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Motivation

Pathwise well-posedness

® (A-1) f(w, -, ) is P-a.s. continuous at all points of R \ N (w) x R, where
N (w) is a closed set with measure zero.

® (A-2) There exist two functions g_, g, € L2(Q, C°(R)) such that for all
x € Ritholds P-a.s. that g_(w, u) < |f(w, x, U)| < g (w, u), where g_ is
a non-negative (non-strictly) decreasing then increasing function with
|9 (w, +00)| = +00.

® (A-3) There exists a function up, : R — R such that for x € R \ M (w),
f(w, X, -) is P-a.s. a locally Lipschitz one-to-one function from
(—o0, Un(x)] and [um(X), +o0) to [0, +00) such that f(w, x, un(x)) = 0.

® (A-3) For x € R\ N (w), the flux function f(w, x, -) is P-a.s. a locally
Lipschitz one-to-one function from R to R.

Under the assumptions (A-1) — (A-3), or alternatively (A-1) — (A-3'), there
exists P-a.s. a unigue pathwise adapted entropy solution to the Cauchy
problem of the stochastic conservation law.

random coefficient containing discontinuities

Stochastic conservation law
U + (f(w, X, U))X =0

u(-,0) = up € L°(R)

We assume that the flux function § has the form f(w, x, u) = a(w, x)f(u).

V(w, X, t) € 2 xR x [0, T]

Stochastic jump coefficient
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Random partition with stochastic jump values.
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Numerical approximation
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e Truncated Karhunen-Loeve expansion for the Gaussian random field

® Depending on the specific construction of the jump field P: either
exact evaluation possible or approximation via Fourier inversion.

® Finite Volume discretization with equidistant spatial mesh size
e Backward Euler scheme on an equidistant time discretization
® Godunov flux: Fg(u, v) = max{f(max(u,0)), f(min(v,0))}
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Exponential Gaussian field with random jumps.
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jump coefficient a(w, z)

jump coefficient a(w, x)
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Exponential log-Gaussian field.
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Squared exponential log-Gaussian field.
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Squared exponential Gaussian field with random jumps. 03
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a(w, x) := a(x) + ¢o(Wp(w, x)) + P(w, x)

Solution of the Burgers’ equation with underlying
squared-exponential Gaussian field with stochastic jumps.

Solution of the Burgers’ equation with underlying
exponential Gaussian field with stochastic jumps.

® 3 c C(R;R-g) is a deterministic, uniformly bounded mean function.
® » ¢ C'(R;R.g). In our case: ¢(w) = exp(w).

e For a (zero-mean) Gaussian random field W ¢ [2(Q; [2(R))
associated to a non-negative, symmetric trace class (covariance)
operator Q : L(R) — L2(R), the random field Wp € L2(Q; L3(R)) is
defined as

Moment approximation

We aim to approximate the stochastic moments (expectation, variance,
etc.) of the solution via the Multilevel Monte Carlo estimator of E(u;)

L
XeD EL(UL) — EMO(UO) + Z EM,(U/ — U/_1) :

xeR\D =1
Here, My > ... > M, are the number of samples computed on each level.

W(w, x),
min(W(w, x), sup W(w, X)),

xeD

Wp(w, X) —

7 :Q— B(D), w—A{Th,...,7;}is a random partition of D, i.e., the S
T; are disjoint open subsets of D with D = | J._, 7;. The number of .
elements in 7 is a random variable 7 : 2 — N on (Q2, A, P). |
For D, and D, being the left and right boundary of D, respectively, we
define 7y := (—o0, D) and 7,1 := (D,, +0).

® (P;.i € Np) is a sequence of random variables on (2, A, P) with
arbitrary non-negative distribution(s), which is independent of 7 (but
not necessarily 1.i.d.). Further we have

estimator F%(uy)
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—3¢—F'V error
---------- lin. fit with slope 0.86
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P:QxD— R, (w,X) > 17(X)Pi(w).
=0

Tools & Methods

e Karhunen-Loeve expansion

® Fourier inversion

® Finite Volume method

e Multilevel Monte Carlo method
® Backward Euler method
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