ℙ) with arbitrary non-negative distribution(s), which is independent of *τ* (but not necessarily i.i.d.). Further we have

$$P: \Omega imes \mathcal{D} o \mathbb{R}_{\geq 0}, \quad (\omega, x) \mapsto \sum_{i=0}^{\tau+1} \mathbf{1}_{\mathcal{T}_i}(x) P_i(\omega) \;.$$

Solution of the Burgers' equation with underlying exponential Gaussian field with stochastic jumps.

Moment approximation

We aim to approximate the stochastic moments (expectation, variance, etc.) of the solution via the Multilevel Monte Carlo estimator of $\mathbb{E}(u_L)$

$$E^{L}(u_{L}) = E_{M_{0}}(u_{0}) + \sum_{l=1}^{L} E_{M_{l}}(u_{l} - u_{l-1}) .$$

Here, $M_0 > ... > M_L$ are the number of samples computed on each level.

Tools & Methods

References

- Karhunen-Loève expansion
- Fourier inversion
- Finite Volume method
- Multilevel Monte Carlo method
- Backward Euler method

[1] Emmanuel Audusse and Benoît Perthame.

Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies.

Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 135(2):253–265, 2005.

[2] Andrea Barth and Andreas Stein.

A study of elliptic partial differential equations with jump diffusion coefficients. *SIAM/ASA Journal on Uncertainty Quantification*, 6(4):1707–1743, 2018.

[3] Andrea Barth and Andreas Stein.

Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients. *arXiv preprint arXiv:1902.02130*, 2019.

[4] Gui-Qiang Chen, Nadine Even, and Christian Klingenberg.

Hyperbolic conservation laws with discontinuous fluxes and hydrodynamic limit for particle systems.

Journal of differential equations, 245(11):3095–3126, 2008.

www.simtech.uni-stuttgart.de

