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Motivation

Model order reduction lowers the computational costs of dynamical
systems in Cores× hours, but does not generate speedup regarding
the wall-time as spatial parallelism is quickly saturated. Therefore,
one can apply time-parallelism to reduced order models (ROMs). A
new method is presented [1, 2], which employs the time-evolution
data collected during the offline (training) stage of the ROM to com-
pute an accurate coarse propagator of the Parareal framework.

Time parallelism

In parallel-in-time methods, the time interval of the problem is di-
vided into time-sub-intervals. To construct sub-problems, which can
be computed in parallel, initial conditions are introduced to each sub-
interval. This parallel computation yields to jumps in the final solu-
tion, which are corrected iteratively.

In the Parareal framework [4], two propagation operators are used
for the computation, which differ in the used time discretization:

G(Tm̄+1,Tm̄,Xm̄) provides a coarse approximation (serial)
F(Tm̄+1,Tm̄,Xm̄) provides a fine approximation (parallel)

For Parareal iteration k do the correction iteration for the final solu-
tion Xk+1

m̄+1 until convergence:

Xk+1
m̄+1 = F(Tm̄+1,Tm̄,Xk

m̄) + G(Tm̄+1,Tm̄,Xk+1
m̄ )− G(Tm̄+1,Tm̄,Xk

m̄)︸ ︷︷ ︸
jump

Forecasting

The forecasting method introduced in [3] aims to predict the un-
known state at future time steps. Therefore, it employs the data
of the ROM offline stage and the previously computed time steps
to forecast the unknown state. After a time-evolution basis is com-
puted via (thin) SVD of the ROM training snapshots, the forecast
coefficients are obtained by solving the least-squares problem

zj = argmin
z∈Ra

‖Z(m, α)ΞΞΞjz− Z(m, α)h(xj)‖

Here, α is the number of previous time steps used for the computa-
tion (Memory ), Z is the sampling matrix, which extracts entries of a
given vector and h ’unrolls’ the time according to its discretization.
This procedure is applied locally on each sub-interval of the time
parallelism.

Data-driven coarse propagator

In the following illustration of the data-driven coarse propagator, the
forecast memory is set to α = 3.

1. Serial computation of the first initial guess X0
m̄+1 = G(Tm̄+1,Tm̄,X0

m̄)

× - value computed on fine grid via time-integration used for F

· · · - computed forecast

� - value of forecast at end of sub-interval

2. Parallel computation of the fine approximations F(Tm̄+1,Tm̄,Xk
m̄)

� - initial value of subinterval computed by forecast

× - value computed on fine grid via F

� - value of fine approximation F at end of sub-interval

3. Serial computation of the correction step

Xk+1
m̄+1 = F(Tm̄+1,Tm̄,Xk

m̄) + G(Tm̄+1,Tm̄,Xk+1
m̄ )− G(Tm̄+1,Tm̄,Xk

m̄)

� - value computed by fine propagator F

� - value computed by coarse propagator G during last forecast

� - value of the new forecast computed by G

× - corrected initial value of next sub-interval

Numerical experiments

Burgers equation

∂X (x ; t)

∂t
+
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∂(X 2(x ; t))

∂x
= 0.02ebx

X (0; t) = a ∀t > 0
X (x ; 0) = 1 ∀x ∈ [0,100]

(a,b) ∈ [2.5,3.5]×[0.02,0.03]
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Solution of the Burgers equation. Each
curve is the solution at a specific time.

The subsequent illustration demonstrates the behavior of the solu-
tion during the iterations of the time-parallelism.
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Iteration 1 of 4.
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Iteration 2 of 4.
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Iteration 3 of 4.
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Iteration 4 of 4.

To exemplify the convergence of the
time parallelism, the figure shown
alongside shows a specific degree of
freedom during the parallel iterations.
Furthermore, the jumps introduced by
the time parallelism are visualized.
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This illustration shows the jump condi-
tion residual used for the method’s con-
vergence over the time parallel itera-
tions. Note that the proposed method
converged after the first iteration, while
the Parareal method requires 4 of 4 itera-
tions to satisfy the convergence criterion.

The following table illustrates that the proposed method generates
speedup compared to the Parareal framework in [4].

used
CPUs

Dirichlet Source
FOM
Parareal

ROM
Parareal

data-driven ROM
α = 4 α = 8

4 3.2004 0.0272 0.1439 0.1979 0.1102 0.0668
4 2.9325 0.0236 0.1329 0.2084 0.1104 0.0670
4 3.4385 0.0290 0.1314 0.2102 0.1279 0.0768
8 3.2004 0.0272 0.0744 0.1261 0.0572 0.0843
8 2.9325 0.0236 0.0924 0.1143 0.0583 0.0850
8 3.4385 0.0290 0.0755 0.1160 0.0579 0.0840

Simulation time (sec) for different online points and forecast memory α.

Conclusions
With an accurate forecast of the unknown, the proposed data-driven
method converges in less iterations of the time parallelism, which
leads to computational speedup measured in walltime.

Extensions are in progress:

local basis update
global initial forecast
dominant reduced coordinate prediction for improved stability
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