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1 Introduction

Many real world problems give rise to mathematical models coined by data functions
that behave differently on different length scales. On a small scale they show – possibly
periodic – oscillations of different strength. On larger scales they show a totally different
behaviour, a linear one for example. Discretization of these kinds of models can be a very
cumbersome task, at least when a large physical domain has to be examined.
Typical challenges that arise in this context are memory shortage and unfeasible run-

times. Using standard discretization methods such as Finite Element (FE), Finite Volume
(FV) or Discontinuous Galerkin (DG) methods, one usually runs into one or even both
of them, even on up-to-date high-performance computers. In particular the large run-
time becomes an issue when the application is embedded into a so-called many-query or
real-time context, that is: the problem has to be solved multiple times, as for parameter
studies, or for a given set of model data, simulation data is needed rapidly, as for flood
prediction.
One typical example for this kind of application are two-phase flows in porous media

and especially groundwater flow problems. Here, the permeability of the porous medium
usually shows fluctuations on a scale of centimeters to meters, while the computational
domain is spread over kilometers. Additionally, the quantities of interest, the pressure
and the saturation, are characterized by a coupled system of partial differential equations
that is solved iteratively. Thus, the equation comprising the troublesome coefficient has
to be solved numerous times, such that we immediately find ourselves in the problem
area described above.
Other applications that fit in this framework are, for example, questions that deal with

composite materials and oil production.
In the work at hand, we will concentrate on two-phase flow problems as application.

Nevertheless, our ansatz can be adopted to different applications as the main ideas and
concepts are not restricted to this particular case.

Background

The interest in these kinds of multiscale problems and the amount of work in this field
has been huge in the last decades. We would like to give a short – naturally incomplete –
overview of the different approaches, especially those that motivated and influenced this
work.
With the Multiscale Finite Element Method (MSFEM), Hou and co-workers [EH07,

HWC99,HW97] introduced the idea of using local fine scale solutions as basis functions
of a FE scheme on a coarse mesh. Here, the focus mainly lies in overcoming the extensive
need for memory.

1



1. Introduction 2

In a recent work, Aarnes and co-workers [AEJ08] continued this idea with their Mixed
Multiscale Finite Element Method (MMFEM) using limited global information that in-
corporates information about the solution on both small and large scale into the base
functions. As this approach necessitates the computation of global solutions in the con-
struction of the base functions, it is only feasible in many-query or real-time contexts as
those described above.
Further approaches for numerical multiscale problems are the Heterogenous Multiscale

Method (HMM) [EEL+07], the Variational Multiscale Method (VMM) [HS96,Hug95] and
the Multiscale Finite Volume (MFV) method [JLT03]. The method to be introduced also
bears a resemblance to the Reduced Basis Element method [MR02,MR04].
Apart from the multiscale field, the problems described above have another dimen-

sion: The many-query/real-time one. So far, we only gave a short impression of what has
been done for the multiscale part. Still, the question of repeated or increased rapid solu-
tion for computationally expensive, so called Parametrized Partial Differential Equations
(P2DEs), has gained a lot of importance in the last decade, too. In this work, a P2DE in
its variational form denotes a partial differential equation of the form

a(u, v,µ) = b(v) ∀v ∈ X (1.1)

with a suitable Hilbert space X on a polygonally bounded convex domain Ω ⊂ Rd. The
quantity µ ∈ P denotes a parameter vector stemming from a bounded parameter domain
P ⊂ Rdµ and a and b are continuous bilinear and linear forms, respectively.
For these kinds of equations, the Reduced Basis (RB) method, originally introduced by

Patera et al. [PR07], provides model order reduction by projection of the scheme of choice
(FE,FV,. . . ) onto a discrete space of a typically very small dimension, the Reduced Basis
Space. The RB space is made up by the reduced basis which is a set of so-called snapshots
which are – possibly orthonormalized – solutions to (1.1) using a discrete scheme with a
high resolution (FE,FV, . . . ). This scheme will be denoted as the high dimensional one
in the sequel. The scheme resulting from the projection step, in contrast, will be denoted
as the low dimensional one.
Many different aspects of this method have been investigated. In particular worth

mentioning are the questions of "optimal" choice of the reduced basis and a posteriori
error estimation as this work will give new impulses on both ones.
The original Greedy-algorithm for basis construction (see [PR07], for example) selects

parameter vectors µ for the calculation of the snapshots using an a posteriori error
estimator: It iteratively enlarges the RB space by evaluating the error estimator for all
µ ∈ PD where PD ⊂ P is a finite subset, and adding the snapshot for the parameter µ
that maximized the error bound to the reduced basis. This idea was expanded for time-
dependent problems by Haasdonk and Ohlberger [HO08] using a Proper Orthogonal
Decomposition (POD) to compress the information inherited in a whole trajectory into
one single function. Most of the state-of-the-art RB methods rely on rapidly evaluable
error estimators. Those are used in the construction of the RB space as well as later on in
the low dimensional simulations. Most of these estimators compare the low dimensional
solution to the matching high dimensional one and thus neglect the error introduced by
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the high dimensional discretization. As they form crucial ingredients of the RB method,
examples for such error estimators can be found in lots of publications dealing with the
RB method, see the above-mentioned works by Patera et al. [PR07] or Haasdonk and
Ohlberger [HO08] for example.
In this work we will use the DG discretization method. It provides large flexibility

regarding the choice of the mesh and polynomial degrees which can be seen as a good
advantage over the FE or FV method. For a good introduction to all different kinds of
DG methods, we may redirect to the work of Arnold et al. [ABCM01] and to the book
by M. Riviere [Riv08]. For this work, the so-called Symmetric Interior Penalty (SIP)
method, stemming from the late 1970s and originally introduced by Wheeler [Whe78]
and Arnold [Arn82], is of special interest. The SIP method yields a symmetric bilinear
form – which is quite desirable in some cases – and enforces continuity of the solution by
penalizing unsteadiness on inner intersections of the mesh. We will give more details on
this method in Chapter 3.1.

Novelties in this Work

In this thesis, as mentioned already, we will deal with two-phase flow equations – as we
neglect gravity and capillary effects – of the form

−∇ · (λ(S)k∇p) = f, (1.2)

where p is the unknown pressure, λ(S) denotes the total mobility, k is the – possibly
oscillating – permeability and f a source term. The saturation S is given by

∂tS +∇ · (vfw(S)) = 0, (1.3)

where v and fw are the total velocity and the fractional flow of one phase, respectively.
As we will assume S, and thus λ to be dependent on a parameter µ, equation (1.2)
describes a P2DE. Details on the parameter dependence of this problem will be given in
Section 2.2.
Using this problem as a hook, we will introduce a new discretization method, that

brings together ideas from both worlds: We will use means from the multiscale community
to handle scale separation in the coefficient k and a RB framework to handle the many-
query nature of problem (1.2). In more detail, we will alter the MMFEM ansatz by
constructing the basis functions from global fine scale solutions instead of local ones.
These solutions will then be restricted to each entity of a coarser grid in turns, such that
we end up with one base function per coarse grid cell. Doing this in turns, embedded into
a Greedy algorithm, and compressing the information on each cell after each extension
step using the POD algorithm, we obtain one set of base functions per coarse cell. The
span of the collection of all these sets then forms the reduced basis.
As the compression step may produce different numbers of base functions on different

coarse cells, we will need a scheme on the reduced basis that allows discontinuities over
the edges of the coarse cells. We will therefore use an SIP scheme on the reduced space,
denoted as the reduced scheme.
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We will conclude the presentation of this new multiscale approach with some solvability
analysis and an a posteriori error estimator, that we will deduce using duality techniques.
Finally, we will present some numerical results that demonstrate, that the new ansatz

performs quite well for the stated problem (1.2)–(1.3).

Outline of the Thesis

The thesis is structured as follows: Chapter 2 is dedicated to the definition of the govern-
ing equation in analytical, weak and discrete forms. In Chapter 3, we introduce the new
ansatz and provide solvability results for the resulting low dimensional scheme. Chapter
4 deals with error analysis: The above-named error estimator is introduced and proven.
In Chapter 5, we give a short, incomplete overview of the implementation that was done.
The numerical tests for all parts of the new scheme are to be found in Chapter 6.



2 The Model Problem

2.1 Strong Formulation

For a given Lipschitz-domain Ω ⊂ Rd we are looking for p ∈ C2(Ω) such that for f ∈ C0(Ω)
and sufficiently smooth mobility λ ∈ L∞(Ω) and permeability k ∈ [L∞(Ω)]d it holds:

−∇ · (λk∇p) = f in Ω, (2.1)
p = gD on ∂Ω, (2.2)

where gD ∈ C0(∂Ω). We assume that there exist k1, k2 greater than zero, such that for
all a ∈ Rd we have

k1a · a ≤ λ(x)k(x)a · a ≤ k2a · a ∀x ∈ Ω, (2.3)

where the last inequality is obvious due to the assumption on λ and k. Here and through-
out the work we use bold faced letters for tensor quantities: lower case ones for vectors
and upper case ones for matrices. We will denote the coordinates of a two-dimensional
coordinate vector x by x and y.

2.2 Parameter Dependence

In the work at hand, as mentioned in the introduction, we assume the mobility λ to
depend on a parameter vector µ = (µ1, . . . , µNλ) stemming from a bounded parameter
domain P ⊂ RNλ . For the method to be introduced to be efficient, we require this
dependency to take the form

λ(x,µ) =
Nλ∑
ν=1

µνλν(x), (2.4)

with parameter independent functions λν .
One example of a possible λ, which will also be used in the numerical experiments

in Chapter 6, is the total mobility in a two-phase flow setting for oil and water phases.
Here, for a given saturation S one usually sets

λ(x) = λw(S(x)) + λo(S(x)) (2.5)

=
krw(S(x))

ηw
+
kro(S(x))

ηo
(2.6)

=
S(x)2

ηw
+

(1− S(x))2

ηo
, (2.7)

5
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where krw and kro are the relative permeabilities of water and oil phases correspondingly
and ηw and ηo are the viscosities of the water and oil phase correspondingly.
Now, if we assume S to take the form (2.4):

S(x,µ) =
NS∑
ν=1

µνSν(x), (2.8)

λ(x,µ) can also be written as a linear combination of products of parameter dependent
and parameter independent parts:

λw(x,µ) =
1
ηw
S(x,µ)2

=
1
ηw

NS∑
m=1

NS∑
n=1

µnµmSn(x)Sm(x),

which obviously is of the form (2.4) and together with

λo(x,µ) =
1
ηo
− 2
ηo
S(x,µ) +

ηw
ηo
λw(x,µ)

provides the desired shape for λ:

λ(x,µ) =
1
ηo
− 2
ηo
S(x,µ) +

ηo + η2
w

ηwηo

NS∑
m=1

NS∑
n=1

µnµmSn(x)Sm(x). (2.9)

Remark 2.2.1. This choice of S could, for example, make sense to simulate the flooding
of the domain by water. The functions Sν would then be (regularized) indicator functions
for different parts of the domain as indicated in Figure 2.1 and the parameter vector µ
would control which part of the domain is flooded.
In addition to the mobility λ, we will allow the boundary data to be dependent on the

parameter, too. We assume gD to take the form

gD(x,µ) =
Nλ∑
η=1

µηgη(x) (2.10)

with parameter independent functions gν .
Remark 2.2.2. For the rest of the work, in order to keep the notation clearer, we will
suppress µ and x in λ(x,µ) whenever possible.

2.3 Weak Formulation

Definition 2.3.1 (Weak formulation). Let gD ∈ H
1
2 (∂Ω). Then, by the trace theorem,

there exists gD ∈ H1(Ω), gD = gD on ∂Ω. Define

b(v, w) =
∫

Ω
λk∇v∇w,

l(v) =
∫

Ω
fv −

∫
Ω
λk∇gD∇v.
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Figure 2.1: Regularized indicator function for the left part of the domain

We are then looking for p0 ∈ H1
0 (Ω), such that

b(p0, v) = l(v) ∀v ∈ H1
0 (Ω) (2.11)

and get the weak solution of problem (2.1) as p = gD + p0.

Remark 2.3.2. The weak solution p from Definition (2.11) fulfils∫
Ω
λk∇p∇v =

∫
Ω
fv ∀v ∈ H1

0 (Ω).

2.4 Finite Element Formulation

Ω

F ∈ Z

h

E ∈ Th

Figure 2.2: The two grids

The first step towards a discrete formulation of problem (2.11) is to define a grid. In
addition to the grid Th which we need for the FE method, we define a coarser grid Z:
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Definition 2.4.1 (Grid). Let Th be a conforming triangulation of the domain Ω. Denote
the inner entities of codimension 1 of Th by ΓI , the boundary ones by ΓB and the sum
of all codim 1 entities by Γ. With each element e ∈ Γ we associate a unique unit normal
vector ne. Furthermore, let hE = diam(E) be the diameter of element E ∈ Th and
h = maxE∈Th hE be the mesh size of Th. We assume

∀E ∈ Th : ∀e ∈ ∂E : |e| ≤ hd−1
E ≤ hd−1, (2.12)

where d, as always in the sequel, denotes the world dimension.
In addition, we define a second grid Z whose codimension 1 entities match with certain

intersections of Th and whose cells enclose more than one cell of Th as indicated in Figure
2.2. The sum of all intersections of cells in Z will be denoted by Ξ, the inner intersections
by ΞI and the boundary ones by ΞB.

The first discrete formulation of problem (2.1) introduced here is a FE formulation.
We introduce the discrete function spaces

Sh,k =
{
v ∈ C0(Ω)|v|E ∈ Pk(E) ∀E ∈ Th

}
,

S0
h,k = Sh,k ∩ {v ∈ C0(Ω)| v|∂Ω = 0}.

Then the Finite Element formulation of (2.11) is:

Definition 2.4.2 (Finite Element Solution). Let ph,0 ∈ S0
h,1, be the solution of

b(ph,0, v) = l(v) ∀v ∈ S0
h,1. (2.13)

Then the Finite Element solution of (2.11) if given as ph = ph,0 + gD.



3 The Localized Reduced Basis Scheme

3.1 Non-Discrete Discontinuous Galerkin Formulation

As described in the introduction (see Chapter 1), we may like to use a different number
of base functions on each coarse cell, which may lead to discontinuities over intersections.
Therefore the next important step is to find a variational formulation of the model prob-
lem (2.1) that allows discontinuities over intersections. As mentioned above, we choose to
use a SIP method that provides the possibility to penalize the discontinuities and has the
favorable quality of symmetry. For further examples and general analysis on this method
we refer to the above-mentioned introductions to the DG method [ABCM01],[Riv08] and
[Whe78].
We start with the definition of a new function space Hk(Th) that allows discontinuities

over element faces:

Hk(Th) =
{
v ∈ L2(Ω)

∣∣∣ v|E ∈ Hk(E) ∀E ∈ Th
}
.

A function v ∈ Hk(Th) has a well defined trace along each intersection of a single element.
Nevertheless, v may have two different traces on intersections e that are shared by two
elements E1, E2. In such cases we define the mean value and jump of v on e:

{v} =
1
2
v|E1

+
1
2
v|E2

, [v] = v|E1
− v|E2

, (3.1)

if the unit normal vector ne is oriented from E1 to E2.
For e ∈ ΓB we define

{v} = v, [v] = v. (3.2)

The jump and mean value fulfil the following equations that can be proven easily:

Lemma 3.1.1. For e = E1 ∩ E2 ∈ ΓI , v ∈ H2(Th), the following hold:
1. If v ∈ C0(E1 ∪ E2): [v] = 0, {v} = v

2. If w ∈ H2(Th): [vw] = [v]{w}+ {v}[w].

Definition 3.1.2 (Bilinear Form and Right Hand Side). We now introduce the bilinear
form

BDG(v, w) =
∑
E∈Th

∫
E
λk∇v · ∇w −

∑
e∈Γ

∫
e
{λk∇v · ne}[w]

−
∑
e∈Γ

∫
e
{λk∇w · ne}[v] + JσJ ,βJ (v, w), (3.3)

9
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where the bilinear form

JσJ ,βJ (v, w) =
∑
e∈Γ

σeJ
|e|βJ

∫
e
[v][w], (3.4)

with σeJ > 0, βJ > 0 stated later, penalizes unsteadiness of the functions over intersec-
tions.
Additionally, let

L(v) =
∑
E∈Th

∫
E
fv +

∑
e∈ΓB

∫
e

(
σeJ
|e|βJ

v − λk∇v · n
)
gD. (3.5)

We then obtain the non-discrete Discontinuous Galerkin formulation of problem (2.1):
Find p ∈ H2(Th), such that

BDG(p, v) = L(v) ∀v ∈ H2(Th). (3.6)

Remark 3.1.3. In the following theorem, we will show consistency of the DG formulation
just introduced. Its proof is oriented on the standard proofs for Interior Penalty methods,
see [Riv08] for example.

Theorem 3.1.4 (Consistency). Every weak solution of problem (2.1) with p ∈ H2(Ω) is
a solution of the non-discrete formulation (3.6).

Proof. Let p be a weak solution of (2.1), that is:∫
Ω
λk∇p · ∇v =

∫
Ω
fv ∀v ∈ H1

0 (Ω).

If we now integrate by parts and restrict the arising equation to one element E ∈ Th we
get ∫

E
−∇ · (λk∇p)v =

∫
E
fv.

This equation also holds for test functions v with v 6= 0 on ∂Ω (for E ∩ ∂Ω = ∅ this
is obvious, for the other case, one should consider, that the boundary of E has zero
measure). As the behaviour of v outside of E does not influence the equation and as
H2(E) ⊂ H1(E), we may hence switch to v ∈ H2(Th). Application of Green’s theorem
for weakly differentiable functions (see [Alt06], Theorem A6.8) yields∫

E
λk∇p · ∇v −

∫
∂E
λk∇p · nEv =

∫
E
fv.

By summation over all elements we get∑
E∈Th

∫
E
λk∇p · ∇v −

∑
E∈Th

∫
∂E
λk∇p · nEv =

∫
Ω
fv. (3.7)
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With the definition (3.2) of the jump of the function v we can write∑
E∈Th

∫
∂E
λk∇p · nEv =

∑
e∈ΓI

∫
e

[λk∇p · nev] +
∑
e∈ΓB

∫
e
λk∇p · nev,

where we switched from the normals nE to ne that coincide on each codimension 1 entity
of each element E.
Following Lemma 3.1.1, we can write

[λk∇p · nev] = [λk∇p · ne] {v}+ {λk∇p · ne} [v].

As p ∈ H2(Ω) we get with Green’s theorem that λk∇p · ne is uniquely defined on every
e ∈ ΓI and thus

[λk∇p · ne] = 0 weak on every e ∈ ΓI . (3.8)

Therefore ∑
E∈Th

∫
∂E
λk∇p · nEv =

∑
e∈ΓI

∫
e
{λk∇p · ne} [v] +

∑
e∈ΓB

∫
e
λk∇p · nev.

Now, we get from (3.7)∑
E∈Th

∫
E
λk∇p · ∇v −

∑
e∈ΓI

∫
e
{λk∇p · ne} [v]−

∑
e∈ΓB

∫
e
λk∇p · nev

=
∫

Ω
fv.

We now add −
∑

e∈ΓB

∫
e λk∇v · nep and

∑
e∈ΓB

σej
|e|β
∫
e pv to both sides and get

∑
E∈Th

∫
E
λk∇p · ∇v −

∑
e∈ΓI

∫
e
{λk∇p · ne} [v]−

∑
e∈ΓB

∫
e
λk∇p · nev

−
∑
e∈ΓB

∫
e
λk∇v · nep+

∑
e∈ΓB

σej
|e|β

∫
e
pv

=
∫

Ω
fv −

∑
e∈ΓB

∫
e
λk∇v · nep+

∑
e∈ΓB

σej
|e|β

∫
e
pv.

Because of [w] = w and {w} = w on ΓB (see (3.2)) and [p] = 0 on ΓI due to the regularity
of p, the left side equals BDG(p, v). As p = gD on ΓB, the right side equals L(v) and thus

BDG(p, v) = L(v) ∀v ∈ H2(Th),

that is: p is solution to the non-discrete Discontinuous Galerkin formulation.
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3.2 Discrete Discontinuous Galerkin Formulation

We get a discrete DG formulation by restricting the non-discrete DG formulation (3.6)
to a finite dimensional function space. In our case, following the Reduced Basis idea,
this function space shall be spanned by solutions of the main problem or a more simple
problem with a similar structure. By this we achieve, that the ansatz space already
comprises some information about the characteristics of the possible solutions to the
problem.

The first step of the construction of the ansatz space is to choose M parameter vectors
µ1, . . . ,µM and solve the main equation with a finite element method, that is perform
(2.13). The respective solutions shall be denoted by p1, . . . , pM .
Next, by restriction of p1, . . . , pM to the cells F ∈ Z we define sets of functions

W̃F
M = {ϕi = pi|F |i = 1, . . . ,M } .

From these local sets we now construct the local ansatz spaces using a Proper Orthogonal
Decomposition (POD):

WF
MF

=
〈{
ϕF1 , . . . , ϕ

F
MF

}〉
=
〈
POD

({
ϕ
∣∣∣ϕ ∈ W̃F

M

})〉
,

where 〈·〉 denotes the span of a given set.
Remark 3.2.1. The details of the POD are not subject to this work, the interested reader
may be referred to [Jol02] for a good description of the method.
Now, the ansatz space for the discrete Discontinuous Galerkin scheme is finally given

as

WN =
⋃
F∈Z

WF
MF

, (3.9)

where N = dim(WN ) =
∑

F∈ZMF .
We may note here, that the construction of WN will be explained in greater detail in

Section 3.3.
A function v ∈WN can now be written as

v =
∑
F∈Z

MF∑
i=1

aFi ϕ
F
i , (3.10)

where aFi ∈ R for all F ∈ Z, i ∈ {1, . . . ,MF }. Here ϕFi is defined to be zero outside of
F .
If {ϕ1, . . . , ϕN} is the base of WN , given by merging the local bases {ϕF1 , . . . , ϕFMF

} of
the spaces WF

MF
, we can simplify this representation: Every v ∈WN can then be written

as

v =
N∑
i=1

aiϕi, (3.11)
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with ai ∈ R ∀i ∈ {1, . . . , N}.
The discrete DG scheme now reads as follows: Find pN ∈WN , such that

BDG(pN , v) = L(v) ∀v ∈WN , (3.12)

or, equivalently, find pN ∈WN , such that

BDG(pN , ϕi) = L(ϕi) ∀i ∈ {1, . . . , N}. (3.13)

Using the representation (3.11) of pN , λ =
∑Nλ

ν=1 µνλν and gD =
∑Nλ

η=1 µηgη, the coeffi-
cient vector a = (a1, . . . , aN )> fulfils(

Nλ∑
ν=1

µν

(
Aν −Bν − (Bν)>

)
+C

)
· a = b+

Nλ∑
ν=1

µνc
ν +

Nλ∑
ν=1

Nλ∑
η=1

µνµηd
ν,η (3.14)

with

(Aν)ij =
∑
E∈Th

∫
E
λν(x)k∇ϕi · ∇ϕj , (i, j) ∈ {1, . . . , N}2

(Bν)ij =
∑
e∈Γ

∫
e
{λν(x)k∇ϕi · n}[ϕj ], (i, j) ∈ {1, . . . , N}2

(C)ij =
∑
e∈Γ

σe

|e|β

∫
e
[ϕi][ϕj ], (i, j) ∈ {1, . . . , N}2

(b)i =
∫

Ω
fϕi

(cη)i =
∑
e∈ΓB

∫
e

σe

|e|β
ϕigη, i ∈ {1, . . . , N}

(dν,η)i = −
∑
e∈ΓB

∫
e
λνk∇ϕi · n gη i ∈ {1, . . . , N}.

(3.15)

Remark 3.2.2. In the sequel we will also use coefficient vectors aF ∈ RMF , that shall be
made up of the coefficients to all base functions on the coarse cell F . This will prove to
be advantageous when we use the description (3.10) of a function v ∈WN .

3.2.1 Properties

In the following, we will prove some important properties of the discrete DG scheme.
For the proof of existence and uniqueness of a solution to the discrete DG scheme we

will use the following energy norm on WN :

‖v‖E =

∑
E∈Th

∫
E
λk∇v · ∇v + JσJ ,βJ (v, v)

 1
2

. (3.16)
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Remark 3.2.3. As it will turn out to be convenient in the development of error estimators,
we will prove the following results for v ∈ H2(Th). This, together with WN ⊂ H2(Th),
yields the corresponding results for v ∈WN .

Lemma 3.2.4. ‖ · ‖E defines a norm on H2(Th).

Proof. Positive homogeneity: This is obvious.
Subadditivity: We have

‖v + w‖2E = ‖v‖2E + ‖w‖2E + 2

∑
E∈Th

∫
E
λk∇v · ∇w +

∑
e∈Γ

σeJ
|e|βJ

∫
e
[v][w]

 .

Using the Cauchy-Schwarz and l1-l2–Hölder inequality we have∑
E∈Th

∫
E
λk∇v · ∇w +

∑
e∈Γ

σeJ
|e|βJ

∫
e
[v][w]

≤
∑
E∈Th

‖
√
λk∇v‖0,E‖

√
λk∇w‖0,E +

∑
e∈Γ

σeJ
|e|βJ

‖[v]‖0,e‖[w]‖0,e

≤

∑
E∈Th

‖
√
λk∇v‖20,E

1/2∑
E∈Th

‖
√
λk∇w‖20,E

1/2

+

(∑
e∈Γ

σeJ
|e|βJ

‖[v]‖20,e

)1/2(∑
e∈Γ

σeJ
|e|βJ

‖[w]‖20,e

)1/2

.

Now use
√
ab+

√
cd ≤

√
a+ c ·

√
b+ d for positive real values a, b, c, d. We then have∑

E∈Th

∫
E
λk∇v · ∇w +

∑
e∈Γ

σeJ
|e|βJ

∫
e
[v][w] ≤ ‖v‖E‖w‖E , (3.17)

which yields

‖v + w‖2E ≤ ‖v‖2E + ‖w‖2E + 2‖v‖E‖w‖E
= (‖v‖E + ‖w‖E)2 ,

as desired.
Positive definiteness: Let v ∈ H2(Th) be an arbitrary vector with ‖v‖E = 0. As both
summands on the right side of (3.16) are non-negative we can conclude:

0 =
∫
E
λk∇v · ∇v ≥ k1

∫
E
∇v · ∇v = k1︸︷︷︸

>0

‖∇v‖20,E ∀E ∈ Th

and therefore v = const a.e. in E. The second term now yields∑
e∈ΓI

σeJ
|e|βJ

∫
e
[v]2 = 0
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and ∑
e∈ΓB

σeJ
|e|βJ

∫
e
v2 = 0.

The first equation, together with σeJ > 0, implies that the jumps over all intersections are
zero, that is: v is constant in Ω. Finally, the second equation implies ‖v‖0,e = 0 which,
together with the Sobolev embedding theorem for Lipschitz-domains and v ∈ H2(E)
means v = 0 in Ω.

Next, we would like to prove coercivity for the bilinear form BDG in the energy norm.
This will lead us directly to an existence and uniqueness result. As it will turn out to
be convenient in the sequel, we prove the coercivity on a more general space than WN .
Therefore we introduce the spaces Vk,h:

Vk,h =
{
v ∈ L2(Ω) |v|E ∈ Pk(E)∀E ∈ Th

}
. (3.18)

Remark 3.2.5. As for the consistency of the DG formulation, 3.1.4, the following three
results and their proofs are oriented on the standard results as given in most of the
literature dealing with SIP methods, see [Riv08,ABCM01,BMM+99] for example.

Theorem 3.2.6 (Coercivity). Let σeJ be bounded from below by a sufficiently large con-
stant and βJ(d−1) ≥ 1. The bilinear form BDG then is coercive on the space of piecewise
linear functions V1,h, that is: There exists a positive constant κ, such that

BDG(v, v) ≥ κ‖v‖2E ∀v ∈ V1,h.

Proof. Using the Cauchy-Schwarz inequality we can deduce:

∑
e∈Γ

∫
e
{λk∇v · ne} [v] ≤

∑
e∈Γ

(
1
|e|βJ

) 1
2
− 1

2

‖ {λk∇v · ne} ‖0,e · ‖[v]‖0,e.

Now, let e be the intersection of two elements Ee1, Ee2, then we have

‖{λk∇v · ne}‖0,e ≤
1
2
‖ (λk∇v · ne)|Ee1 ‖0,e +

1
2
‖ (λk∇v · ne)|Ee2 ‖0,e,

and, using (2.3),

‖{λk∇v · ne}‖0,e ≤
1
2
k2

(∥∥∥(∇v · ne)|Ee1
∥∥∥

0,e
+
∥∥∥(∇v · ne)|Ee2

∥∥∥
0,e

)
.

We apply the trace theorem ([Arn82], Equation 2.5) and get

‖{λk∇v · ne}‖0,e ≤
Ck2

2

(
h
− 1

2
Ee1
‖∇v‖0,Ee1 + h

− 1
2

Ee2
‖∇v‖0,Ee2

)
,
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the second order derivatives in the trace theorem vanish because v ∈ V1,h. Therefore,
with use of (2.12)∫

e
{λk∇v · ne} [v] ≤ Ck2

2
|e|βJ/2

(
h
− 1

2
Ee1
‖∇v‖0,Ee1 + h

− 1
2

Ee2
‖∇v‖0,Ee2

)
·
(

1
|e|βJ

)1/2

‖[v]‖0,e

≤ Ck2

2

(
h
βJ
2

(d−1)− 1
2

Ee1
+ h

βJ
2

(d−1)− 1
2

Ee2

)
·
(
‖∇v‖20,Ee1 + ‖∇v‖20,Ee2

) 1
2

(
1
|e|βJ

) 1
2

‖[v]‖0,e

≤ Ck2

(
‖∇v‖20,Ee1 + ‖∇v‖20,Ee2

) 1
2

(
1
|e|βJ

) 1
2

‖[v]‖0,e,

where we used

(h1a+ h2b) ≤ (h1 + h2) · (a2 + b2)1/2 ∀h1, h2, a, b ≥ 0

in the second step and assumed βJ(d− 1) ≥ 1 and h < 1 in the last step. An analogous
bound can be derived if e is a boundary intersection.
Now, let nmax be the maximum number of neighbors, that one element can have. We

can then conclude

∑
e∈Γ

∫
e
{λk∇v · n} [v] ≤ Ck2

∑
e∈ΓI

1
|e|βJ

‖[v]‖20,e

1/2∑
e∈ΓI

‖∇v‖20,Ee1 + ‖∇v‖20,Ee2

1/2

+ Ck2

∑
e∈ΓB

1
|e|βJ

‖[v]‖20,e

1/2∑
e∈ΓB

‖∇v‖20,Ee

1/2

≤ Ck2
√
nmax

(∑
e∈Γ

1
|e|βJ

‖[v]‖20,e

)1/2
∑
E∈Th

‖∇v‖20,E

1/2

.

Using quality (2.3) of λk, we get using Young’s inequality with δ > 0:∑
e∈Γ

∫
e
{λk∇v · n} [v] ≤ C2k2

2nmax

2δk1

∑
e∈Γ

‖[v]‖20,e
|e|βJ

+
δ

2

∑
E∈Th

∫
E
k1∇v2

≤ C2k2
2nmax

2δk1

∑
e∈Γ

‖[v]‖20,e
|e|βJ

+
δ

2

∑
E∈Th

∫
E
λk∇v2.

Using the definition 3.1.2 of BDG we have

BDG(v, v) ≥ (1− δ)
∑
E∈Th

‖
√
λk∇v‖20,E +

∑
e∈Γ

σeJ −
C2k2

2nmax

δk1

|e|βJ
‖[v]‖2L2(e),
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which yields

BDG(v, v) ≥ κ‖v‖E ∀v ∈ H2(Th)

with δ = 1
2 , σ

e
J ≥

2C2k2
2nmax

k1
. Summing up, we have shown that BDG is coercive if βJ(d−

1) ≥ 1 and σeJ is bounded from below by a sufficiently large constant.

Theorem 3.2.7 (Continuity). For σeJ ≥ 1 the bilinear form BDG is continuous on the
space of piecewise linear functions, that is: There exists κs ≥ 0, such that

BDG(v, w) ≤ κs‖v‖E‖w‖E ∀v, w ∈ V1,h.

Proof. Let v, w ∈ V1,h. Using the definition of BDG, Equation (3.17) and the Cauchy-
Schwarz inequality, we directly have

BDG(v, w) ≤‖v‖E‖w‖E +
∑
e∈Γ

∫
e
|{λk∇v · n} [w]|+

∑
e∈Γ

∫
e
|{λk∇w · n}[v]| .

It thus only remains to bound the two last terms. Analog to the proof of Theorem 3.2.6
(just replace the second v by a w), we get

∑
e∈Γ

∫
e
|{λk∇v · n} [w]| ≤ Ck2

√
nmax

∑
E∈Th

‖∇v‖20,E

1/2(∑
e∈Γ

1
|e|βJ

‖[w]‖20,e

)1/2

,

and the similar term where v and w are exchanged. Together with (2.3) and
√
ab+
√
cd ≤√

a+ c ·
√
b+ d (for a, b, c, d ≥ 0) we conclude∑

e∈Γ

∫
e
|{λk∇v · n} [w]|+

∑
e∈Γ

∫
e
|{λk∇w · n}[v]|

≤
Ck2
√
nmax√
k1

∑
e∈Γ

1
|e|βJ

‖[w]‖20,e +
∑
E∈Th

‖
√
k1∇w‖20,E

1/2

·

∑
e∈Γ

1
|e|βJ

‖[v]‖20,e +
∑
E∈Th

‖
√
k1∇v‖20,E

1/2

≤
Ck2
√
nmax√
k1

‖w‖E‖v‖E ,

if σe ≥ 1. Summing up, we have

BDG(v, w) ≤ κs‖v‖E‖w‖E , κs = 1 +
Ck2
√
nmax√
k1

.
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Theorem 3.2.8 (Existence and Uniqueness). Let

σeJ ≥ max
{

1,
2C2k2

2nmax

k1

}
and βJ(d− 1) ≥ 1.

Then there exists a unique solution to the discrete DG scheme (3.12).

Proof. In 3.2.4 we demonstrated that ‖ · ‖E defines a norm on WN . In Theorem 3.2.7
we demonstrated continuity and in Theorem 3.2.6 coercivity of the bilinear form. The
Lax-Milgram theorem [Eva10] thus yields existence and uniqueness of a solution to the
discrete DG scheme if the linear form L is bounded. Now, the boundedness of

L(v) =
∑
E∈Th

∫
E
fv +

∑
e∈ΓB

∫
e

(
σeJ
|e|βJ

v − λk∇v · n
)
gD (3.19)

over WN in the energy norm is easy to see:
The first term can be bounded in the energy norm using the Cauchy-Schwarz inequality,

v ∈WN ⊂ V1,h, λ ∈ L∞(Ω) and k ∈ [L∞(Ω)]d.
The second term is bounded directly by the energy norm and for the third term we

can apply the same technique as in the proof of the continuity result 3.2.7.
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3.3 Reduced Basis Generation

In this section we describe in detail how the basis functions of WN are generated. As
mentioned earlier, the basis should basically consist of Finite Element solutions of (2.1).
This brings the advantage that a lot of information about the behavior of new solutions
to the main equation is already contained in the basis, which can then be chosen to be
rather small in comparison to a Finite Element basis.
We will now go a step further: By defining a coarser grid Z and applying the POD in

each large cell whenever a new basis function is added, we achieve a basis that is adapted
even better to the problem. Regions of the domain where different solutions (that is:
solutions to different parameters µ) differ only little will be covered by very few basis
functions while regions where the parameter has a huge effect on the solution will call
for a larger basis.
As the error estimator of Section 4.1 depends on the parameter µ we will not be able

to bound the error over all µ ∈ P. Instead we will measure the quality of our Galerkin
approximation using the error over all µ ∈Mtrain whereMtrain ⊂ P is a finite subset of
the parameter domain P.

Remark 3.3.1. Using the splitting (3.9), the following algorithm will build one basis of size
MF per subdomain F ∈ Z. All those combined then build a basis of size N =

∑
F∈ZMF

on the whole domain.

Given an error tolerance ∆, a maximum basis size Nmax and a POD-tolerance ∆POD,
the basis Φ is generated in 7 steps:

1. Choose a parameter µ0 for the first basis function. One may accelerate the rest of
the algorithm by judiciously choosing this parameter. If no deeper insight into the
dependence of the solution on the parameter µ is available, one may just choose a
random initial parameter µ0 ∈ P.

2. Perform a detailed simulation, that is a FE simulation for µ0 and construct the
first basis functions ϕ1, . . . , ϕ|Z| from the result p1 by restricting it to the elements
F ∈ Z:

ϕi(x) =

{
p1(x) if x ∈ Fi,
0 else.

∀i ∈ {1, . . . , |Z|}.

Add ϕ1, . . . , ϕ|Z| to the basis Φ.
3. Compute the offline-parts of the DG scheme (3.15) and of the error estimator

(4.19)-(4.22) for the current basis.
4. Compute the reduced solutions, that is solve (3.14) for all µ ∈ Mtrain using the

current basis. Then evaluate the error estimator (4.8) for all solutions and find the
parameter µmax ∈Mtrain that maximizes the error bound.
If the error bound for the reduced solution to µmax is already smaller than ∆,
abort.

5. Compute the detailed solution p̄ for µmax.
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6. On every coarse cell F ∈ Z: Let p̄r be the restriction of p̄ to F . Apply the
POD(∆POD) to the degrees of freedom of the existing basis functions and p̄r. Set
the arising functions as basis for F .

7. If N =
∑

F∈ZMF < Nmax, continue with step 3.

Remark 3.3.2. In step six it is possible to measure how much information about the
original functions the result of the POD contains. There are different ways of doing so.
We will fix the percentage of total variation that the selected principal components shall
contribute as suggested in [Jol02], Chapter 6. This may lead to different numbers of base
functions on each coarse cell.



4 Error Analysis

4.1 A Posteriori Error Estimator

In this section we will derive an a posteriori error estimator that will help us to construct
the reduced basis.
For space dimensions d = 2 and d = 3 we will demonstrate adjoint consistency for

the bilinear form BDG and use a duality technique in the derivation of the estimator.
Both steps are well-known in the derivation of error estimators. Still, using the standard
procedure, we will run into problems as to gain additional orders in h, one usually applies
an interpolation estimate between the space of the dual solution and the ansatzspace (WN

in our case). This will not work here, due to the insufficient information that we have
about the shape of the functions in WN . We will stress this problem and our solution
below.
While duality techniques are broadly used in the literature, we add different non-

standard techniques and thus present a brand new approach for error estimation in
situations where no interpolation estimates are available.
For the sake of simplicity and readability in the exposure of the error estimator, we

will restrict the mobility λ and the permeability k to λk|E ∈ P1(E) for all E ∈ Th and
(λk) ∈ C0(Ω). Without this assumption we would just have to introduce additional terms
to the error estimator or replace all occurrences of λk by their measure in L∞. For the
finite element scheme to resolve the behaviour of the analytical solution, the grid size has
to be smaller than the oscillation scale of λk. Therefore, this assumption does not even
represent a severe restriction.

Lemma 4.1.1. The bilinear form BDG is adjoint consistent, that is: For v ∈ H2(Ω) with

−∇ · (λk∇v) = h in Ω, (4.1)
v = 0 on ∂Ω, (4.2)

where h ∈ L2(Ω), holds:

BDG(ϕ, v) =
∑
E∈Th

∫
E
hϕ ∀ϕ ∈ H2(Th).

Proof. Let ϕ, v be as suggested in the lemma. We then have by the definition of BDG:

BDG(ϕ, v) =
∑
E∈Th

∫
E
λk∇ϕ · ∇v +

∑
e∈Γ

σe

|e|β

∫
e
[ϕ][v]

−
∑
e∈Γ

({λk∇ϕ · n}[v] + {λk∇v · n}[ϕ]) .

21
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As v ∈ H2(Ω) ⊂ C0(Ω) and v = 0 on ∂Ω, all jumps of v over e ∈ ΓI and all integrals of
v over ΓB vanish. It thus suffices to show∑

E∈Th

∫
E
λk∇ϕ · ∇v −

∑
e∈Γ

{λk∇v · n}[ϕ] =
∑
E∈Th

∫
E
hϕ. (4.3)

We have by Greens formula ([Alt06], Theorem A6.8):∑
E∈Th

∫
E
λk∇v · ∇ϕ = −

∑
E∈Th

∫
e
∇ · (λk∇v)ϕ+

∑
E∈Th

∫
∂E
λk∇v · nϕ.

By the definition of the jump we get∑
E∈Th

∫
∂E
λk∇v · nϕ =

∑
e∈ΓI

∫
e
[λk∇v · nϕ] +

∑
e∈ΓB

∫
e
λk∇v · nϕ

=
∑
e∈ΓI

∫
e

([λk∇v · n]{ϕ}+ {λk∇v · n}[ϕ]) (4.4)

+
∑
e∈ΓB

∫
e
λk∇v · nϕ.

Now, as v ∈ H2(Ω), we have [λk∇v ·n] = 0 (see (3.8)). Inserting (4.4) into (4.3) we need
to show

−
∑
E∈Th

∫
e
∇ · (λk∇v)ϕ =

∑
E∈Th

hϕ,

which is obvious due to the requirements on v.

As described at the beginning of the section, at this point we could demonstrate an a
posteriori error identity of the form

‖p− pN‖20,Ω = L(v)−BDG(pN , v),

where v would be the solution to (4.1) for h = p−pN . We would then use the consistency
of BDG to insert an additional vh, stemming from some discrete space, into the equation.
Using an interpolation estimate of the form ‖v−vh‖a ≤ hk‖v‖b with k ∈ N and matching
norms ‖ ·‖a and ‖ ·‖b, we would gain an additional order in h. As this is not possible here
for the reasons described above, we will now introduce a linear post processing operator
R1,2 : V1,h → V2,h. This operator will not provide a theoretical convergence order, it only
serves to guarantee any convergence of the error.
We will not discuss the concrete choice of this reconstruction operator in this work.

For the theory it suffices to know, that for any piecewise linear function vh, R1,2(vh) is a
piecewise polynomial of order two, thatR1,2 is linear and we assume that for any vh ∈ V1,h

with vh ∈ C0(E1 ∩ E2) for two entities E1, E2 ∈ Th we have R1,2(vh) ∈ C0(E1 ∩ E2).
Using this post processing operator, we now give an a posteriori error identity that

will lead directly to the desired error estimator.
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x y

Figure 4.1: Reconstruction of a polynomial of order 1 to a polynomial of order 2 in 2D.

Lemma 4.1.2 (A posteriori error identity). Let λ, k be sufficiently smooth and Ω, ∂Ω
such that for each h ∈ L2(Ω), there exists a solution v ∈ H2(Ω) to the adjoint problem

−∇ · (λk∇v) = h in Ω
v = 0 on ∂Ω.

(4.5)

Then, if p ∈ H2(Ω), p̃N = R1,2(pN ) are weak and post processed Discontinuous Galerkin
solutions to problem (2.1), respectively, the following holds:

‖p− p̃N‖20,Ω = L(v)−BDG(p̃N , v), (4.6)

where v is the solution of (4.5) for h = p− p̃N .

Proof. In Lemma 4.1.1 choose h = p− p̃N and ϕ = p− p̃N , then we have

‖p− p̃N‖20,Ω = BDG(p− p̃N , v)

= L(v)−BDG(p̃N , v),

where we used Theorem 3.1.4.

The same problem that we described for the residual term also applies for the jump
terms in BDG. We will need an additional ingredient to achieve convergence in these terms
without an interpolation estimate. We thus, following a concept proposed in [BMM+99],
introduce an affine lifting operator re : H2(Th) → V 2,h. For any w ∈ H2(Th) and any
intersection e ∈ Γ, re(w) is defined as the solution of∫

Ω
re(w) · τ h = −

∫
e
[w]{τ h · n} ∀τ h ∈ V 2,h. (4.7)

Here, we made use of the space

V k,h =
{
τ h ∈

[
L2(Ω)

]d∣∣∣ τ h|E ∈ [Pk(E)]d ∀E ∈ Th
}
.

Given this operator, the following two results where shown in [BMM+99].
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Lemma 4.1.3. There exists a positive constant Cr, independent of h, such that

‖[vh]‖0,e ≤ Crh1/2
e ‖re(vh)‖0,Ω

for each vh ∈ V2,h and for each e ∈ Γ.

Lemma 4.1.4. Let ϕ ∈ H2(Th) and vh ∈ V2,h. Then∑
e∈Γ

∫
e
[vh]{∇ϕ · n} ≤ Cr

∑
E∈Th

∑
e⊂∂E

‖re(vh)‖0,Ω
(
|ϕ|1,E + he |ϕ|2,E

)
.

Here the positive constant Cr, given by Lemma 4.1.3, depends on the minimal-angle-
bound.

Remark 4.1.5. From Lemma 4.1.4 and its proof one can easily derive the bounds∑
e∈ΓI

∫
e
[vh]{∇ϕ · n} ≤ Cr

∑
e∈ΓI

‖re(vh)‖0,Ω
(
|ϕ|1,Ee + he |ϕ|2,Ee

)
,

∑
e∈ΓB

∫
e
[vh]{∇ϕ · n} ≤ Cr

∑
e∈ΓB

‖re(vh)‖0,Ω
(
|ϕ|1,Ee + he |ϕ|2,Ee

)
for ϕ ∈ H2(Th) and vh ∈ V2,h. Here Ee denotes the inside cell E of an intersection e.

At this point, we have everything at hand to formulate the central result of this section.

Theorem 4.1.6 (A posteriori error estimator). Let p and pN be the weak (2.11) and
Discontinuous Galerkin solution (3.12), respectively. Then we have

‖p− pN‖0,Ω ≤ ‖p̃N − pN‖0,Ω +
∑
E∈Th

ηE1 (pN )

+
∑
e∈ΓI

ηe2(pN ) +
∑
e∈ΓB

ηe3(pN ),
(4.8)

where

p̃N = R1,2(pN )

ηE1 (pN ) =
C2
o

k1
‖f +∇ · (λk∇p̃N )‖0,E ,

ηe2(pN ) = (Co + he)
CrCo
k1
‖re(λk∇p̃N · n)‖0,Ω

+ Cr

(
Cok2

k1
+ he

)
‖re(p̃N )‖0,Ω,

ηe3(pN ) = Cr ·
(
Cok2

k1
+ he

)
‖re(p̃N − gD)‖0,Ω.

(4.9)
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Proof. We start by stating

‖p− pN‖0,Ω ≤ ‖p− p̃N‖0,Ω + ‖p̃N − pN‖0,Ω.

As the term ‖p̃N−pN‖0,Ω is already in a posteriori form, it suffices to bound ‖p− p̃N‖0,Ω.
Inserting the definitions of BDG and L in (4.6) yields:

‖p− p̃N‖20,Ω =
∑
e∈ΓB

∫
e

(
σe

|e|β
v − λk∇v · n

)
gD

+
∑
E∈Th

∫
E
fv −

∑
E∈Th

∫
E
λk∇p̃N · ∇v

+
∑
e∈Γ

∫
e
{λk∇p̃N · n}[v]

+
∑
e∈Γ

∫
e
{λk∇v · n}[p̃N ]−

∑
e∈Γ

∫
e

σe

|e|β
[v][p̃N ].

As v ∈ H2(Ω) ⊂ C0(Ω) for space dimensions d = 2, 3 and v = 0 on ∂Ω, this reduces to

‖p− p̃N‖20,Ω =
∑
E∈Th

∫
E
fv −

∑
E∈Th

∫
E
λk∇p̃N∇v

+
∑
e∈ΓB

∫
e
λk∇v · n (p̃N − gD)

+
∑
e∈ΓI

∫
e
{λk∇v · n}[p̃N ].

Integration by parts in the second term yields

‖p− p̃N‖20,Ω =
∑
E∈Th

∫
E

(f +∇ · (λk∇p̃N ))v

−
∑
e∈ΓI

∫
e
[λk∇p̃N · n]v +

∑
e∈ΓI

∫
e
{λk∇v · n}[p̃N ]

+
∑
e∈ΓB

∫
e
λk∇v · n (p̃N − gD)

≤
∑
E∈Th

‖f +∇ · (λk∇p̃N )‖0,E ‖v‖0,E

+
∑
e∈ΓI

Cr‖re(λk∇p̃N · n)‖0,Ω(‖v‖0,Ee + he |v|1,Ee)

+
∑
e∈ΓI

Cr‖re(p̃N )‖0,Ω (‖λk∇v‖0,Ee + he‖∇ · (λk∇v)‖0,Ee)

+
∑
e∈ΓB

Cr‖re(p̃N − gD)‖0,Ω (‖λk∇v‖0,Ee + he‖∇ · (λk∇v)‖0,Ee) ,

(4.10)
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where we used the Cauchy-Schwarz inequality, Lemma 4.1.4 and Remark 4.1.5.
It thus suffices to show that each factor on the right hand side containing v is bounded

from above by ‖p− p̃N‖0,Ω.
First of all, as v is the solution to equation (4.1) with h = p− p̃N , it is obvious that

‖∇ · (λk∇v)‖0,E = ‖p− p̃N‖0,E .

Furthermore, we have ‖λk∇v‖0,E ≤ k2‖∇v‖0,E by (2.3) and

‖∇v‖20,Ω =
∫

Ω
∇v · ∇v ≤ 1

k1

∫
Ω
λk∇v∇v = − 1

k1

∫
Ω
∇ · (λk∇v)v

=
1
k1

∫
Ω

(p− p̃N )v ≤ 1
k1
‖p− p̃N‖0,Ω‖v‖0,Ω

≤ Co
k1
‖p− p̃N‖0,Ω‖∇v‖0,Ω,

that is:

‖∇v‖0,Ω ≤
Co
k1
‖p− p̃N‖0,Ω, ‖λk∇v‖0,Ω ≤

Cok2

k1
‖p− p̃N‖0,Ω,

where Co is the optimal Poincaré constant. Altogether, we have

‖p− p̃N‖20,Ω ≤
∑
E∈Th

‖f +∇ · (λk∇p̃N )‖0,E
C2
o

k1
‖p− p̃N‖0,Ω

+
∑
e∈ΓI

Cr‖re(λk∇p̃N · n)‖0,Ω(Co + he)
Co
k1
‖p− p̃N‖0,Ω

+
∑
e∈ΓI

Cr‖re(p̃N )‖0,Ω
(
Cok2

k1
+ he

)
‖p− p̃N‖0,Ω

+
∑
e∈ΓB

Cr‖re(p̃N − gD)‖0,Ω
(
Cok2

k1
+ he

)
‖p− p̃N‖0,Ω.

The desired result now follows after division by ‖p− p̃N‖0,Ω.

Remark 4.1.7. As p̃N is continuous inside the large cells, the three quantities re(p̃N ),
re(λk∇p̃N · n) and re(p̃N − gD) have to be computed only for intersections e shared by
two large cells. Furthermore, we will be able to partly precompute those quantities in a
offline phase. The evaluations of the error estimator will thus not be too costly.
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4.2 Offline-Online Decomposition

We will have to evaluate the error estimator quite often during the construction of a
reduced basis and we would like to use it online to control the quality of the reduced
solutions. For these reasons it is very desirable to split the computation of (4.8) into an
offline and online phase. In this section, we will show that this is possible for the given
error estimator.
For this section, let

p̃N =
∑
F∈Z

MF∑
i=1

aFi ϕ̃
F
i ,

where ϕ̃Fi = R1,2(ϕFi ). Then a straightforward computation gives

‖f +∇ · (λk∇p̃N )‖20,F = ‖f‖20,F + 2
Nλ∑
j=1

MF∑
i=1

µja
F
i

∫
F
f∇(λj(x)k∇ϕ̃Fi (x))

+
Nλ∑
j=1

MF∑
i=1

Nλ∑
σ=1

MF∑
ν=1

µja
F
i µσa

F
ν

∫
F
∇ · (λj(x)k∇ϕ̃Fi (x))∇ · (λσ(x)k∇ϕ̃Fν (x)),

for all coarse cells F ∈ Z.
For the rest of the paragraph we assume e to be the intersection of the fine elements

E1 and E2, that belong to coarse cells F1 and F2, respectively.
Solving Equation (4.7) can also be done in two steps: an offline and online step: For
k ∈ {1, 2}, i ∈ {1, . . . ,MFk} let δki ∈ V 2,h be the solution to∫

Ω
δki · τ h = −

∫
e
ϕ̃Fki {τ h · n} ∀τ h ∈ V 2,h, (4.11)

and we directly get for all τ h ∈ V 2,h:

∫
Ω

(MF1∑
i=1

aF1
i δ

1
i −

MF2∑
j=1

aF2
j δ

2
j

)
· τ h = −

∫
e

(MF1∑
i=1

aF1
i ϕ̃

F1
i −

MF2∑
j=1

aF2
j ϕ̃

F2
j

)
{τ h · n}

= −
∫
e
[p̃N ]{τ h · n},

which means

re(p̃N ) =
MF1∑
i=1

aF1
i δ

1
i −

MF2∑
i=1

aF2
i δ

2
i .
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Accordingly, the norm of re(p̃N ) can be expressed as

‖re(p̃N )‖20,Ω =
MF1∑
i,j=1

aF1
i a

F1
j

∫
Ω
δ1
i · δ1

j +
MF2∑
i,j=1

aF2
i a

F2
j

∫
Ω
δ2
i · δ2

j

− 2
MF1∑
i=1

MF2∑
j=1

aF1
i a

F2
j

∫
Ω
δ1
i · δ2

j .

(4.12)

Likewise, we treat the expression ‖re(λk∇p̃N ·n)‖0,Ω: Let ψm,σi ∈ V 2,h, wherem ∈ {1, 2},
i ∈ {1, . . . ,MFm} and σ ∈ {1, . . . , Nλ}, be the solution to∫

Ω
ψm,σi · τ h = −

∫
e
k(x)λσ(x)∇ϕ̃Fmi · n{τ h · n} ∀τ h ∈ V 2,h. (4.13)

Then, for all τ h ∈ V 2,h we clearly have∫
Ω

( Nλ∑
σ=1

MF1∑
i=1

µja
F1
i ψ

1,σ
i −

Nλ∑
ν=1

MF2∑
j=1

µνa
F2
j ψ

2,ν
j

)
· τ h

= −
Nλ∑
σ=1

MF1∑
i=1

µσa
F1
i

∫
e
k(x)λσ(x)∇ϕ̃F1

i · n{τ h · n}

+
Nλ∑
ν=1

MF2∑
j=1

µνa
F2
j

∫
e
k(x)λν(x)∇ϕ̃F2

j · n{τ h · n}

= −
∫
e

(
(λk∇p̃N · n)|E1

− (λk∇p̃N · n)|E2

)
{τ h · n}

= −
∫
e
[λk∇p̃N · n]{τ h · n},

which indicates

re(λk∇p̃N · n) =
Nλ∑
σ=1

MF1∑
i=1

µσa
F1
i ψ

1,σ
i −

Nλ∑
ν=1

MF2∑
j=1

µνa
F2
j ψ

2,ν
j .

And finally, the desired quantity is

‖re(λk∇p̃N · n)‖20,Ω =
Nλ∑
σ,ν=1

MF1∑
i,j=1

µσa
F1
i µνa

F1
j

∫
Ω
ψ1,σ
i ψ1,ν

j

+
Nλ∑
σ,ν=1

MF2∑
i,j=1

µσa
F2
i µνa

F2
j

∫
Ω
ψ2,σ
i ψ2,ν

j

− 2
Nλ∑
σ,ν=1

MF1∑
i=1

MF2∑
j=1

µσa
F1
i µνa

F2
j

∫
Ω
ψ1,σ
i ψ2,ν

j .

(4.14)
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The last expression in the error estimator needs to be computed for all intersections
e ∈ ΓB belonging to the boundary of the domain. If e is such an intersection and F1

the associated fine cell, the reconstruction of p̃N can, analogous to the matching term on
inner intersections, be written as

re(p̃N ) =
MF1∑
i=1

aF1
i δ

1
i , (4.15)

where δ1
i ∈ V 2,h is the solution to∫

Ω
δ1
i · τ h = −

∫
e
ϕ̃F1
i {τ h · n} ∀τ h ∈ V 2,h. (4.16)

Together with

re(p̃N − gD) = re(p̃N )− re(gD) (4.17)

the decomposition of the last line in (4.9) can be done easily:

‖re(p̃N − gD)‖20,Ω = ‖re(p̃N )‖20,Ω +
Nλ∑
ν,η=1

µνµη

∫
Ω
re(gν)re(gη)

− 2
Nλ∑
j=1

MF1∑
i=1

aF1
i µj

∫
Ω
δ1
i re(gj).

(4.18)

4.2.1 Summary: Offline-Online Decomposition of Error Estimator

At this point, a short summary is in order.
For the first error estimator term, we have to compute

‖f‖20,F ,

kF,σ ∈ RN , kF,σi = 2
∫
F
f∇ · (λσ(x)k∇ϕ̃Fi (x)),

KF,σ,ν ∈ RN×N , KF,σ,ν
i,j =

∫
F
∇ · (λσ(x)k∇ϕ̃Fi )∇ · (λν(x)k∇ϕ̃Fj )

(4.19)

for all F ∈ Z, σ, ν ∈ {1, . . . , Nλ}.
The second, third and fourth expression of (4.9) need to be computed for all entities of

codimension 1 being the intersection of two fine cells E1 and E2 with different enclosing
coarse cells F1 and F2 as all those terms vanish on intersections inside a coarse cell due
to the regularity of p̃N .
For the second part of the error estimator we need

ME1,E1 ∈ RMF1
×MF1 , ME1,E2 ∈ RMF1

×MF2 , ME2,E2 ∈ RMF2
×MF2 ,

MEm,En
i,j =

∫
Ω
δmi · δnj

(4.20)
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with δmi defined in (4.11) and for the third

NE1,E1,σ,ν ∈ RMF1
×MF1 ,NE1,E2,σ,ν ∈ RMF1

×MF2 ,NE2,E2,σ,ν ∈ RMF2
×MF2 ,

NEm,En,σ,ν
i,j =

∫
Ω
ψm,σi · ψn,νj

(4.21)

for all σ, ν ∈ {1, . . . , Nλ}. For the definition of ψm,σi see (4.13).
Finally, the fourth part of the error estimator that needs to be computed for all e ∈ ΓB

with associated E1 ∈ Th and all σ ∈ {1, . . . , Nλ}, requires

PE1 ∈ RNλ×Nλ , PE1
i,j =

∫
Ω
re(gi) · re(gj),

mE1,σ ∈ RMF1 , mE1,σ
i =

∫
Ω
δ1
i · re(gσ),

QE1 ∈ RMF1
×MF1 , QE1

i,j =
∫

Ω
δ1
i · δ1

j

(4.22)

where δ1
i was defined in (4.16).

Once all these matrices are computed, the evaluation of the error estimator can be done
very rapidly, as the numerical results in Chapter 6 will demonstrate. For one evaluation
of the error estimator, the quantities (4.19)–(4.22) have to be combined in the following
manner.
Let Λ be the set of intersections defined by Λ = {e ∈ ΓI |∃f ∈ ΞI : e ⊂ f} and for

each e ∈ ΓI let E1, E2 be the neighboring fine cells with enclosing coarse cells F1, F2

respectively. For boundary intersections e ∈ ΓB let E1, F1 denote the neighboring fine
and coarse cell, respectively. Then, the error estimator takes the form

‖p− pN‖0,Ω ≤ ‖p̃N − pN‖0,Ω

+ C1

∑
F∈Z

(
‖f‖20,F +

Nλ∑
σ=1

µσk
F,σ · aF +

Nλ∑
σ=1

Nλ∑
ν=1

µσµνK
F,σ,νaF · aF

)1/2

+ C2

∑
e∈Λ

(
ME1,E1aF1 · aF1 +ME2,E2aF2 · aF2 − 2ME1,E2aF1 · aF2

)1/2
+ C3

∑
e∈Λ

Nλ∑
σ,ν=1

µσµν

(
NE1,E1,σ,νaF1 · aF1 +NE2,E2,σ,νaF2 · aF2

− 2NE1,E2,σ,νaF1 · aF2

)1/2

+ C2

∑
e∈ΓB

(
PE1µ · µ+QE1aF1 · aF1 − 2

Nλ∑
σ=1

µσm
E1,σ · aF1

)1/2

(4.23)

where we used p̃N =
∑

F∈Z
∑MF

i=1 a
F
i ϕ̃

F
i , a

F = (aF0 , . . . , a
F
MF

) and the constants

C1 =
C2
o

k1
, C2 = Cr

(
Cok2

k1
+ h

)
, C3 = (Co + h)

CrCo
k1

.



5 Implementation

In this chapter we will shortly describe the implementation of the presented method that
was done for this work. We will provide a basic insight into the main classes and explain
their usage.
All implementation was done using the Distributed and Unified Numerics Environ-

ment (Dune)1. Dune is a modular set of tools for solving Partial Differential Equations
(PDEs), written in C++. The module Dune-Grid provides interfaces for structured and
unstructured rectangular and simplicial grids in different dimensions. An important and
largely used extension to the so-called core modules is Dune-Fem2. It provides tools
for Finite Element methods such as function spaces, discrete function spaces, equation
system solvers and others. Nearly all of our methods will, at some point, make use of the
Dune-Fem Parameter-singleton. It reads program parameters from a given file that can
then be accessed using methods like

Parameter ::getValue <T>("parameter_name", defaultValue ).

The module Dune-RB3, implements, besides other things, reduced basis spaces and
so-called discrete function lists. Dune-RB provides most of the means needed for the
reduced framework. The above-mentioned modules build the basis for the new imple-
mentation that is now to be presented. It is split up in seven major classes:

• model problem class
• high dimensional scheme
• multi-domain grid part
• constrained reduced basis space
• reduced operator
• error estimation

– lifting
– equation storage
– online matrix storage
– error estimator

• reduced basis generation.
We will now give a short description of each of them. All the new classes are imple-
mented in a namespace “RB”, we will use the notation RB::ClassName occasionally to
avoid mix-ups with classes defined elsewhere. When helpful, we will give short, mostly

1http://www.dune-project.org
2http://dune.mathematik.uni-freiburg.de
3http://www.morepas.org
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symbolic, code snippets that demonstrate the usage of the respective classes. Those snip-
pets, however, will not be self-contained in that sense that used types will not be defined,
for example.

5.1 Model Problem Class

This class that was heavily inspired by the matching class in the Dune-Femhowto
module2, provides all the necessary data functions like the right hand side f , the per-
meability k and the exact solution (if applicable). It also incorporates the parameter
independent parts λν and gν of the mobility and boundary data as well as the parameter
µ. The parameter can be replaced using the function

ProblemInterface :: replaceParameter(const MuType& mu).

5.2 High Dimensional Scheme

The high dimensional, FE scheme as described in (2.13) is implemented in the Algorithm
class. This class, that was taken from the Dune-Femhowto module, implements a
bracket operator that will automatically create the system matrix and right hand side
vector of Equation (2.13) and solve the arising equation system. The high dimensional
solution is then returned. The system matrix operator as well as the implementation of
the right hand side were taken from the Dune-Femhowto module, too.

5.3 Multi-Domain Grid Part

The RB::MultiDomainGridPart class extends the usual Dune-Fem grid part to situa-
tions with different subdomains consisting of a set of normal grid entities. Through the
method addToSubDomain(subDomain, entity) entities can be added to a certain sub-
domain. The subdomains here are identified through integers. After entities have been
added to the multi-domain grid part, different methods provide means to check for affil-
iation to a certain subdomain, to get the total number of subdomains and to check if an
intersection of the fine grid is part of a subdomain-subdomain boundary.

Constrained Reduced Basis Space

The Constrained Reduced Basis Space (CRB Space), derived from the Dune-Fem
DiscreteFunctionSpaceDefault, is a discrete function space that provides the possibil-
ity to add custom base functions. These base functions are assumed to stem from the
RB::ConstrainedDiscreteFunction class that limits a given function to a given sub-
domain of a multidomain grid part, such that the arising function will evaluate to zero
outside of the given subdomain.
When a new base function is added to the CRB Space, the implementation will auto-

matically determine to which subdomain this function belongs and add it to the basis of
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Listing 5.1: Construction of a reduced basis space

// instantiate a multi domain grid part
MultiDomainGridPartType multiDomainGridPart(grid);
// mark the desired subdomains
markSubDomains(multiDomainGridPart );
// get a high dimensional discrete function space
DiscreteFunctionSpaceType feSpace(multiDomainGridPart );
// get a constrained reduced basis space
ConstrainedRBSpaceType rbSpace(feSpace );
// compute high dimensional solutions to the problem
ConstrainedDiscreteFunctionType

baseFunction1("Base One", feSpace );
highdimensionalSolution(baseFunction1 );
ConstrainedDiscreteFunctionType
baseFunction2("Base Two", feSpace );
highdimensionalSolution(baseFunction2 );
// restrict the functions to matching subdomains
restrictFunction(baseFunction1 , 1);
restrictFunction(baseFunction2 , 2);
// add constrained discrete functions as basis
rbSpace.addBaseFunction(baseFunction1 );
rbSpace.addBaseFunction(baseFunction2 );
// get function in the constrained rb space
AdaptiveDiscreteFunction <ConstrainedRBSpaceType >

reducedFunction("Reduced", rbSpace );
... // do something with the reduced function
// project the reduced function back to the fe space
rbSpace.project(reducedFunction , reconstruction );

that subdomain. Using this space, we can define reduced functions as demonstrated in
Listing (5.1).
With the function

project(ReducedFunctionType& reduced ,FEFunctionType& ret),

the CRB Space also provides the possibility to project the reduced functions back into
the high dimensional function space, denoted by feSpace in Listing 5.1.

5.4 Reduced Operator

The class ReducedOperator realizes the matrix and right hand side of (3.14). The re-
duced operator is instantiated using a reduced basis space rbSpace, a model problem
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Listing 5.2: Construction and usage of the reduced operator

// get a reduced operator
ReducedOperatorType reducedOperator(rbSpace , problem , h);
// assemble parameter independent parts of the equation
reducedOperator.assemble ();
// set the parameters for lambda and the boundary function
problem.replaceParameter(mu);
// get the system matrix
MatrixType& systemMatrix = reducedOperator.systemMatrix ();
// get the right hand side
VectorType& rhs = reducedOperator.rightHandSide ();

problem and the grid width h. A call to assemble() will assemble the parameter inde-
pendent parts of the equation system 3.14. When the method systemMatrix() is called,
the parameter independent parts Aν and Bν are scaled by the parameter components
µν and added to the matrix C. The same happens for the right hand side when the
method rightHandSide() is called. Additionally, the matrix and right hand side vector
can be saved to disk for later usage by calling the method saveData(). Both can be read
from disk by giving a fourth, optional constructor argument readData that will read the
matrices and right hand side vectors from a location specified in the parameter file.
An exemplary usage of this operator is presented in Listing (5.2)

5.5 Error Estimation

The implementation of the error estimator is split into 4 classes: The first one holds
the computation of the liftings of ϕ̃Fi and λσk∇ϕ̃Fi · n, that is, the computation of the
solutions to (4.11) and (4.13). The second one is nothing more than a simple storage and
mapping solution for all liftings that need to be computed. It will not be described in
more detail. The third part of the error estimator realizes the assemblation and storage
of the online quantities ‖f‖0,F ,kF,σ,KF,σ,ν ,MEi,Ej ,NEi,Ej ,σ,ν ,PEi ,mEi and QEi , see
(4.19)–(4.22). Finally, the last part of the error estimator is the estimator itself, mainly
performing the sum (4.23).

5.5.1 Liftings

There are two classes providing liftings: One for inner and for boundary intersections.
As they do not differ too much, we will concentrate on the description of the lifting class
for inner intersections e ∈ ΓI . When constructed, the class InnerLifting first assembles
the system matrix for the equations (4.11) and (4.13), that is the matrix

S ∈ Rn×n, Si,j =
∫

Ω
τ i · τ j .
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Here, n = |V 2,h| denotes the size of V 2,h and {τ i|i = 1, . . . , n} denotes a basis of V 2,h.
In our case we actually only need those entries of S that belong to basis functions τ i
with support in e. For all other base functions, the matching entries in the right hand
side vector will be zero. After the necessary entries of the matrix S were assembled, the
right hand side of the two equations is evaluated for each base function τ i with support
in e. The results are written into a vector. Now, the inverse of the matrix is multiplied
to all vectors, giving rise to the solution vectors. After this is done, the lifting is ready
for evaluation. The evaluation of the liftings is done via the methods

void evaluateDeltaLocal(const unsigned int i,
const EntityPointerType& entityPtr ,
const DomainType& xLocal ,
RangeType& ret) const;

and

void evaluatePsiLocal(const unsigned int i,
const EntityPointerType& entityPtr ,
const unsigned int sigma ,
const DomainType& xLocal ,
RangeType& ret) const;

that evaluate the solutions to (4.11) and (4.13), respectively. For performance reasons,
there are methods replaceMap(entityPtr) and computeLocalIndices() resetting static
members of the lifting class for each new entity where the liftings shall be evaluated. These
two methods need to be called each time a new fine cell is reached.

5.5.2 Online Matrix Storage

This class, as mentioned above, assembles and stores the matrices (4.19)–(4.22). New
matrices are added via the method add(...). This will automatically add all needed
matrices for the given intersection and register them for assemblation. The assemblation
itself is then performed on the call of void assemble(reconstructedBaseFuncs). This
method expects the reconstructed base functions as argument. These are needed for the
integrals in (4.19).

5.5.3 Error Estimator

The class RB::ErrorEstimator mainly serves three purposes: The first one is to find and
mark all intersections of the fine grid that also belong to coarse cell intersections, that
is: all e ∈ ΓI ∩ ΞI . This is accomplished by the private method init() that is run on
construction time automatically. For all such intersections found by init(), a new lifting
is added to the EquationStorage class, all online matrices for the error estimator are
added to the OnlineMatrixStorage class and the intersection is remembered in order to
be able to perform the sum (4.23) later on.
The second task of the ErrorEstimator class is to provide an interface to the online

matrix storage. After construction of the error estimator, the user needs to call the
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Listing 5.3: Usage of the Error Estimator

// get a new error estimator , this calls the init() method
ErrorEstimator <ReducedFunctionType , ProblemType >

errorEstimator(rbSpace , problem );
// assemble the online matrices
errorEstimator.assembleOnlineMatrices ();
... // get a reduced solution
// evaluate the error estimator
double error = errorEstimator.evaluate(reducedSolution );

void assembleOnlineMatrices ()

method that will call the assemble() method in the online matrix storage.
The third purpose is the actual evaluation of the error estimator, (4.23). This is done

by calling the method

double evaluate(const ReducedFunctionType& func);

that returns the absolute error as defined by equation (4.8).
In Listing (5.3) we demonstrate the usage of the error estimator.

5.6 Reduced Basis Generation

In this paragraph we describe the different possibilities provided to construct a reduced
basis. The class that inherits all basis construction methods is the RBGeneration class.
It is initialized with a – possibly empty – reduced basis space and the problem. One may
then use the init() method to initialize the reduced space with the high dimensional
solution using the current parameter µ and or the init(DiscreteFunction& p) method
to use a custom function as initial base function. The methods

void detailedSimulation(DiscreteFunction& p);

and

void reducedSimulation(ReducedFunctionType& p);

compute the detailed solution (2.13) and reduced solution (3.13) to the main problem.
The method extend(DiscreteFunction& p) will perform step six of the basis generation
algorithm described in Section 3.3.
The most important functionality of the RBGeneration class, however, is the construc-

tion of the reduced basis with one of two possible algorithms: The POD-Greedy algorithm
described in Section 3.3 and an algorithm using a uniform parameter grid.
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5.6.1 Uniform

Although this sort of basis construction is not desirable in real applications, it may help
for debugging and testing purposes. This algorithm constructs a uniform parameter space
spread over a given range, computes the high dimensional solution for each parameter
and adds it to the current basis, compressing the information using the POD as described
beforehand. The algorithm is called via uniformExtension().

5.6.2 POD-Greedy

The POD-Greedy algorithm described in Section 3.3 can be called via

greedyExtension(const boost :: uuids::uuid& uid),

where uid is a unique identifier that is needed to distinguish the profile data of dif-
ferent POD-Greedy runs that will be written to a file “rbgeneration_uid.log” and
“rbgeneration_uid.paramlog”. The greedyExtension method expects several parame-
ters in the Dune-Fem Parameter singleton, those can be seen in Table 5.1.

podgreedy.paramspace.begin The beginning of the desired parameter training set,
“0, 1, 2.5, 0” for example

podgreedy.paramspace.end The ending of the training set, “1, 2, 3.5, 1” for exam-
ple

podgreedy.paramspace.size The number of training parameters in each
direction of the manifold with the cor-
ners podgreedy.paramspace.begin and
podgreedy.paramspace.end

podgreedy.desiredError The desired maximum error
podgreedy.maxRuntime The desired maximum runtime for the algorithm
podgreedy.desiredSize The desired maximum basis size

Table 5.1: The mandatory parameters for the POD-Greedy implementation

5.7 Post Processing Operator

As mentioned already, we did not deal with concrete choice of the post processing operator
R1,2 (see Section 4.1) for this work. In the implementation we used a Finite Element
scheme of order two as high dimensional scheme and thus were able to leave out the
reconstruction step.





6 Numerical Experiments

In this section we will test the implementation described in Chapter 5. For this purpose
we now introduce four different test problems.

6.1 Test Problems

In all of the given test scenarios, if not indicated different, we assume the domain to be
Ω = [0, 1]2 and the main equation (2.1) will always be the prototype for the problems
considered.

6.1.1 Polynomial, Parameter Independent

This test case will help us in verifying the high dimensional (FE) scheme and to make
some observations on the error estimator.
To get a facile parameter independent problem, we neglect the mobility λ and the

permeability k. Furthermore we choose polynomial boundary data of degree q ∈ N, such
that we end up with

−∆p = −q · (q − 1)xq−2 in Ω,
p(x) = xq on ∂Ω.

(6.1)

In this case, we have the exact solution

p(x) = xq.

6.1.2 Oscillating, Parameter Independent

The next problem, that was originally stated in [Ohl05], introduces the oscillating per-
meability field

Aε,α(x) =
2
3

(1 + αx) ·
(

1 + cos
(

2π
x

ε

)2
)
,

where α ∈ [0, 1].
In Figure 6.1 we show Aε,1 for different values of ε. The highly oscillatory nature of

Aε,α will certainly pose a severe challenge to the high dimensional scheme.
Because of this rapid oscillation and the non-constant behaviour of Aε,α on the large

scale for α 6= 0, this test case is already close to a real life application such as two-phase
flow in a porous medium where one can observe rapid oscillations like this one.

39
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Figure 6.1: Aε,1 for ε = 0.5, ε = 0.1 and ε = 0.05

For the permeability to fit into the framework of our theory, we set the matrix-valued
function kε,α : Ω→ R2×2 to

kε,α(x) = diag(Aε,α(x), Aε,α(x)). (6.2)

Setting the right hand side to

f ≡ −1

and α = 1 we get the problem

−∇ · (kε,1(x)∇p) = −1 in Ω
p = 0 on ΓD := 0× (0, 1) ∪ 1× (0, 1),

kε,1(x)∇p = 0 on ΓN := ∂Ω\ΓD.
(6.3)

This problem has the exact solution

pε(x) =
∫ x

0

t

Aε,1(t)
dt+ Cε

∫ x

0

1
Aε,1(t)

dt,

where

Cε = −
∫ 1

0

t

Aε,1(t)
dt
(∫ 1

0

1
Aε,1(t)

dt
)−1

.

6.1.3 Parameter Dependent

This test case will serve to give a criterion to check whether the basis generation and the
reduced scheme (3.13) are working as expected. Here we forgo the permeability k and
use the mobility λ as introduced in Section 2.2, that is:

λ(x,µ) =
1
ηo
− 2
ηo
S(x,µ) +

ηo + η2
w

ηwηo

NS∑
m=1

NS∑
n=1

µnµmSn(x)Sm(x). (6.4)

For a description of the different quantities see the above-mentioned section.
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Figure 6.2: S1(x) and S2(x) (see Equation (6.5)) for NS = 2

For the problem to be characterized completely we choose the right hand side

f(x) = −2,

the boundary values

gD(x) = 0

and the saturation

S(x,µ) =
NS∑
ν=1

µνSν(x), (6.5)

Sν(x) =
1
3

arctan

(
−
(

2ν − NSx

4

)6

− 1
100

(y − 5)6

)
+
π

2
, (6.6)

with a parameter µ = (µ1, . . . , µNS ). We will use the domain Ω = [0, 10]2 in this example.

Note. For NS = 2, S1(x) and S2(x) are shown in Figure 6.2.

The full problem now is: Find p such that

−∇ · (λ(x,µ)∇p) = −2 in Ω,
p(x) = 0 on ∂Ω.

(6.7)

6.1.4 Oscillating, Parameter Dependent

This test case uses the parameter dependent mobility λ introduced in test case 6.1.3
and the oscillatory permeability kε,α with α = 0 introduced in test case 6.1.2. With this
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Level ‖pFE − pexact‖0,Ω EOC (L2) ‖pFE − pexact‖1,Ω EOC (H1)

0 2.28 · 10−2 1.46 · 10−1

1 5.71 · 10−3 2.00 7.24 · 10−2 1.01
2 1.43 · 10−3 2.00 3.61 · 10−2 1.00
3 3.57 · 10−4 2.00 1.80 · 10−2 1.00
3 8.91 · 10−5 2.00 9.02 · 10−3 1.00
4 2.23 · 10−5 2.00 4.51 · 10−3 1.00
5 5.57 · 10−6 2.00 2.26 · 10−3 1.00
6 1.39 · 10−6 2.00 1.13 · 10−3 1.00
7 3.48 · 10−7 2.00 5.64 · 10−4 1.00
8 8.72 · 10−8 2.00 2.82 · 10−4 1.00

Table 6.1: Error convergence for the quadratic problem 6.1.1 for q = 2. All numbers
rounded to two digits.

model problem we will demonstrate the multiscale capabilities of our method. Here we
use Ω = [0, 10]2, the right hand side

f ≡ −2

and the boundary value function

gD ≡ 0.

We get the full problem

−∇ · (λ(x,µ)kε,0(x)∇p) = −2 in Ω,
p(x) = 0 on ∂Ω.

(6.8)

6.2 Finite Element Scheme

This test deals with the high dimensional, the Finite Element scheme. We use test prob-
lem 6.1.1 for q = 2 and test problem 6.1.2 to verify orders of convergence one expects
from theory. We use the high dimensional algorithm described in Section 5.2 with an
initial triangulation consisting of two triangles. After each simulation, we apply a red-
refinement to all cells, enlarging the grid by a factor of four and halving the grid width
h. As we use a linear Finite Element method, we expect the order of convergence to be
two, thus the error should be decreasing by a factor of four and the Experimental Order
of Convergence (EOC) should be two.
For the first test case, the polynomial, parameter independent one with q = 2, the

behaviour is exactly as expected. The numeric results for this test can be seen in Table
6.1.
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h ε0.5L2 ε0.1L2 ε0.01
L2 ε0.5H1 ε0.1H1 ε0.01

H1

0.71 1.70e−2 2.29e−2 2.29e−2 0.11 0.11 0.12
0.35 6.52e−3 1.43e−2 1.43e−2 7.92e−2 0.12 0.11
0.18 2.97e−3 2.70e−3 1.29e−2 5.40e−2 5.38e−2 7.21e−2

8.84e−2 7.27e−4 1.93e−3 1.95e−3 2.62e−2 5.78e−2 5.58e−2
4.42e−2 1.77e−4 1.50e−3 1.72e−3 1.29e−2 4.70e−2 5.02e−2
2.21e−2 4.47e−5 5.40e−4 1.99e−3 6.52e−3 2.87e−2 7.70e−2
1.10e−2 1.12e−5 1.49e−4 9.19e−4 3.27e−3 1.53e−2 6.22e−2
5.52e−3 2.80e−6 3.82e−5 1.67e−3 1.63e−3 7.78e−3 5.17e−2
2.76e−3 7.41e−7 9.60e−6 7.48e−4 8.17e−4 3.90e−3 3.47e−2
1.38e−3 1.57e−7 2.39e−6 2.17e−4 4.09e−4 1.95e−3 1.89e−2
6.91e−4 5.64e−5 9.68e−3
3.45e−4 1.53e−5 4.87e−3

Table 6.2: L2-error εεL2 = ‖pFE,ε − pexact,ε‖0,Ω and H1-error εεH1 = ‖pFE,ε − pexact,ε‖1,Ω

between FE and exact solution for ε = 0.5,ε = 0.1 and ε = 0.01 for test
problem 6.1.2. All numbers rounded to two digits.

We see that the EOC for the L2 norm is approximately two (all numbers are rounded
to two digits). The EOC for the H1 norm is about one. Thus, we can say, that the scheme
is working quite well for this setting.
The errors and EOC values for the second, the oscillating, parameter independent test

case are to be found in Tables 6.2, 6.3. For ε = 0.5 (see second and fifth column in
both tables), the L2 and H1 errors are converging nicely beginning with the third grid
refinement. From then on, the EOC for the L2 error is approximately two and the EOC
for the H1 error is approximately one, both as expected.
The low EOC values after the first and second refinements are to be explained by the

large grid width (h ≈ 0.71 and h ≈ 0.35) in these steps: The FE scheme is not able
to resolve the oscillations in the solution and thus the error shows a wrong behavior.
Beginning with the third refinement, the high dimensional algorithm resolves the oscil-
lations and the EOC reaches the desired values of two and one for the L2 and H1 error,
respectively.
Exactly the same behavior can be observed for ε = 0.1 and ε = 0.01, only that in these

cases, the stabilization of the EOC takes longer due to the finer oscillations.
In conclusion, we may say that the high dimensional scheme works fine in both (oscil-

lating and non-oscillating) cases and produces the convergence we expect from theory.

6.3 Error Estimator

In this section, we use test cases 6.1.2, 6.1.1 to benchmark the sharpness and convergence
behavior of our new error estimator. For the tests in this section, we build a basis on the
unit square, divided into four equally large subdomains vertically. This basis is made up
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h EOCL
2

0.5 EOCL
2

0.1 EOCL
2

0.01 EOCH
1

0.5 EOCH
1

0.1 EOCH
1

0.01

7.1 · 10−1

3.5 · 10−1 1.38 0.68 0.68 0.52 −0.07 0.07
1.8 · 10−1 1.14 2.4 0.15 0.55 1.13 0.63
8.8 · 10−2 2.03 0.49 2.73 1.05 −0.1 0.37
4.4 · 10−2 2.04 0.36 0.18 1.02 0.3 0.15
2.2 · 10−2 1.98 1.47 −0.21 0.99 0.71 −0.62
1.1 · 10−2 2 1.86 1.11 1 0.9 0.31
5.5 · 10−3 2 1.97 −0.86 1 0.98 0.27
2.8 · 10−3 1.92 1.99 1.16 1 0.99 0.57
1.4 · 10−3 2.24 2.01 1.78 1 1 0.88
6.9 · 10−4 1.94 0.97
3.5 · 10−4 1.88 0.99

Table 6.3: Experimental Orders of Convergence EOCL2

ε for L2-error and EOCH1

ε for H1-
error as given by Table 6.2 for ε = 0.5,ε = 0.1 and ε = 0.01 for test problem
6.1.2. All numbers rounded to two digits.

by the exact solution to the respective problem, such that we have a basis of size four.
We then generate a reduced solution by directly setting all of its degrees of freedom to
one, such that the reconstruction of this reduced solution would be the high dimensional
solution again. Proceeding this way, we do not introduce any additional errors stemming
from a reduced simulation and we can be sure to get a good impression of the sharpness
and also the convergence behavior of our error estimator.
In Table 6.4 we compare the exact L2 and H1 errors and matching EOC values to the

estimated error and EOC for the estimated error for test problem 6.1.1 with q = 4. The
exact errors were computed using a finite element method with polynomial degree one.
While we see a nearly perfect convergence of order two (in L2) for the exact error,

the estimated error shows an EOC of about one. Our experiments showed that in this
scenario, the estimated error is governed by the term

∑
E∈Th η

E
1 (pN ) in (4.8). As we did

not apply any interpolation estimates to the residual but measure it directly, this term
behaves like the error in the energy norm, which converges with order one. Therefore this
behavior of the error estimator is not too surprising.
We also see that our error estimator overestimates the error largely, by a factor of

about 118 for the coarsest grid already and even with an increasing factor further on,
due to the poor convergence order of one.
In Table 6.5 we present the same quantities as above, now using the test case 6.1.2

with ε = 0.5. Again, like in Section 6.2 we observe a low value for all EOCs up to the
point where the grid width falls under a certain fraction of the characteristic size of the
oscillation, in this case 0.5. Furthermore, this test confirms our statements concerning
the sharpness and convergence order of our error estimator.
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h εexL2 EOCex
L2 εexH1 EOCex

H1 εest EOCest

0.35 3.00e−2 0.38 3.54
0.18 7.62e−3 1.98 0.19 0.98 1.36 1.38

8.84e−2 1.91e−3 1.99 9.67e−2 1 0.56 1.27
4.42e−2 4.78e−4 2 4.84e−2 1 0.25 1.16
2.21e−2 1.20e−4 2 2.42e−2 1 0.12 1.09
1.10e−2 2.97e−5 2.01 1.21e−2 1 5.68e−2 1.05
5.52e−3 7.28e−6 2.03 6.05e−3 1 2.79e−2 1.03

Table 6.4: Exact L2 and H1 errors and estimated error with respective EOC values for
test problem 6.1.1

h εexL2 EOCex
L2 εexH1 EOCex

H1 εest EOCest

0.35 6.52e−3 7.92e−2 7.08
0.18 2.97e−3 1.14 5.40e−2 0.55 9.28 −0.39

8.84e−2 7.27e−4 2.03 2.62e−2 1.05 3.73 1.31
4.42e−2 1.77e−4 2.04 1.29e−2 1.02 1.41 1.41
2.21e−2 4.46e−5 1.98 6.52e−3 0.99 0.56 1.34
1.10e−2 1.12e−5 2 3.27e−3 1 0.24 1.21
5.52e−3 2.78e−6 2.01 1.63e−3 1 0.11 1.12

Table 6.5: Exact L2 and H1 errors and estimated error with respective EOC values for
test problem 6.1.2

6.4 Basis Generation

In this section we have a look at the POD-Greedy basis generation process. We will use
test case 6.1.3 with four equally large vertical subdomains to get an impression of the
construction process and the quality of the generated basis. Our experiments will reveal
two major weaknesses of our theory.
The first shortcoming is the pessimistic estimation of the error between the reduced

and the weak solution. The consequences can be observed in Tables 6.6, 6.7 where we
present results stemming from a POD-Greedy basis generation loop without usage of
the POD. We use test case 6.1.3 with NS = 2 and µ ∈ [0, 0.5]2 and a triangulation of
Ω = [0, 10]2 with width h = 0.44 in Table 6.6 and with width h = 0.22 in Table 6.7.
In Table 6.6 we see that in extension step five the maximum, minimum and mean

error in the current basis begin to stagnate. At this point the basis is not enlarged
anymore because the function worst approximated already belongs to the basis. The
huge error we see is not due to a huge distance between the respective high dimensional
solution and the (reconstructed) reduced solution. In other words: it is not due to a
bad representation of the high dimensional solution in the current basis. As a matter of
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Step N NSD εmax εmin ε̄ σ µ1 µ2

0 8 2,2,2,2 1.38 0.33 0.72 0.26 0 0
1 12 3,3,3,3 0.43 0.12 0.25 8.50e−2 0 0.33
2 16 4,4,4,4 0.41 0.12 0.23 6.97e−2 0.33 0
3 20 5,5,5,5 0.33 0.12 0.21 6.16e−2 0.33 0.42
4 24 6,6,6,6 0.3 0.1 0.18 4.87e−2 0.42 0
5 24 6,6,6,6 0.26 0.1 0.18 4.32e−2 0.42 0
6 24 6,6,6,6 0.26 0.1 0.18 4.32e−2 0.42 0
7 24 6,6,6,6 0.26 0.1 0.18 4.32e−2 0.42 0
8 24 6,6,6,6 0.26 0.1 0.18 4.32e−2 0.42 0
9 24 6,6,6,6 0.26 0.1 0.18 4.32e−2 0.42 0

Table 6.6: POD-Greedy algorithm: Extension step, total basis size N , basis size per sub-
domain, maximum error, minimum error, mean error for the training parame-
ter setMtrain, standard deviation of error, components one and two of µ used
for extension.

Step N NSD εmax εmin ε̄ σ µ1 µ2

0 8 2,2,2,2 1.38 0.3 0.71 0.27 0 0
1 12 3,3,3,3 0.45 6.15e−2 0.25 9.70e−2 0 0.33
2 16 4,4,4,4 0.52 6.15e−2 0.25 0.1 0.33 0
3 20 5,5,5,5 0.42 6.15e−2 0.23 9.23e−2 0.33 0.42
4 24 6,6,6,6 0.33 6.15e−2 0.18 6.86e−2 0.42 0
5 28 7,7,7,7 0.3 6.15e−2 0.16 5.81e−2 8.33e−2 0.42
6 28 7,7,7,7 0.24 6.16e−2 0.15 4.46e−2 8.33e−2 0.42
7 28 7,7,7,7 0.24 6.16e−2 0.15 4.46e−2 8.33e−2 0.42
8 28 7,7,7,7 0.24 6.16e−2 0.15 4.46e−2 8.33e−2 0.42
9 28 7,7,7,7 0.24 6.16e−2 0.15 4.46e−2 8.33e−2 0.42

Table 6.7: POD-Greedy algorithm: Extension step, total basis size N , basis size per sub-
domain, maximum error, minimum error, mean error for the training parame-
ter setMtrain, standard deviation of error, components one and two of µ used
for extension.

fact the error between the high dimensional and the (reconstructed) reduced solution is
pretty small. However, our error estimator computes the error between the reduced and
weak solution and overestimates – as demonstrated above – this error largely. Therefore,
in this case starting with extension step six, beginning with a certain richness of the
reduced basis and thus small projection error to the reduced space, the error for the base
functions themselves starts to shadow the projection error. Henceforward the basis is
not enlarged anymore. To enrich the basis further we would need to refine the grid until
the estimated error for the high dimensional solutions to all parameters drops below our
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Figure 6.3: Difference between the high dimensional and reconstructed reduced solution
for µ = (0.43, 0.43, 0.43) after extension step four in Table 6.8. The coarse
cell intersections are located at x = 2.5, x = 5.0 and x = 7.5. In all white
regions the absolute value of the difference is smaller than 0.025.

desired accuracy ∆ which is to be reached by the basis generation algorithm (see 3.3).
The same behaviour can be observed for the POD-Greedy algorithm on the finer grid

in Table 6.7.
While this first problem can be avoided easily by refining the grid until the estimated

error for the basis functions themselves drops below a certain border, the next weakness
is more severe and of methodic nature.
In Tables 6.8, 6.9 we see results for a basis generation loop using the full POD-Greedy

algorithm for POD percentages 99.99% and 100%, respectively. For these computations
we used NS = 3, µ ∈ [0.1, 0.5]3 and a triangulation with width h = 0.44.
In Table 6.8 we notice that from time to time the estimated error, especially the

maximum error, increases severely from one extension to the next. Occasionally, the
largest error in the current basis is even reached for parameters where the respective
solutions belong to the basis already. Our experiments showed that in these cases the
error almost only stems from the measurement of the jumps, that is from the terms
ηe2(pN ) in Equation (4.9). This is not a bug or imprecision in the implementation of
the error estimator. We validated this behavior by explicitly measuring the jumps in
the respective reduced solutions. In Figure 6.3 we visualize the difference between the
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Step N NSD εmax εmin ε̄ σ µ1 µ2 µ3

0 8 2/2/2/2 0.96 0.31 0.48 0.11 0.1 0.1 0.1
1 12 3/3/3/3 0.89 9.84e−2 0.41 0.18 0.1 0.43 0.43
2 16 4/4/4/4 1.17 9.84e−2 0.43 0.23 0.43 0.43 0.1
3 16 4/4/4/4 0.69 9.49e−2 0.3 0.12 0.43 0.1 0.43
4 16 4/4/4/4 1.8 0.38 0.63 0.23 0.43 0.43 0.43
5 17 4/4/5/4 3.53 0.82 1.29 0.43 0.43 0.43 0.43
6 17 4/4/5/4 0.58 9.29e−2 0.27 9.43e−2 0.43 0.1 0.43
7 17 4/4/5/4 0.59 0.15 0.3 9.01e−2 0.43 0.43 0.43
8 17 4/4/5/4 0.57 0.12 0.28 8.76e−2 0.43 0.1 0.43
9 17 4/4/5/4 0.7 0.18 0.32 9.36e−2 0.43 0.43 0.43
10 17 4/4/5/4 0.59 0.12 0.29 9.25e−2 0.43 0.1 0.43
11 17 4/4/5/4 1.3 0.33 0.53 0.15 0.43 0.43 0.43

Table 6.8: POD-Greedy algorithm for POD accuracy 99.99%: Extension step, total basis
size N , basis size per subdomain, maximum error, minimum error, mean error
for the training parameter setMtrain, standard deviation of error, components
one, two and three of µ used for extension.

high dimensional and the reconstructed reduced solution for µ = (0.43, 0.43, 0.43) after
extension step four in Table 6.8. We see, that the error is mainly located on the subdomain
intersections which also seconds what was said before. The problem here is that the POD
step in the algorithm destroys the continuity properties of the basis functions over the
subdomain intersections, especially for decreasing POD percentages. In the results shown
in Table 6.9 the effect of drastically increasing jump errors is much weaker due to the
higher POD accuracy. All in all the error decay is much more stable in this case.

6.5 Multiscale Capabilities

For this test we used model problem 6.1.4 with µ ∈ [0.1, 1.0]2, ε = 1.0 and the uniform
basis generation algorithm (see Section 5.6.1) to build a reduced basis of size 23. The
grid had 32768 entities and was divided into 4 equally large coarse cells vertically.
In Figure 6.4 we show the high dimensional solution (first column) and the recon-

structed low dimensional solution (second column) for µ = (0.1, 1.0) (first row) and
µ = (1.0, 0.1) (second row). The third row shows a closeup on the solutions from the
second row.
We see that while we were able to reduced the number of degrees of freedom from 16641

for the high dimensional scheme to 23 for the low dimensional one, the reconstructed low
dimensional solution captures the macroscopic behavior, as well as the dependence on
the parameter nearly perfectly. Also, as we see in the closeup, the oscillations on the
small scale are resolved correctly by the low dimensional scheme as expected.
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Figure 6.4: High dimensional solution (left) and reconstructed low dimensional solution
(right) for µ = (0.1, 1.0), µ = (1.0, 0.1) for the test described in 6.5. Last
row: closeup on row two.
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Step N NSD εmax εmin ε̄ σ µ1 µ2 µ3

0 8 2/2/2/2 0.96 0.31 0.48 0.11 0.1 0.1 0.1
1 12 3/3/3/3 0.89 9.84e−2 0.41 0.18 0.1 0.43 0.43
2 16 4/4/4/4 1.17 9.84e−2 0.43 0.23 0.43 0.43 0.1
3 20 5/5/5/5 0.69 9.49e−2 0.3 0.12 0.43 0.1 0.43
4 24 6/6/6/6 0.34 8.99e−2 0.21 5.17e−2 0.43 0.43 0.43
5 27 7/7/7/6 0.4 1.37e−3 0.1 8.45e−2 0.43 0.1 0.43
6 27 7/7/7/6 0.37 7.94e−3 9.09e−2 8.30e−2 0.43 0.1 0.43
7 28 7/7/7/7 0.33 1.99e−3 5.68e−2 6.78e−2 0.43 0.1 0.43
8 30 8/7/7/8 0.28 4.86e−3 0.13 5.52e−2 0.43 0.1 0.43
9 33 9/8/8/8 0.25 3.69e−3 0.13 4.17e−2 0.43 0.1 0.43
10 35 9/9/8/9 0.25 9.57e−3 0.14 4.28e−2 0.43 0.1 0.43
11 36 10/9/8/9 0.24 1.48e−2 0.13 4.62e−2 0.43 0.1 0.43

Table 6.9: POD-Greedy algorithm for POD accuracy 100%: Extension step, total basis
size N , basis size per subdomain, maximum error, minimum error, mean error
for the training parameter setMtrain, standard deviation of error, components
one, two and three of µ used for extension.

Extension
Step N

Error Estimator
Assemblation (s)

Training
time (s)

0 8 166 3
1 12 548 3
2 16 1,163 3
3 20 2,049 4
4 24 3,217 5
5 27 4,615 7
6 27 6,034 7
7 28 6,098 7
8 30 6,252 7
9 33 6,875 8
10 35 8,814 9
11 36 9,671 9

Table 6.10: Runtimes for the POD-Greedy algorithm.

6.6 Runtimes

This section deals with the time needed for the different parts of our implementation
during a typical basis generation and simulation process.
In Table 6.10 we present runtimes for the POD-Greedy basis generation loop introduced
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N thigh (ms) tlow (ms) trecons (ms) Factor Error

4 65.74 1.47 7.41e−2 43 2.24e−2
8 67.26 1.57 7.41e−2 41 4.59e−3
19 64.19 2.49 1.07 18 4.86e−4

Table 6.11: Runtimes for the high and low dimensional algorithms and the reconstruction
on a grid with size 2048.

in Table 6.9. In the third column we see the time needed for the assemblation of the error
estimator matrices (4.19)-(4.22) in the extension step indicated in column one. We see
that even for the rather coarse grid that we used in this example, the time for the
assemblation of the online matrices is considerable, ranging from 166 seconds on for the
smallest basis to 9671 seconds or about 2.5 hours for the largest basis. Still, this does
not form a restriction in the applicability of the error estimator as the whole generation
process takes place offline where time is no, or at least not a big, concern.
The evaluation of the error estimator, on the contrary, is really quick. The time needed

for the reduced simulation and evaluation of the error estimator for all parameters in the
training set together ranges from three to nine seconds during the basis generation. In
this case we have NS = 3 and six training parameters in each direction giving a total of
216 possible combinations for µ1, . . . , µ3 and even more combinations for the parameters
in λ (see (6.4)). Thus, the mean training time (reduced simulation and evaluation of error
estimator for all parameters in the training set) of six seconds is pretty impressive.
In Table 6.11 we compare runtimes for the high dimensional algorithm to those for

the reduced simulation and reconstruction for different sizes of the reduced basis on a
triangulation with 2048 elements (h ≈ 0.44). The test problem in this case was the same
as for the POD-Greedy test, namely test case 6.1.3 with NS = 3, µ ∈ [0.1, 0.5]3. For each
basis we computed the runtimes for 27 different parameters and then build the mean
values to get an impression of typical runtimes. In column one we give the basis size N ,
in column two the runtime for the high dimensional algorithm (2.13), in column three the
time needed for a solution of the reduced system (3.13), in column four the runtime for
the reconstruction step, that is the projection from the reduced space back to the high
dimensional space and in column five the factor between the high dimensional part and
the low dimensional part which comprises the reduced simulation and reconstruction.
In the last column we give the largest relative error (error divided by the norm of the
reconstructed solution) between the high dimensional and reconstructed reduced solution
over all test parameters. As expected, the runtime for the high dimensional algorithm
mainly stays the same for all computations while the low dimensional algorithm gets
more expensive from smaller to larger basis sizes. Still, even for the largest basis, the
speedup by a factor of 18 is quite acceptable considering the small error of about 5 ·10−4

and the small grid size.
This factor of speedup, as expected, gets much better with a larger grid size as the

complexity of the low dimensional algorithm does not depend on the grid size.
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N thigh (ms) tlow (ms) trecons (ms) Factor Error

4 7,219.41 1.77 29.33 232 2.39e−2
8 7,292.07 1.84 51.11 138 5.28e−3
19 7,213.48 3.39 91.19 76 5.66e−4

Table 6.12: Runtimes for the high and low dimensional algorithms and the reconstruction
on a grid with size 131072.

In Table 6.12 we demonstrate this with runtimes for the same computations as before
on a grid with 131072 elements (h ≈ 0.055). Here the factor ranges from 76 to 232 as the
computational cost for the high dimensional algorithm is much larger in this case. Again,
even the smallest speedup of 76 is pretty convincing considering the small additional
error of at most 5.6 · 10−4.



7 Outlook

In this work we have introduced a new multiscale technique combining standard meth-
ods from the multiscale community with techniques from the reduced basis community.
Especially in the numerical experiments we have seen the advantages but also the flaws
of the approach. There are different means that can and will be applied to improve the
concept.
The error estimator will be revised. The localization step in the development of the

estimator turned out to be disadvantageous. This could be replaced by directly measuring
the (discrete) H−1 norm of the residual.
A revision of the basis generation algorithm will be done, too. The POD step turned

out to be destroying too much of the continuity properties of the ansatz functions. Over-
sampling techniques and the usage of another bilinear form in the POD step seem to be
promising improvements for this step of the new approach.
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