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Motivation

Model order reduction lowers the computational costs of dynamical
systems in Cores x hours, but does not generate speedup regarding
the wall-time as spatial parallelism is quickly saturated. Therefore,
one can apply time-parallelism to reduced order models (ROMs). A
new method is presented [1, 2], which employs the time-evolution
data collected during the offline (training) stage of the ROM to com-
pute an accurate coarse propagator of the Parareal framework.

Time parallelism

In parallel-in-time methods, the time interval of the problem is di-
vided into time-sub-intervals. To construct sub-problems, which can
be computed in parallel, initial conditions are introduced to each sub-
interval. This parallel computation yields to jumps in the final solu-
tion, which are corrected iteratively.

In the Parareal framework [4], two propagation operators are used
for the computation, which differ in the used time discretization:

m G(Ts.1, T5, X5) provides a coarse approximation (serial)
m F(Ts.1, T X7) provides a fine approximation (parallel)

For Parareal iteration k do the correction iteration for the final solu-
tion X', until convergence:

XKL = F(Tat, T X&) + G(Tret, Ta, XY — G(Trria, T, XE)
N ———————————————————————

m+1 —
jump

Forecasting

he forecasting method introduced in [3] aims to predict the un-
known state at future time steps. Therefore, it employs the data
of the ROM offline stage and the previously computed time steps
to forecast the unknown state. After a time-evolution basis is com-
puted via (thin) SVD of the ROM training snapshots, the forecast
coefficients are obtained by solving the least-squares problem

z; = argmin ||Z(m, a)=;z — Z(m, o) h(X;)|
Z2<cR4

Here, « Is the number of previous time steps used for the computa-
tion (Memory), Z is the sampling matrix, which extracts entries of a
given vector and h "unrolls’ the time according to its discretization.
This procedure is applied locally on each sub-interval of the time
parallelism.

Data-driven coarse propagator

In the following illustration of the data-driven coarse propagator, the
forecast memory is set to a = 3.

1. Serial computation of the first initial guess X3, ; = G(Tm+1, T, X2))

X - value computed on fine grid via time-integration used for
O TN .. T --.-computed forecast

[] - value of forecast at end of sub-interval

2. Parallel computation of the fine approximations F( T 1, T, XX )

_L [] - initial value of subinterval computed by forecast

C{Xx xx“xxx X xx

e "L_-]X,(x = [ Sl X - value computed on fine grid via F
L x *x,.xxxxx*"f' |
|

[1 - value of fine approximation / at end of sub-interval

3. Serial computation of the correction step
XEL = F(Trmq, T, XE) +

m+1

_ g( Tf_TH—17 Tﬁ% Xl/%’))

[ - value computed by fine propagator F
|
I ; § [1- value computed by coarse propagator G during last forecast

O 1 X 3
X - corrected initial value of next sub-interval
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Numerical experiments
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: Solution of the Burgers equation. Each
milime e [O7 25] curve is the solution at a specific time.

The subsequent illustration demonstrates the behavior of the solu-
tion during the iterations of the time-parallelism.
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To exemplify the convergence of the - —
time parallelism, the figure shown
alongside shows a specific degree of
freedom during the parallel iterations.

value of DOF

Furthermore, the jumps introduced by :i{g;g{}ggé'
] . ] ] = teration 3|
the time parallelism are visualized. o |—lterationd
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time step
oots, S This illustration shows the jump condi-
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- o012} | vergence over the time parallel itera-
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| . tions. Note that the proposed method
£ 00 | converged after the first iteration, while
-=0.004 - .
0002 . the Parareal method requires 4 of 4 itera-
ST : tions to satisfy the convergence criterion.

The following table illustrates that the proposed method generates
speedup compared to the Parareal framework in [4].

used FOM ROM data-driven ROM
CPUs Parareal Parareal a =4 o =8

4 0.1439 0.1979 0.1102 0.0668
4 0.1329 0.2084 |0.1104 0.0670
4 0.1314 0.2102 0.1279 0.0768
8 0.0744 0.1261 |0.0572 0.0843
8 0.0924 0.1143 0.0583 0.0850
8 0.0755 0.1160 |0.0579 0.0840

Simulation time (sec) for different online points and forecast memory «.

Conclusions

With an accurate forecast of the unknown, the proposed data-driven
method converges in less iterations of the time parallelism, which
leads to computational speedup measured in walltime.

Extensions are in progress:

m local basis update
m global initial forecast
m dominant reduced coordinate prediction for improved stability
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