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Motivation

The input data to numerous phenomena in the natural sciences, that can
be described by partial differential equations (PDEs), is not known pre-
cisely or is not deterministic. Thus, an extension to random PDEs (rPDEs)
is necessary to capture the stochastic nature of the data.
We consider the following rPDE, equipped with Dirichlet boundary condi-
tions, for a spatial domain X = [0,1]2 and the time interval T = [0,0.5]:

d

dt
u(x, t , ω)−∇x ·(a(x, ω)∇x u(x, t , ω)) = g(x) for all (x, t) ∈ XT

Here, a(x, ω) is a random diffusion coefficient given by

a(x, ω) = ā(x) +
∞∑

i=1

√
λiφi(x)γi(ω) ,

where ((λi, φi), i ∈ N) is a sequence of eigenpairs of a given covariance
operator and (γi, i ∈ N) is a sequence of independent uniformly distributed
random variables. The solution u is a distribution over XT. We are inter-
ested in the computation of relevant statistics of the solution, i.e., mo-
ments of u.

Figure 1: Parameter dependency of the solution to the rPDE.

Multilevel Monte Carlo (MLMC) estimation

Let (ul, l ∈ N) be a sequence of discretizations converging to the exact
solution. For given discretization l ∈ N and number of samples Nl ∈ N the
singlelevel Monte Carlo estimator is given by

ENl(ul) =
1
Nl

Nl∑
i=1

u(i)
l .

We aim to approximate the stochastic moments of the solution to the
rPDE via the Multilevel Monte Carlo estimator of E(uL)

EL(uL) = EN0(u0) +
L∑

l=1

ENl(ul − ul−1) .

Here, N0 > ... > NL are the number of samples computed on each level.
The general idea of multilevel Monte Carlo methods is to compute many
samples on a coarse discretization (N0) and only few samples on an accu-
rate discretization (NL). The overall computational costs of such a com-
putation is dominated by the computation of few samples on the most
accurate discretization.

Data-driven time parallelism via Forecasting

In time parallelism, the temporal domain is divided into subdomains, for
which initial values are introduced. This yields subproblems, which can
be solved in parallel.

T 0 T 1 T 2 T M−1 T M

The Parareal framework [4] is defined by two time propagators acting on
different time discretizations:

0 G(ui,T i,T j) providing a coarse approximation at T j for 0 ≤ i ≤ j ≤ M
(serial computation)

0 F(ui,T i,T j) providing a fine approximation at T j for 0 ≤ i ≤ j ≤ M
(parallel computation)

where ui denotes the numerical solution at coarse time step T i. While the
parallel computation leads to jumps, these are corrected iteratively until
convergence for parareal iteration k and subinterval m:

um+1
k+1 = F(um

k ,T
m,T m+1) + G(um

k+1,T
m,T m+1)− G(um

k ,T
m,T m+1)︸ ︷︷ ︸

jump

The data-driven time parallelism introduced in [2] employs the forecasting
method from [3] as a coarse propagator. This forecasting method aims
to predict the solution at future time steps. Assuming a time-evolution
basis is available, we can compute the forecast by solving a least-squares
problem based on previously computed time steps.
The data-driven time parallelism is defined by employing a local forecast
as a coarse propagator and a global version as the parareal initializa-
tion, which computes the first initial values for the subproblems. As the
fine temporal propagator the backward Euler time integration scheme is
applied.

Data-driven multilevel Monte Carlo

We aim to decrease the computational costs of the MLMC estimation by
computing the samples with data-driven time parallelism. Therefore, we
define a splitting parameter η ∈ [0,1], which defines a set of Nη

l := dηNle
training samples to compute the time evolution bases for the forecasting
procedure via a singular value decomposition. Afterwards, the remaining
Nη

DD,l = Nl−Nη
l samples can be computed via data-driven time parallelism.

With these two types of samples, we can define the data-driven singlelevel
Monte Carlo estimator as

Eη
N(ul) :=

1
Nη

l

Nη
l∑

i=1

u(i)
l +

1
Nη

DD,l

Nη
DD,l∑

i=1

u(i)
DD,l

and the corresponding data-driven multilevel Monte Carlo estimator as

EL,η(uL) = Eη
N0

(u0) +
L∑

l=1

Eη
Nl

(ul − ul−1) .

(a) Walltime. (b) L2-error.

Figure 2: Walltime and L2-error of the data-driven MLMC and standard MLMC method.

(a) η = 0.1 (b) η = 0.5
Figure 3: Composition of the walltime of the data-driven MLMC computation,
depending on the splitting parameter η.

Conclusions

The data-driven MLMC method is able to improve the computation time
compared to the standard MLMC method. It consists of

0 Offline: Compute Monte Carlo samples via some standard time
integration scheme

0 Training: Compute POD basis from left singular vectors and time
evolution bases from right singular vectors

0 Online: Compute remaining samples via data-driven time parallelism
with global forecast initialization and local forecast coarse propagation
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