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Motivation

random coefficient containing discontinuities

Stochastic conservation law
ut + (f(ω, x ,u))x = 0 ∀(ω, x , t) ∈ Ω× R× [0,T ]

u(·,0) = u0 ∈ L∞(R)

We assume that the flux function f has the form f(ω, x ,u) = a(ω, x)f (u).

Stochastic jump coefficient
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Squared exponential log-Gaussian field.

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

Exponential log-Gaussian field.
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Squared exponential Gaussian field with random jumps.
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Exponential Gaussian field with random jumps.

a(ω, x) := a(x) + φ(WD(ω, x)) + P(ω, x)

0 a ∈ C(R;R≥0) is a deterministic, uniformly bounded mean function.
0 φ ∈ C1(R;R>0). In our case: φ(w) = exp(w).
0 For a (zero-mean) Gaussian random field W ∈ L2(Ω; L2(R))

associated to a non-negative, symmetric trace class (covariance)
operator Q : L2(R)→ L2(R), the random field WD ∈ L2(Ω; L2(R)) is
defined as

WD(ω, x) =

W (ω, x), x ∈ D
min(W (ω, x), sup

x∈D
W (ω, x)), x ∈ R \ D

0 T : Ω→ B(D), ω 7→ {T1, . . . , Tτ} is a random partition of D, i.e., the
Ti are disjoint open subsets of D with D =

⋃τ
i=1 Ti. The number of

elements in T is a random variable τ : Ω→ N on (Ω,A,P).
For Dl and Dr being the left and right boundary of D, respectively, we
define T0 := (−∞,Dl) and Tτ+1 := (Dr ,+∞).

0 (Pi, i ∈ N0) is a sequence of random variables on (Ω,A,P) with
arbitrary non-negative distribution(s), which is independent of τ (but
not necessarily i.i.d.). Further we have

P : Ω×D → R≥0, (ω, x) 7→
τ+1∑
i=0

1Ti(x)Pi(ω) .

Pathwise well-posedness

0 (A-1) f(ω, ·, ·) is P-a.s. continuous at all points of R \ N (ω)× R, where
N (ω) is a closed set with measure zero.

0 (A-2) There exist two functions g−,g+ ∈ L2(Ω,C0(R)) such that for all
x ∈ R it holds P-a.s. that g−(ω,u) ≤ |f(ω, x ,u)| ≤ g+(ω,u), where g− is
a non-negative (non-strictly) decreasing then increasing function with
|g−(ω,±∞)| = +∞.

0 (A-3) There exists a function um : R→ R such that for x ∈ R \ N (ω),
f(ω, x , ·) is P-a.s. a locally Lipschitz one-to-one function from
(−∞,um(x)] and [um(x),+∞) to [0,+∞) such that f(ω, x ,um(x)) = 0.

0 (A-3’) For x ∈ R \ N (ω), the flux function f(ω, x , ·) is P-a.s. a locally
Lipschitz one-to-one function from R to R.

Under the assumptions (A-1) – (A-3), or alternatively (A-1) – (A-3’), there
exists P-a.s. a unique pathwise adapted entropy solution to the Cauchy
problem of the stochastic conservation law.

Numerical approximation

0 Truncated Karhunen-Loève expansion for the Gaussian random field
0 Depending on the specific construction of the jump field P: either

exact evaluation possible or approximation via Fourier inversion.
0 Finite Volume discretization with equidistant spatial mesh size
0 Backward Euler scheme on an equidistant time discretization
0 Godunov flux: FG(u, v) = max{f (max(u,0)), f (min(v ,0))}

Solution of the Burgers’ equation with underlying
squared-exponential Gaussian field with stochastic jumps.

Solution of the Burgers’ equation with underlying
exponential Gaussian field with stochastic jumps.

Moment approximation

We aim to approximate the stochastic moments (expectation, variance,
etc.) of the solution via the Multilevel Monte Carlo estimator of E(uL)

EL(uL) = EM0(u0) +
L∑

l=1

EMl(ul − ul−1) .

Here, M0 > ... > ML are the number of samples computed on each level.

Multilevel Monte Carlo estimator with L = 5 levels.
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Convergence of multilevel Monte Carlo estimators
for different number of levels.

Tools & Methods

0 Karhunen-Loève expansion
0 Fourier inversion
0 Finite Volume method
0 Multilevel Monte Carlo method
0 Backward Euler method

MATLAB R©

References

[1] Emmanuel Audusse and Benoît Perthame.
Uniqueness for scalar conservation laws with discontinuous
flux via adapted entropies.
Proceedings of the Royal Society of Edinburgh Section A:
Mathematics, 135(2):253–265, 2005.

[2] Andrea Barth and Andreas Stein.
A study of elliptic partial differential equations with jump
diffusion coefficients.
SIAM/ASA Journal on Uncertainty Quantification,
6(4):1707–1743, 2018.

[3] Andrea Barth and Andreas Stein.
Numerical analysis for time-dependent advection-diffusion
problems with random discontinuous coefficients.
arXiv preprint arXiv:1902.02130, 2019.

[4] Gui-Qiang Chen, Nadine Even, and Christian Klingenberg.
Hyperbolic conservation laws with discontinuous fluxes and
hydrodynamic limit for particle systems.
Journal of differential equations, 245(11):3095–3126, 2008.

www.simtech.uni-stuttgart.de


