Curriculum Vitae

Qian Huang Research Assistant (Postdoc)

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart
Room 8.153, Pfaffenwaldring 57, 70569 Stuttgart, Germany
Tel: +49 71168560954 E mail: qian.huang@mathematik.uni-stuttgart.de; hqqh91@qq.com ORCID ID: 0000-0003-2770-1352 Page: https://www.researchgate.net/profile/Qian-Huang-6

Education

- BSc, Dept. of Thermal Engineering, Tsinghua University, China 2008-2012
- PhD, Dept. of Energy and Power Engineering, Tsinghua University, China 2012-2017

Research Experience

Postdoc, Head of Group: Prof. Dr. Christian Rohde
2024-now
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Germany

Research Assistant Professor

2019-2024
Department of Energy and Power Engineering, Tsinghua University, China
Postdoc Research, Supervisor: Prof. Wen-An Yong
2017-2019
Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, China
Project: Moment closure of population balance equation and its applications
PhD Research, Supervisors: Prof. Qiang Yao and Prof. Shuiqing Li
2012-2017
Thesis: Mechanisms on the particulate formation and ash deposition in pulverized coal combustion

Research Interests

- Kinetic model theory and applications
- Combustion-related energy conversion \& propulsion
- Active particle systems

Research Funding

- National Science Foundation for Young Scientists of China, PI. 2020-2022
- China Postdoctoral Science Foundation, PI.

2017-2019

Honors \& Awards

- Gold medal of the International Exhibition of Inventions Geneva, 2023 (with Prof. Shuiqing Li and others)
- The first prize of Natural Science Award of Ministry of Education of China, 2022 (with Prof. Shuiqing Li and others)
- Best Paper Award of China National Symposium on Combustion, 2021 (with Prof. Shuiqing Li and others)
- Equipment Management \& Technical Innovation in Power Industry, First prize, 2021 (with Prof. Shuiqing Li and others)
- Tsinghua-IHI Scholarship, Tsinghua University, 2016
- China Scholarship Council Scholarship, Ministry of Education of China, 2015
- Tsinghua-GuangHua Scholarship, Tsinghua University, 2013
- National Encouragement Scholarship, Ministry of Education of China, 2010
- National Encouragement Scholarship, Ministry of Education of China, 2009

Academic activities

- Member of the Combustion Institute
- Member of the Young Scholar Committee of the China Electric Power Research Institute Journals Center
- Reviewer: Proceedings of the Combustion Institute, Combustion and Flame, Combustion Science and Technology, Fuel, Energy \& Fuels, Energy Conversion Management, Power Technology, ACS Omega, Journal of Thermal Science, Frontiers in Energy, Waste and Biomass Valorization, Proceedings of the CSEE (in Chinese), Clean Coal Technology (in Chinese), Asia-Pacific Conference on Combustion, China National Symposium on Combustion.
- Colloquium chair and Session chair of the $10^{\text {th }}$ International Symposium on Coal Combustion (Aug 7-9, 2023, Taiyuan, China).
- Session chair of the China National Symposium on Combustion 2023 (Oct 12-15, 2023, Hefei, China).

Skills

- Analysis of moment closure systems
- Simulation: C++, Fortran, Matlab, Mathematica, ANSYS Fluent, OpenFOAM
- Design and measurement of particle-laden flows in combustion

Courses

- Combustion Theory (Undergraduate, given by Prof. Shuiqing Li and me during 2020-2023 at Tsinghua University, in Chinese).

Publications

Journal articles

> Kinetic modeling

[1] Q Huang, Y Chen, W-A Yong. Discrete-velocity-direction models of BGK-type with minimum entropy: I. Basic idea. Journal of Scientific Computing, 2023, 95: 80.
[2] Q Huang, J Koellermeier, W-A Yong. Equilibrium stability analysis of hyperbolic shallow water moment equations. Mathematical Methods in the Applied Sciences, 2022, 45: 64596480.
[3] Q Huang, S Q Li, W-A Yong. Stability analysis of quadrature-based moment methods for kinetic equations. SIAM Journal on Applied Mathematics, 2020, 80: 206-231.
[4] Y Chen, Q Huang*, W-A Yong. Discrete-velocity-direction models of BGK-type with minimum entropy: II. Weighted model. 2023, arXiv:2301.06332.
[5] R Zhang, $\underline{\text { Q Huang*, W-A Yong. Stability analysis of an extended quadrature method of }}$ moments for kinetic equations. 2023, arXiv:2306.07945.
[6] Y Chen, Q Huang*, W-A Yong, R Zhang. Poisson quadrature method of moments for 2D kinetic equations with velocity of constant magnitude. 2023, arXiv:2308.10083.
[7] R Zhang, Y Chen, Q Huang*, W-A Yong. Stability analysis of hyperbolic quadrature method of moments. In preparation.
> Coal combustion
[1] L Duan, J Wang, Q Huang*, et al. Experimental investigation on the performance of hybrid electrostatic-fabric precipitators with different structures. Powder Technology, 2023, 421, 118404.
[2] L Duan, Q Huang*, R Ji, S Q Li. A predictive model of synergetic particulate- SO_{3} removal in ultralow cold-side electrostatic precipitators. Journal of Aerosol Science, 2022, 159: 105850.
[3] Q Huang, P Ma, Q Gao, S Q Li. Ultrafine particle formation in pulverized coal, biomass and waste combustion: Understanding the relationship with flame synthesis process. Energy \& Fuels, 2020, 34: 1386-1395.
[4] Q Huang, P Ma, L Cai, S Q Li. Kinetic simulation of fine particulate matter evolution and deposition in a 25 kW pulverized coal combustor. Energy \& Fuels, 2020, 34: 15389-15398.
[5] Q Huang, S Q Li, Y Shao, Y Zhao, Q Yao. Dynamic evolution of impaction and sticking behaviors of fly ash particle in pulverized coal combustion. Proceedings of the Combustion Institute, 2019, 37: 4419-4426.
[6] Q Huang, Y Zhang, Q Yao, S Q Li. Mineral manipulation of Zhundong lignite towards fouling mitigation in a down-fired combustor. Fuel, 2018, 232: 519-529.
[7] Q Huang, Y Xu, Q Yao, S Q Li. In situ diagnostics on the dynamic processes of ash deposit formation, shedding, and heat transfer in a self-sustained down-fired furnace. Energy \& Fuels, 2018, 32: 4424-4431.
[8] Q Huang, S Q Li, G D Li, Q Yao. Mechanisms on the size partitioning of sodium in particulate matter from pulverized coal combustion. Combustion and Flame, 2017, 182: 313323.
[9] Q Huang, Y Zhang, Q Yao, S Q Li. Numerical and experimental study on the deposition of fine particulate matter during the combustion of pulverized lignite coal in a 25 kW combustor. Powder Technology, 2017, 317: 449-457.
[10] Q Huang, S Q Li, G D Li, Y Q Zhao, Q Yao. Reduction of fine particulate matter by blending lignite with semi-char in a down-fired pulverized coal combustor. Fuel, 2016, 181: 11621169.
[11] Y Yang, Q Huang, P Ma, S Q Li. Mechanistic studies on the slagging propensity in lowrank coal combustion. Combustion and Flame, 2022, 238: 111956.
[12] P Ma, Q Huang, Y Yang, S Q Li. Simultaneous investigation of coal ignition and soot formation in two-stage $\mathrm{O}_{2} / \mathrm{N}_{2}$ and $\mathrm{O}_{2} / \mathrm{CO}_{2}$ atmospheres. Fuel, 2022, 314: 122808.
[13] Y Xu, Q Huang, S Q Li. Numerical investigation of physicochemical effects of CO_{2} on coal particle ignition in $\mathrm{O}_{2} / \mathrm{CO}_{2}$ ambience. Fuel, 2021, 287: 119542.
[14] Y Zhao, Q Huang, Q Yao, S Q Li. Prediction and validation of ash sticking probability under fouling conditions in pulverized coal combustion. Proceedings of the Combustion Institute, 2021, 38: 5311-5318.
[15] M Song, Q Huang, F Niu, S Q Li. Recirculating structures and combustion characteristics in a reverse-jet swirl pulverized coal burner. Fuel, 2020, 270: 117456.
[16] P Ma, Q Huang, Q Gao, S Q Li. Effects of Na and Fe on the formation of coal-derived soot in a two-stage flat-flame burner. Fuel, 2020, 265: 116914.
[17] A Adeosum, Q Huang, T Li, A Gopan et al. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies. Review of Scientific Instruments, 2018. 89(2).
[18] G D Li, S Q Li, Q Huang, Q Yao. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace. Fuel, 2015, 143: 430-437.
[19] G D Li, S Q Li, X G Xu, Q Huang, Q Yao. Dynamic behavior of biomass ash deposition in a 25kW one dimensional down-fired combustor. Energy \& Fuels, 2014, 28: 219-227.
[20] Y Yang, Q Huang*, Y Zhan, S Q Li. Quantitative measurement of the sticking probability of solid-fuel-generated ash particles at elevated temperature. Journal of Engineering Thermophysics, 2023, 44(1): 244-249. (in Chinese)
[21] Q Huang, S Q Li, G D Li, Q Yao. Simulations of fine particle progressive evolution in a pulverized coal combustor. Journal of Engineering Thermophysics, 2014, 35(5): 1026-1029. (in Chinese)
[22] K Wang, Q Huang, P Ma, Y Yang, S Q Li. Coupling of population balance model with reactor network in pulverized coal combustion. Journal of Engineering Thermophysics, 2024, accepted. (in Chinese)
[23] S Xiao, Q Huang, S Q Li. Investigation of droplet combustion characteristics of boron-based nanofluid fuels. Journal of Engineering Thermophysics, 2024, accepted. (in Chinese)
[24] Y Li, Q Huang, P Ma, R Kneer, S Q Li. Experimental and numerical study on the combustion characteristics of standard swirl flame. Journal of Engineering Thermophysics, 2022, 43(4): 1091-1096. (in Chinese)
[25] P Ma, Q Huang*, H Yan, R Ji, S Q Li. Laser-induced incandescence (LII) diagnostics on sodium-soot interaction in early stage of pulverized coal combustion. Coal Conversion, 2022, 45(3): 11-17. http://dx.doi.org/10.19726/j.cnki.ebcc. 202203002 (in Chinese)
[26] Y Xu, Q Huang, M Song, S Q Li. Theoretical study on the effect of particle spacing on ignition and combustion behavior of pulverized coal particles. Journal of China Coal Society, 2022, 47(4): 1701-1708. http://dx.doi.org/10.13225/j.cnki.jccs.2021.0398 (in Chinese)
[27] M Wang, Q Huang, W Cao, S Q Li. Numerical investigation on the flow field and performance optimization of the direct air-cooled condenser. Clean Coal Technology, 2022, 28(4): 66-74. http://dx.doi.org/10.13226/j.issn.1006-6772.21031102 (in Chinese)
[28] P Ma, Q Huang, S Q Li. Effect of soot-mineral interaction on fine particulate formation in pulverized coal combustion. Journal of Engineering Thermophysics, 2021, 42(7): 18951900. (in Chinese)
[29] M Song, Y Huang, Q Huang, S Q Li. Discussion on low-load stable combustion technology of swirl pulverized-coal burner. Proceedings of the CSEE, 2021, 41(13): 4552-4565. http://www.pcsee.org/CN/10.13334/j.0258-8013.pcsee. 210311 (in Chinese)
[30] K Wang, Q Huang*, P Ma, Z Wang, S Q Li. Detailed population balance modeling of earlystage fine particle formation in a reactor network of solid fuel combustion. Submitted.
[31] S Xiao, Q Huang*, Y Li, S Q Li. Effect of addition of energetic boron nanoparticles on ignition, burning and micro-explosion of falling ethanol droplets. Submitted.

> Ammonia combustion

[1] P Ma, Q Huang*, T Si, Y Yang, S Q Li. Experimental investigation of NOx emission and
ash-related issues in ammonia/coal/biomass co-combustion in a $25-\mathrm{kW}$ down-fired furnace. Proceedings of the Combustion Institute, 2023, 39: 3467-3477.
[2] P Ma, Q Huang*, Z Wu, J Lyu, S Q Li. Optical diagnostics on coal ignition and gas-phase combustion in co-firing ammonia with pulverized coal on a two-stage flat flame burner. Proceedings of the Combustion Institute, 2023, 39: 3457-3466.
[3] J Sun, Q Huang, Y Tang, S Q Li. Stabilization and emission characteristics of gliding arcassisted $\mathrm{NH}_{3} / \mathrm{CH}_{4} /$ air premixed flames in a swirl combustor. Energy \& Fuels, 2022, 36: 8520-8527.
[4] Y Yang, Q Huang, J Sun, P Ma, S Q Li. Reducing NOx emission of swirl-stabilized ammonia/methane tubular flames through a fuel-oxidizer mixing strategy. Energy \& Fuels, 2022, 36: 2277-2287.
[5] P Ma, H Nicolai, Q Huang, et al. Numerical investigation on pyrolysis and ignition of ammonia/coal blends during co-firing. Combustion and Flame, 2024, 261: 113268.
[6] Y Di, Q Huang, P Ma, F Niu, S Q Li. Experimental investigation on combustion characteristics of cofiring biomass with ammonia. Proceedings of the CSEE, 2022, 42(18): 6547-6552. http://www.pcsee.org/CN/10.13334/j.0258-8013.pcsee. 220414 (in Chinese)
[7] J Sun, Q Huang, Y Zhang, Y Yang, S Q Li. Stabilization and NOx emission of gliding arcassisted $\mathrm{CH}_{4} / \mathrm{NH}_{3}$ swirl flames. Journal of Engineering Thermophysics, 2022, 43(8): 22342241. (in Chinese)
[8] Z Wu, Q Huang, P Ma, et al. Single-coal-particle ignition in cofiring ammonia with coal. Clean Coal Technology, 2023, accepted. https://kns.cnki.net/kcms2/detail/11.3676.TD.20230710.1658.008.html (in Chinese)
[9] Y Li, Q Huang, J Sun, R Kneer, S Q Li. Experimental investigation on the effects of air/fuel distribution on stability limit and NOx emission of $\mathrm{NH}_{3} / \mathrm{CH}_{4} /$ air flame. Submitted.
[10] Y Yang, Q Huang, P Ma, T Si, S Q Li. Novel methane splitting strategy to reduce NOx emission in staged swirl-stabilized ammonia/methane tubular flames. Submitted.
[11] P Ma, Q Huang, Z Wu, et al. Effects of coal rank and particle size on ammonia/coal stream ignition. Submitted.
[12] T Si, Q Huang, X Lei, et al. Moisture influence on the ignition behavior for co-firing ammonia with pulverized coal. Submitted.
[13] Y Yang, Q Huang, P Ma, T Si, S Q Li. Emission characteristics of fuel-staged swirlstabilized ammonia/methane tubular flames in a wide range of conditions. Submitted.
[14] B Chen, J Zhuo, Q Huang, Y Yang, et al. Ammonia pre-decomposition staged combustion in the methane/air flue gas. Submitted.
[15] Tong S, Q Huang, Y Yang, et al. Advancements and future outlook in fundamental research and technological applications for ammonia co-firing with coal. Submitted. (in Chinese)
> AI for power generation techniques
[1] Z Wang, Q Huang, K Wang, S Q Li. Real-time optimization analysis of coal consumption of co-generation units under varied loads. Proceedings of the CSEE, 2023, 43: 1347-1358. https://dx.doi.org/10.13334/j.0258-8013.pcsee. 222277 (in Chinese)
[2] Z Wang, Q Huang*, K Wang, et al. Studies on key technology of intelligent big-data cloud platform for coal-fired power plants. Journal of Chinese Society of Power Engineering, 2024, accepted. (in Chinese)
[3] X Sha, Q Huang*, G Liu, S Q Li. Time series analysis of monitored heating surface wall temperature of coal-fired boiler. Journal of Combustion Science and Technology, 2021, 27(5): 475-481. (in Chinese)
[4] Z Wang, Q Huang*, G Liu, et al. Flexibility-oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system. Southern Energy Construction, 2024, accepted. (in Chinese)
[5] Z Wang, Q Huang*, K Wang, et al. Knowledge-inspired data-driven prediction of metal overheating risks in flexible utility boilers. Submitted.

Chapters / Conference proceedings

[1] Z Wang, K Wang, Q Huang*, W Cao, S Q Li. Predicting the minimum load of coal-fired unit limited by the selective catalytic reduction system. 13th Asia-Pacific Conference on Combustion (ASPACC 2021), 2021-December.
[2] P Ma, Q Huang, Y Yang, S Q Li. Investigation of coal-derived soot formation characteristics during oxy-coal combustion in reducing-to- $\mathrm{O}_{2} / \mathrm{CO}_{2}$ ambiences. 13th Asia-Pacific Conference on Combustion (ASPACC 2021), 2021-December.
[3] Y Li, Q Huang, Y Yang, P Ma, S Q Li. Experimental and numerical study on the ammoniacoal co-combustion characteristics on a swirl burner. 13th Asia-Pacific Conference on Combustion (ASPACC 2021), 2021-December.
[4] Y Li, Q Huang*, L Duan, S Q Li. Numerical investigation of fly ash deposition onto tube bundles inside coal-fired boilers. In: Lyu J., Li S. (eds) Clean Coal and Sustainable Energy. ISCC 2019. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-1657-0_17
[5] C Li, Q Huang*, G Liu, S Q Li. In situ visual monitoring of rotary air preheater blockage: Setup and image analysis. In: Lyu J., Li S. (eds) Clean Coal and Sustainable Energy. ISCC 2019. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-1657-0_65
[6] Z Lyu, Q Huang*, Y Yang, S Q Li. Technical measures in design and operation of the 1000MW supercritical boiler burning high-slagging-propensity coal. In: Lyu J., Li S. (eds) Clean Coal and Sustainable Energy. ISCC 2019. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-1657-0_80
[7] L Duan, Q Huang, S Q Li. A population balance model for fine particle removal inside the electrostatic precipitator. In: Lyu J., Li S. (eds) Clean Coal and Sustainable Energy. ISCC 2019. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-1657-0_73
[8] Q Huang, Q Yao, S Q Li. The progressive ash formation and deposition dynamics in a 25 kW coal combustor. 11th Asia-Pacific Conference on Combustion (ASPACC 2017), 2017December.

Talks

[1] Title: NOx reduction techniques in co-firing ammonia with fossil fuels. The $2^{\text {nd }}$ Technical Seminar on Efficient Management of Flue Gas and Green and Low-Carbon Development in Non-ferrous Metal Industry, Dec 16-17, 2023, Changsha, China.
[2] Title: Prediction and in situ monitoring of ash deposition from burning typical low-rank coal. China National Symposium on Combustion 2023, Oct 12, 2023, Hefei, China.
[3] Title: Poisson method of moments for kinetic equations of polar active matter. Sino-German workshop on advanced numerical methods for hyperbolic balance laws, Sept 25-27, 2023, Beijing, China.
[4] Title: Stability-preserving quadrature-based moment-closure model hierarchy. Peking University, Sep 13, 2023, Beijing; and Southern University of Science and Technology, Sep 15, 2023, Shenzhen.
[5] Title: Moment methods for a kinetic model of polar active matter. The Second HKSIAM Biennial Meeting, Aug 28-Sep 1, 2023, Hong Kong.
[6] Keynote speech: Data centric techniques for safe and efficient operation of coal-fired power units. The $10^{\text {th }}$ International Symposium on Coal Combustion, Aug 7-9, 2023, Taiyuan, China.
[7] Title: Quadrature-based moment methods for kinetic equations: Stability analysis \& multidimensional models. Academy for multidisciplinary studies, Capital Normal University, Jun 13, 2023, Beijing.
[8] Title: Fine particulate evolution and co-firing with carbon-free fuels in pulverized coal combustion, Institute for Computational Mathematics. Chinese Academy of Science, May 24, 2023, Beijing
[9] Title: Discrete-velocity-direction models of BGK-type with minimum entropy. NSNMF20, Mar 31-Apr 2, 2023, Nanjing, China.
[10] Title: Method of moments for solving kinetic equations. Applied and Computational Math Colloquium of YMSC, Tsinghua University, Mar 16, 2023.
[11] Title: Discrete-velocity-direction models of BGK-type with minimum entropy. CSIAM 2022, Nov 19-20, 2022, held virtually.
[12] Title: Technical and economic analysis of co-firing ammonia with fossil fuels towards carbon neutrality. The $6^{\text {th }}$ National Yong Scholar Meeting on Combustion Research, May 21-23, 2021, Hangzhou, China.
[13] Title: Equilibrium stability analysis of hyperbolic shallow water moment equations. SIAM Conference on Computational Science and Engineering, Mar 1-5, 2021, held virtually.
[14] Title: Stability analysis of quadrature-based moment methods for kinetic equations. SinoGerman workshop on advanced numerical methods for hyperbolic balance laws, Sept 2527, 2019, Beijing, China.
[15] Title: Kinetic simulation of fine particulate matter evolution \& deposition inside a $25-\mathrm{kW}$ pulverized coal combustor. 14th International Conference on Energy for a Clean Environment, Sept 8-12, 2019, Madeira, Portugal.
[16] Title: Numerical \& Experimental investigations of ash deposition onto tube bundles in pulverized coal combustion: Impaction \& Sticking. 9th International Symposium on Coal Combustion, July 21-24, 2019, Qingdao, China.
[17] Title: Towards fouling mitigation in the utilization of solid fuel: An active control of fuel property and operation conditions. $10^{\text {th }}$ International Conference on Applied Energy, August 22-25, 2018, Hong Kong.
[18] Title: Dynamic evolution of impaction and sticking behaviors of fly ash particle in pulverized coal combustion. $37^{\text {th }}$ International Symposium on Combustion, 29 July-3 August, 2018, Dublin, Ireland.
[19] Title: The progressive ash formation and deposition dynamics in a 25 kW coal combustor. $11^{\text {th }}$ Asia-Pacific Conference on Combustion, Dec 10-14, 2017, Sydney, Australia.
[20] Title: Impaction and sticking behaviors of ash particles inside a coal-fired furnace. China National Symposium on Combustion 2017, Nanjing.
[21] Title: Sub-micron particle formation during pulverized coal combustion in a flat-flame burner. 2016 US Spring Technical Meeting, May 15-17, 2016, Knoxville.
[22] Title: Mechanisms for the size partitioning of several volatile species in the particulates formed during pulverized coal combustion. The $9^{\text {th }}$ US National Combustion Meeting, May 17-20, 2015, Cincinnati.
[23] Title: Dynamic simulations of the alkali vapor-particulate interactions during pulverized coal
combustion. China National Symposium on Combustion 2014, Xi'an.
[24] Title: Simulation of fine particle evolution inside a pulverized coal combustor. China National Symposium on Combustion 2013, Chongqing.

Patents

[1] Q Huang, X Sha, S Q Li, et al. Optimization method and system for air distribution in coalfired boilers. China Patent Granted, CN202110179184.2.
[2] G Liu, S Q Li, Q Huang, et al. A method to monitor the air preheater blockage. China Patent Granted, CN201911218258.8.
[3] S Q Li, M Song, Q Huang, et al. Annular wall-heating reversed-jet pulverized coal combustor. China Patent Granted, CN202011026288.1.
[4] S Q Li, M Song, Q Huang, et al. A swirl burner and the operation method for flame stabilization based on similarity criteria. China Patent Granted, CN202010181455.3.
[5] S Q Li, M Song, Q Huang, et al. A fast-pyrolysis staged-injection probe of ammonia fuel. China Patent Granted, CN202111040556.X.
[6] S Q Li, M Song, J Sun, Q Huang. Atmosphere-adjustable multi-staged swirl ammonia burner. USA Patent Granted, 17580504.

Software Copyrights

[1] Software for predicting the load-variation ability of thermal power units V1.0. China Computer Software Copyright, 2022SR0000733.
[2] Software for optimizing NOx removal in flexible operations of coal-fired units V1.0. China Computer Software Copyright, 2022SR0153204.
[3] Software for predicting the initial ash deposition rate onto the heating surfaces in coal-fired units V1.0. China Computer Software Copyright, 2022SR0153244.
[4] Software for predicting the fly ash size distributions from pulverized coal combustion V1.0. China Computer Software Copyright, 2021SR0240152.
[5] Software for analyzing and predicting overheating of boiler surfaces in thermal power units V1.0. China Computer Software Copyright, 2022SR0153203.
[6] Software for predicting the evolution of carbonaceous particles in solid fuel combustion V1.0. China Computer Software Copyright, 2022SR0213903.
[7] Software for predicting the particulates evolution in co-firing ammonia with coal V1.0. China Computer Software Copyright application.
[8] Software for optimizing the coal consumption of CHP units with flexible outputs V1.0. China Computer Software Copyright application.

References

Available upon request

