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REDUCED BASIS APPROXIMATION FOR THE DISCRETE-TIME
PARAMETRIC ALGEBRAIC RICCATI EQUATION

D. WITTWAR∗, A. SCHMIDT∗, AND B. HAASDONK∗

Abstract. In this work we study the application of the reduced basis (RB) approximation
method for parametric discrete-time algebraic Riccati equations (DARE). The DARE is very chal-
lenging to solve in large dimensions and parametric problems for large-scale applications are therefore
often infeasible. We thus propose to apply the low-rank factor greedy (LRFG) algorithm to build
a suitable low-dimensional subspace for the model reduction approach. Furthermore, we perform a
rigorous error estimation, including an effectivity analysis and show how the RB-DARE procedure
can be implemented efficiently. Numerical examples for an application in feedback control prove the
benefits, in particular excellent speedups and reliability of the error estimators.
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1. Introduction. In this paper we consider the application of the reduced basis
(RB) technique to the parametric discrete-time algebraic Riccati equation (DARE),
see [15, 16]. Such equations arise frequently in the context of discrete-time systems
theory. Popular examples comprise the optimal feedback control and state estimation
of linear and time-invariant systems, which are both standard tasks in systems theory,
cf. [1, 14]. Often those systems depend on one or several parameters and multiple
queries for different parameters are required, e.g. parameter studies, real-time param-
eter adaptions or statistical analysis. Furthermore, many realistic models are derived
from partial differential equations (PDEs), which yield large spatially discretized mod-
els. In such cases, and especially in the additional presence of parameters, the solution
of the above mentioned problems can be cumbersome, expensive and easily become
infeasible. RB methods have proven to be an efficient tool for rapidly solving parame-
ter dependent PDEs, cf. [4, 9, 11, 12]. Therefore, we are interested in developing a RB
technique for the DARE. In particular, we continue in the direction of RB methods
for parametric matrix-equations, see also [22, 21]. In contrast to the previous two
references, we cover a non polynomial, i.e., rational matrix-equation which requires
considerable modifications in the analysis.

This paper is structured as follows: We begin with a brief introduction to the
theoretical background of the DARE and the reduced model in Section 2. In the
subsequent sections we then address the offline/online computational strategy and
a-posteriori error analysis. The following numerical examples in Section 5 show the
speed-up that can be obtained when using the proposed scheme and illustrate the
performance of the error bounds. We conclude with some remarks and an outlook in
the final section.
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2. The RB-DARE method.

2.1. Problem setting. In this article we consider the parametric discrete(-time)
algebraic Riccati equation:

E(µ)TX(µ)E(µ) = A(µ)TX(µ)A(µ) + C(µ)TQ(µ)C(µ)

−A(µ)TX(µ)B(µ)
(
R(µ) +B(µ)TX(µ)B(µ)

)−1
B(µ)TX(µ)A(µ).

(1)

The parameter dependent matrices A(µ), E(µ) ∈ Rn×n, B(µ) ∈ Rn×m, C(µ) ∈ Rp×n,
Q(µ) ∈ Rp×p and R(µ) ∈ Rm×m, where E(µ) is invertible, are given and the solution
matrix X(µ) ∈ Rn×n is sought. Furthermore, we assume that Q(µ) and R(µ) are
symmetric positive semi-definite and symmetric positive definite, respectively, which
ensures the invertibility of R(µ). Additionally, we consider cases were m, p� n, i.e.,
the input and output dimension are small compared to the dimension of the system,
see also Remark 1. The parameter vector µ stems from a bounded set P ⊂ Rd,
which is called the set of all admissible parameters. In the following we omit the
parameter dependency in the notation of the system matrices to provide a better
reading experience. However, all definitions and statements should be understood to
hold for all µ ∈ P.

Equation (1) is a nonlinear rational matrix-valued equation, and it can have
multiple solutions among which only one is typically of interest: We call a solutionX ∈
Rn×n a stabilizing solution of the DARE, when it is symmetric, positive semidefinite
and stabilizing in the sense that (E,AX) is stable, which means that all eigenvalues
λi of the generalized eigenvalue problem AXx = λEx satisfy |λi| < 1. Here and in
the following, AX ∈ Rn×n denotes the so-called closed loop matrix

(2) AX := A−BKX , with KX :=
(
R+BTXB

)−1
BTXA,

where KX denotes the feedback-gain matrix, see also Remark 1. In general neither
the existence nor the uniqueness of solutions to (1) are guaranteed and additional
restrictions on the system matrices must be posed. One possible set of restrictions
is the stabilizability and detectability of the matrices E,A,B,Q1/2C, where Q1/2 de-
notes a symmetric positive semi-definite square root of Q. We call the tuple (E,A,B)
stabilizable, if there exists a matrix K ∈ Rm×n such that (E,A − BK) is stable.
Likewise, the tuple (E,A,Q1/2C) is called detectable, if the tuple (ET , AT , CTQ1/2)
is stable. We summarize the results in the following proposition:

Proposition 1 (Sufficient conditions for the existence of a unique stabilizing
solution). Let (E,A,B) be a stabilizable tuple of matrices and (E,A,Q1/2C) be a
detectable tuple of matrices. Then there exists a unique stabilizing solution X to the
DARE (1).

Proof. See for example [17].

Although nonsymmetric solutions to (1) can exist, we are usually only interested in
the subset of symmetric solutions X ∈ Dn ⊂ Sn, where Sn := {S ∈ Rn×n : S = ST }
denotes the set of symmetric n×nmatrices andDn := {S ∈ Sn : R+BTSB is regular}
denotes the open subset of all viable matrices such that (1) and (2) are well defined.
We now define the residual of the DARE (1) R : Dn → Sn by

R(X) := ETXE −ATXA− CTQC +ATXB
(
R+BTXB

)−1
BTXA.(3)
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We can conclude, that X is a solution to the DARE iff R(X) = 0, a property which
is used to approximate solutions to the DARE by applying Newton based procedures
to R(X) in order to find its zeros, see for example [3, 17].

An interesting application of the DARE is the feedback stabilization of linear
and time-invariant discrete-time systems, what we will briefly recall in the following
remark.

Remark 1. Consider the following linear quadratic (LQ) optimal control problem

min
u∈`2(Rm)

∞∑

k=0

yTk Qyk + uTkRuk(4)

s.t.





Exk+1 = Axk +Buk, k ≥ 0
yk = Cxk, k ≥ 0
x0 = x0 ∈ Rn.

(5)

With the set `2(Rm) we denote the set of all square-integrable sequences in Rm and we
abbreviate u = (u0, u1, . . . ). Systems of the form (5) arise for example after spatial and
temporal discretization of linear PDEs. The control problem (4)–(5) is called linear
quadratic regulator (LQR) problem, and has many important applications, for example
in engineering problems. The solution to the problem can be calculated explicitly and
has the form uk := Φ(xk), with Φ(x) := −KXx and X ∈ Rn×n is the unique stabilizing
solution to the DARE (1), c.f. [17]. Since the control input uk is directly depending
on the state xk, this type of control is also called feedback control.

Finally, we want to comment on some notation used throughout this article: By ‖·‖ we
mean the Eucliden 2-norm for vectors and the induced norm for operators (matrices).
The Frobenius norm of a matrix X is denoted as ‖X‖F =

√∑
i,j X

2
ij , where Xij

denotes the entry in the i-th row and the j-th column in the matrix X. By range(V )
we denote the linear space spanned by the columns of V . For two symmetric matrices
A,B ∈ Rn×n we write A � B if A−B is positive semi-definite and A � B if A−B is
positive definite. Furthermore, for N ∈ N let IN ∈ RN×N denote the identity matrix
and Bα(X) the open ball with radius α around X.

2.2. Reduced problem. In oder to derive a reduced problem, we make use of
a method based on projections which has already been succesfully applied to different
matrix equations. In [13, 20] a method for solving large scale Lyapunov equations is
presented, which is based on the projection on a Krylov subspace. The method we
present in the following is based on a Petrov-Galerkin projection, i.e., the residual
has to satisfy an orthogonality condition, which is an often used criterion in the RB
framework, see e.g. [9, 19]. Therefore, we consider a pair of matrices W,V ∈ Rn×N of
rectangular shape withN � n which are assumed to be biorthogonal, i.e. WTV = IN .
We approximate the solution to the DARE in the space of all matrices whose colums
are contained in range(W ), i.e. the approximation X̂ lives (due to symmetry) in the
space W := {S ∈ Sn : S = WSNW

T ,where SN ∈ SN}. In an analogous fashion we
define the space V. We now impose the aforementioned Petrov-Galerkin condition
on the residual R(X̂) with regard to the subspace V, i.e., R(X̂) is perpendicular to
V. Therefore, we endow the Hilbert space Sn with the trace inner product 〈S, T 〉 :=
tr(ST ) for S, T ∈ Sn. Making use of the symmetry of R(X̂) and some properties of
the trace operator, the Petrov-Galerkin condition can be rewritten as

(6) V TR(X̂)V = 0.
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Inserting the representation X̂ := WXNW
T as an element of W we arrive at

ETNXNEN = ATNXNAN + CTNQCN(7)

−ATNXNBN
(
R+BTNXNBN

)−1
BTNXNAN .

Equation (7) constitutes a DARE where the system matrices are given as

AN := WTAV ∈ RN×N , EN := WTEV ∈ RN×N ,
BN := WTB ∈ RN×m, CN := CV ∈ Rp×N .

We denote (7) as the reduced DARE as it is low dimensional. Its unique stabilizing
solution XN , if it does exist, can be calculated rapidly. Additionally, we denote XN as
the reduced solution and X̂ := WXNW

T as the RB approximation of X. For given
XN we can then compute a low rank factor Ẑ of the approximation X̂, i.e. X̂ = ẐẐT ,
by employing the eigenvalue decomposition of XN = UNSNU

T
N and by setting

Ẑ := WUNS
1/2
N ∈ Rn×N .

This is done in order to avoid computing and storing the dense high dimensional
matrix X̂. The first property we want to show is inherent to most RB approximation
methods: the reproduction of solutions, i.e. X ∈ W implies X = X̂.

Proposition 2 (Reproduction of solution). Let W,V ∈ Rn×N be given. Let the
symmetric positive semidefinite matrix X ∈ Rn×n be the unique stabilizing solution to
the DARE (1) and assume range(X) ⊂ range(W ). Furthermore, assume that for the
reduced system (7) the triplets (EN , AN , BN ) and (EN , AN , Q

1/2CN ) are stabilizable
and detectable, respectively. Then it follows

X = WXNW
T = X̂,

where XN denotes the stabilizing solution of the reduced DARE.

Proof. Since X is symmetric and range(X) ⊂ range(W ) holds by assumption,
there exists a unique symmetric positive semidefinite matrix G ∈ RN×N , such that
X = WGWT . By making use of the fact, that X is a solution to the DARE (1) we
get

ETWGWTE = ATWGWTA+ CTQC

−ATWGWTB
(
R+BTWGWTB

)−1
BTWGWTA.

Multiplying from left with V T and V from right yields

ETNGEN = ATNGAN + CTNQCN −ATNGBN
(
R+BTNGBN

)−1
BTNGAN .

Therefore, G is a symmetric positive semidefinite solution to the reduced DARE (7)
and we can conclude, due to the assumption of stabilizability and detectability of the
reduced matrices, that G is the unique stabilizing solution of the reduced DARE, i.e.
G = XN . It now follows, that X̂ = WXNW

T = WGWT = X.

2.3. Basis construction. It remains to show how a reduced basis for the DARE
can be constructed. The key ingredient, which on the one hand allows the rapid calcu-
lation of solutions of large-scale DAREs, and on the other hand opens the way towards
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an efficient approximation with an RB-scheme, is the so-called low-rank structure in
the solution matrices X(µ) ∈ Rn. The low-rank property here means a rapid decay
in the eigenvalues of the symmetric matrix X(µ). A theoretical foundation for this
observation can be found in [18, 24] where fast decaying bounds for the eigenvalues
of solutions of low rank Lyapunov equations are given. Since a solution X(µ) of the
DARE (1) solves the discrete Lyapunov equation

(8) E(µ)TX(µ)E(µ)−ATX(µ)X(µ)AX(µ) = F (X(µ))TF (X(µ)),

where F (X(µ))T :=
[
C(µ)TQ(µ)1/2 KT

X(µ)R(µ)1/2
]
∈ Rn×(p+m), the rapid decay in

the eigenvalues carries over. For a derivation of Equation (8) we refer to the appendix.
This low-rank structure allows for an efficient representation of the solution X(µ)

by rectangular matrices Z(µ) ∈ Rn×k such that X(µ) ≈ Z(µ)Z(µ)T with only very
little error. All large-scale solvers for DAREs are based on this approximation, and in
many real-world scenarios, especially for PDE-constrained optimal control problems,
this is typically fulfilled. The low-rank structure can furthermore be employed to
construct a basis for the RB-approximation of the DARE. The following algorithm
was originally developed for the approximation of solutions to the algebraic Riccati
equation (ARE), the continuous-time counterpart to the DARE, see also [21]. The
pseudocode of the so-called low-rank factor greedy (LRFG) algorithm is given in
Algorithm 1.

Algorithm 1 Low-rank factor greedy algorithm for basis construction
Require: Orthonormal initial basis W0, training set Ptrain ⊂ P, tolerance εGreedy,
POD tolerance εPOD, error indicator ∆(W,µ)
Set W := W0

while max
µ∈Ptrain

∆(W,µ) > εGreedy do

µ∗ := arg max
µ∈Ptrain

∆(W,µ)

Compute the low rank factor Z(µ∗)
Compute Z⊥ := (In −WWT )Z(µ∗)
Compute Z̄ =POD(Z⊥, εPOD)
Set W := (W, Z̄)

end while
return W,V := W

The algorithm works in a typical greedy fashion: starting from an initial basis
W0, it picks out the worst-approximated element by evaluating an error indicator over
a finite training set Ptrain and chooses the parameter µ∗ ∈ Ptrain that maximizes the
error indicator ∆(W,µ). The high-dimensional DARE is solved and the solution, or
better say parts of it, are added to the basis. This extension procedure is performed in
two steps: First, only the part which is perpendicular to the current basis is considered
in Z⊥. Then a subsequent reduction of the remaining part is performed by applying
a POD to Z⊥ with a prescribed tolerance εPOD, see [21, 25] for details. The basis
can furthermore be orthogonalized with respect to the mass matrix E(µ), where one
parameter µ is chosen, such that WTE(µ)V = IN , where N is the size of the reduced
basis. This can speed up the online calculation of the reduced DARE for certain
solvers, such as the builtin MATLAB standard solver.
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Remark 2. We note that Algorithm 1 is very similar to the POD-Greedy proce-
dure, which is used for the RB approximation of time-dependent problems. In fact, by
replacing the low rank factors Z(µ∗) with the matrix [x(t1), . . . , x(tNT )], consisting of
full-dimensional solution snapshots at time instances t1, . . . , tNT , the algorithms are
identical. We refer to [12] for details about the POD-Greedy and to [10] for conver-
gence statements.

3. Offline-Online-decomposition. One of the central properties to allow for
an efficient offline-/online-decomposition is the fast computation of the parameter
dependent matrices. This can be achieved by assuming that all matrices can be
decomposed in a parameter separable fashion, i.e. there exist parameter dependent
coefficient functions and parameter independent components such that

A(µ) =

QA∑

qA=1

ΘqA
A (µ)AqA , E(µ) =

QE∑

qE=1

ΘqE
E (µ)EqE ,

B(µ) =

QB∑

qB=1

ΘqB
B (µ)BqB , C(µ) =

QC∑

qC=1

ΘqC
C (µ)CqC ,

where a decomposition for R(µ) and Q(µ) is not required because of their small
sizes. In cases where the above form is not given or does not exist, techniques like
the empirical interpolation method can be applied to obtain approximations with a
parameter separable structure, see [2, 7]. This property is inherited by the matrices of
the reduced problem (7) which can then be assembled rapidly. For example, it holds

AN (µ) = WTA(µ)V = WT

(
QA∑

qA=1

ΘqA
A (µ)AqA

)
V

=

QA∑

qA=1

ΘqA
A (µ)WTAqAV =

QA∑

qA=1

ΘqA
A (µ)AN,qA .

Furthermore, parts of the residual norm and quantities neccessary for the a-posteriori
error bounds can be precalculated, as we will see in the next section. All computations
in the online step are now independent of the number of degrees of freedom (DOFs) n
and only depend on the dimension of the reduced system N , the number of inputs m,
the number of outputs p and the number of components in the parameter separable
decomposition QA, QB , QC , QE . Therefore, these should be preferably small.

4. Error estimation. In this section we want to derive an error estimator for
the error e := ‖X − X̂‖. We therefore apply a more general approximation theory,
see [6], which we extend to include an efficiency bound:

Theorem 1. Let (H1, ‖ · ‖H1) and (H2, ‖ · ‖H2) be two Banach spaces. Further-
more, let L(H1, H2) and L(H2, H1) denote the space of all linear maps from H1 to
H2 and H2 to H1 respectively. Let F : H1 → H2 be continuously differentiable and
v ∈ H1 such that DF |v ∈ L(H1, H2) is regular. We set

ε := ‖F (v)‖H2
, γ := ‖DF |−1

v ‖L(H2,H1)

and
L(α) := sup

x∈Bα(v)

‖DF |v −DF |x‖L(H1,H2).

6



If the validity criterion

(9) β := 2γL(2γε) ≤ 1

is met, then there exists a unique u ∈ B2γε(v) which satisfies

(10) F (u) = 0

and for which the following inequalities holds

(11) ‖u− v‖H1
≤ γε

1− β/2 ≤
(

β

2− β +
2γ

2− β ‖DF |v‖L(H1,H2)

)
‖u− v‖H1

.

Proof. As mentionded above, a proof for the existence of a unique u which satisfies
(10) and for which the first inequality in (11) holds can be found in [6]. For the second
inequality in (11) we can apply the mean value theorem for Fréchet differentiable
operators to F and get

(12) ε = ‖F (v)‖H2
= ‖F (v)− F (u)‖H2

≤ sup
x∈B2γε(v)

‖DF |x‖L(H1,H2)‖v − u‖H1
.

Since the validity criterion (9) is met, it holds L(2γε) = β
2γ . From the definition of L

we can conclude

sup
x∈B2γε(v)

‖DF |x‖L(H1,H2) ≤ L(2γε) + ‖DF |v‖L(H1,H2) ≤
β

2γ
+ ‖DF |v‖L(H1,H2).

If we substitute our new found bound in (12) and multiply both sides with γ
1−β/2 , we

get

γε

1− β/2 ≤
(

β

2− β +
2γ

2− β ‖DF |v‖L(H1,H2)

)
‖u− v‖H1 .

We now apply Theorem 1 to our reduced basis approximation X̂. At first, we need
to calculate the Fréchet differential of the residual R at X̂. Therefore, we make use
of the identity

(13) DR|X(S) =
d

dt
R(X + tS)|t=0

and the fact, that the resiudal can be written as a product and sum of Fréchet differ-
entiable operators

(14) R(X) = R0(X) +R1(X)TR2(X)R1(X),

where

R0(X) := ETXE −ATXA− CTQC,
R1(X) := BTXA,

R2(X) :=
(
R+BTXB

)−1
.
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Since both R0 and R1 are affine linear their Fréchet differentials are given by
DR0|X(S) = ETSE −ATSA and DR1|X(S) = R1(S) = BTSA. The Fréchet differ-
ential of R2 can be computed by expanding R2(X + tS) in form of Neumann series:

R2(X + tS) =
(
R+BTXB + tBTSB

)−1

=
(
Im + tR2(X)BTSB

)−1R2(X)

=

( ∞∑

k=0

(−1)ktk
(
R2(X)BTSB

)k
)
R2(X)

= R2(X)− tR2(X)BTSBR2(X) +O(t2) (t→ 0).

Applying the identity (13) results in DR2|X(S) = −R2(X)BTSBR2(X). Lastly, by
using (2) we can write the closed loop matrix as AX = A − BR2(X)R1(X) which
leads to

DR|X̂(S) = DR0|X(S) +DR1|X(S)TR2(X)R1(X) +R1(X)TR2(X)DR1|X(S)

−R1(X)TR2(X)BTSBR2(X)R1(X)

= ETXE −ATXXAX .
In the following corollary we now apply Theorem 1 to the DARE to get a first error
bound:

Corollary 1 (Analytical error bound). Let X̂ be a symmetric positive semidef-
inite approximation to a solution of the DARE. Furthermore, assume that (E,AX̂) is
stable and denote by LX̂ := DR|X̂ the discrete Lyapunov operator

LX̂(S) = ETSE − (AX̂)TSAX̂

Set γ := ‖L−1

X̂
‖, ε := ‖R(X̂)‖ and define

(15) L(α) := sup
Y ∈Bα(X̂)

‖LY − LX̂‖,

where B̄α(X̂) ⊂ Rn×n denotes the closed ball with radius α around X̂. If the criterion

β := 2γL(2γε) ≤ 1

is met and

(16) R+BT X̂B � 2γεBTB

holds, then there exists a unique X∗ ∈ B2γε(X̂) which solves the DARE and which
satisfies

‖X∗ − X̂‖ ≤ γε

1− β/2 ≤
(

β

2− β +
2γ

2− β ‖LX̂‖
)
‖X∗ − X̂‖

The additional condition (16) is necessary to guarantee that R is well defined on
B2γε(X̂). To see this let Y ∈ B2γε(X̂), i.e. ‖Y − X̂‖ ≤ 2γε, then Y � X − 2γεIn.
With (16) we get R+BTY B � R+BT X̂B − 2γεBTB � 0 and therefore Y ∈ Dn.

Since the above corollary only ensures that our approximation is close to a so-
lution X∗ of the DARE but not necessarily the stabilizing solution which we want
to approximate, the following proposition lays foundation to derive a criterion with
which we can verify whether X∗ is stabilizing:
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Proposition 3 (Stability criterion). If in addition to the assumptions of Corol-
lary 1 the following inequality holds

(17) ‖AX∗ −AX̂‖ <
√
‖AX̂‖2 + 1/γ − ‖AX̂‖,

then X∗ is the unique symmetric positive semidefinite and stabilizing solution of the
DARE.

Proof. The proof we present here mimics the one given in [23] for the case E = I.
We therefore prove the following more general result from which (17) can be concluded:
Let A,E ∈ Rn×n, such that (E,A) is stable and let L(S) = ETSE − ATSA. If ∆A
is a small perturbation in A for which

(18) ‖∆A‖ <
√
‖A‖2 + 1/γ − ‖A‖

holds, where γ = ‖L−1‖, then (E,A+ ∆A) is stable.
We define

δ := min{‖∆A‖ : ∆A ∈ Cn×n, max
1≤j≤n

|λj(E,A+ ∆A)| = 1}.

Let ∆A∗ ∈ Cn×n such that δ = ‖∆A∗‖ and w.l.o.g. λ1 = arg max
1≤j≤n

|λj(E,A+ ∆A∗)|
and let v1 denote an eigenvector of unit length to the eigenvalue λ1 of the adjoint
eigenvalue problem λ1E

T v1 = (A+ ∆A∗)T v1. Then W := v1v
∗
1 satisfies

ETWE − (A+ ∆A∗)TW (A+ ∆A∗) = ETWE − λ1E
T v1(λ1E

T v1)∗ = 0

which is equivalent to

L(W ) = ATW∆A∗ + (∆A∗)TWA+ (∆A∗)TW (∆A∗).

Applying the inverse operator L−1 and taking the norm leads to

1 ≤ γ
(
2‖A‖δ + δ2

)
.

Solving for δ results in
√
‖A‖2 + 1/γ − ‖A‖ ≤ δ which gives us (18). Finally, by

setting A = AX̂ and ∆A = AX∗ −AX̂ we can conclude (17).

Corollary 2 (Computable error bound). Let the assumptions of Corollary 1
hold. Furthermore, assume upper bounds γ ≤ γN and ε ≤ εN are available. It
follows:

(a) If R + BT X̂B � αBTB, then L(α) is bounded by LN (α), where LN (α) is
given by

LN (α) = α

∥∥∥∥B
(
R+BT X̂B − αBTB

)−1

BT
∥∥∥∥

·
(

2 + α

∥∥∥∥·BT
(
R+BT X̂B − αBTB

)−1

B

∥∥∥∥
)∥∥AX̂

∥∥2
.

(b) If
βN := 2γNLN (2γNεN ) ≤ 1

and
R+BT X̂B � 2γNεNB

TB,
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then there exists a unique X ∈ B2γNεN (X̂), which solves the DARE and for
which the following error and effectivity bound holds

‖X − X̂‖ ≤ ∆X :=
γNεN

1− βN/2
≤
(

βN
2− βN

+
2γN

2− βN
‖LX̂‖

)
‖X − X̂‖.

(c) If in addition to 2.

αN

∥∥∥∥B
(
R+BT X̂B − αNBTB

)−1

BT
∥∥∥∥ ‖AX̂‖ <

√
‖AX̂‖2 + 1/γN − ‖AX̂‖,

where αN = 2γNεN , then X is the unique symmetric positive semi-definite
stabilizing solution of the DARE.

Proof. For part (a) let X,Y ∈ Dn and S ∈ Sn. Then it holds

LY (S)− LX(S) = ATY SAY −ATXSAX
=
(
ATY −ATX

)
SAY −ATXS (AX −AY )

and therefore

(19) ‖LY − LX‖ ≤ ‖AY −AX‖ (‖AY ‖+ ‖AX‖) .

Taking a closer look at how the individual closed-loop matrices relate to one another
and using the identity

R−1
X −R−1

Y = R−1
Y (RY −RX)R−1

X = R−1
Y BT (Y −X)BR−1

X ,

where we denote RY := R+BTY B, we obtain

AX −AY = A−BR−1
X BTXA−

(
A−BR−1

Y BTY A
)

= B
(
R−1
Y BTY −R−1

X BTX
)
A

= B
(
R−1
Y BT (Y −X)−

(
R−1
X −R−1

Y

)
BTX

)
A

= B
(
R−1
Y BT (Y −X)−R−1

Y BT (Y −X)BR−1
X BTX

)
A

= BR−1
Y BT (Y −X)

(
In −BR−1

X BTX
)
A

= BR−1
Y BT (Y −X)AX .

We can now derive the following upper bounds for the matrix norms

‖AX −AY ‖ ≤ ‖B
(
R+BTY B

)−1
BT ‖‖Y −X‖‖AX‖,(20)

‖AY ‖ ≤
(

1 + ‖B
(
R+BTY B

)−1
BT ‖‖Y −X‖

)
‖AX‖.(21)

In the case of X = X̂ it holds ‖Y −X̂‖ ≤ α, which implies Y � X̂−αIn and therefore

(22) ‖B
(
R+BTY B

)−1
BT ‖ ≤ ‖B

(
R+BT X̂B − αBTB

)−1

BT ‖.

Combining (19),(20), (21) and (22) we get the proposed upper bound L(α) ≤ LN (α).
For part (b) we note, that since

β = 2γL(2γε) ≤ 2γNL(2γNεN ) = βN

10



the first inequality in Theorem 1 still holds.
Part (c) is a direct consequence of Proposition 3. In the proof of part one we have

already seen that the left hand side poses an upper bound to ‖AY − AX̂‖. On the
other hand we can conclude from the alternative representation

√
‖AX̂‖2 + 1/γ − ‖AX̂‖ =

1/γ√
‖AX̂‖2 + 1/γ + ‖AX̂‖

that the right hand side is decreasing in both γ and ‖AX̂‖ and therefore
√
‖AX̂‖2 + 1/γN − ‖AX̂‖ ≤

√
‖AX̂‖2 + 1/γ − ‖AX̂‖.

Thus, X is stabilizing by Proposition 3 if part three holds.

4.1. About the inverse operator norm ‖L−1

X̂
‖. The efficient calculation of

the constant γ = ‖L−1

X̂
‖ or an upper bound γ ≤ γN is of utmost importance for the

calculation of the stability criterion and the error bound. Therefore, we will dedicate
this section to a more detailed analysis concerning this operator, including rigorous
and nonrigorous approximations to γ allow the online-efficient calculation of the error
bound.

Theorem 2. Let AX̂ , E ∈ Rn×n where E is regular and (E,AX̂) is stable. Let
LX̂ : Sn → Sn denote the discrete Lyapunov operator, defined as LX̂(S) := ETSE −
ATXSAX for S ∈ Rn×n. Then the following holds:

1. LX̂ is invertible and the inverse operator L−1

X̂
is given via

L−1

X̂
(S) = E−T

( ∞∑

k=0

(AT
X̂
E−T )kS(E−1AX̂)k

)
E−1.(23)

2. Let H ∈ Sn be the unique solution to LX̂(H) = In, then the operator norm
γ = ‖L−1

X̂
‖ of the inverse operator is given by

γ = ‖L−1

X̂
‖ = ‖H‖.(24)

Proof. For the first property we note, that since (E,A) is stable, there exists a
norm ‖ · ‖?, such that ‖E−1A‖? < 1 and the series (23) is absolutely convergent with
respect to ‖ · ‖?. One can now easily check, that the right hand side in (23) is the
inverse. For the second result, we refer to [8], where the proof is carried out for the
case E = In. The generalization towards systems with non-trivial mass matrices,
however, is straightforward.

Theorem 2 shows how the true norm of the inverse operator can be calculated ex-
plicitly: One has to solve a discrete Lyapunov equation ETHE −AT

X̂
HAX̂ = In and

calculate the norm of the solution ‖H‖. As this might be feasible for small systems
(say n < 500), it is not possible to solve this Lyapunov equation efficiently for large-
scale systems. This is due to the lack of any low-rank structure in the equation, which
renders efficient algorithms for solving large and sparse Lyapunov equations inefficient
or unapplicable. We thus have to find suitable approximations or efficient techniques
to obtain upper bounds γ ≤ γN . A very simple bound can be found by exploiting the
series-representation of the solutions to the Lyapunov equation:

11



Corollary 3 (Upper bound). Let the assumptions of Theorem 2 hold. If
‖E−1AX̂‖ < 1 then

γN =
‖E−1‖2

1− ‖E−1AX̂‖2

is an upper bound to γ.

Proof. The proof is based on the representation of the solution H of LX̂(H) = In.
It holds

γ = ‖H‖ ≤ ‖E−1‖2
∞∑

k=0

‖E−1AX̂‖2k =
‖E−1‖2

1− ‖E−1AX̂‖2
.

The above bound in Corollary 3 can be very pessimistic, especially when the closed-
loop system Exk+1 = AX̂x

k has a weak damping in the sense that the system norm
‖E−1AX̂‖ is close to 1.

4.1.1. Approximation by power iteration. If we again recall the identity
γ = ‖H‖, where H solves the Lyapunov equation LX̂(H) = In, we see that we
are only interested in the largest eigenvalue of the symmetric matrix H = L−1

X̂
(In).

This opens a different way to approximate γ efficiently, without solving the (very
expensive) Lyapunov equation: We can apply the power iteration method (PI), which
only relies on products of the form Hx. The PI approximates the largest eigenvalue
and eigenvector by subsequent multiplications of a vector with H. Given an suitable
start vector x0 ∈ Rn with ‖x0‖ = 1, we proceed in the following way:

x̃k+1 := Hxk, λk := x̃Tk+1xk, xk+1 := x̃k/‖x̃k‖, k = 1, 2, . . . .

It is known, that this algorithm converges to the dominant eigenvalue of the matrix
H, whenever the initial vector is not orthogonal to the eigenspace spanned by the
dominant eigenvector. Thus, the goal is to calculate the matrix-vector product Hx
efficiently. For that purpose, we make use of the series representation:

Hx = E−T
[ ∞∑

k=0

(AT
X̂
E−T )k(E−1AX̂)k

]
E−1x.

Each summand in the series can be calculate efficiently: First we define y0 := E−1x,
and subsequently calculate yk := (E−1AX̂)yk−1 for k = 1, 2, . . . . Furthermore, we set
hk := (AT

X̂
E−T )kyk and Hk := E−1

∑k
i=0 hi. It then holds Hx = limk→∞Hk. We

truncate the series after ` terms, where ` is determined by the criterion ‖hk‖/‖Hk‖ ≤
tol, thus limiting the number of terms by neglecting terms with only low increment
in the result. Note that this is always possible, since the closed-loop system (E,AX̂)
is stable. Note that the procedure can be implemented efficiently when using tech-
niques like LU-decomposition of E to avoid explicit inversion of E and by applying
parallelization techniques. Numerical examples of the performance of this procedure
are given in Section 5.

4.1.2. Approximation via projection. Another way to obtain estimates of γ
is to once again apply a projection to the Lyapunov Equation

(25) LX̂(H) = ETHE −AT
X̂
HAX̂ = In

12



to get an approximation Ĥ of H. It is very unlikely that any low-rank approximation
is able to accurately represent the full solution H, since (25) has no low-rank structure
that can be exploited. However, recalling Theorem 2 we can expect, that

γ̂ := ‖Ĥ‖ ≈ ‖H‖ = ‖L−1

X̂
‖ = γ,

is a good approximation whenever the dominant eigenvalue of H is captured well
by the approximation Ĥ. We therefore assume, that Ĥ can be written as V̂ HM V̂

T ,
where V̂ ∈ Rn×M has orthonormal columns and HM ∈ SM . This leads to the reduced
Lyapunov Equation

ETMHMEM −ATX̂,MHMAX̂,M = IM ,

where EM := Ṽ TEṼ and AX̂,M = Ṽ TAX̂ Ṽ . As seen in Subsection 4.1.1, we can
employ the power iteration method to approximate the largest eigenvalue of H and
a corresponding eigenvector v. A suitable basis Ṽ can now be constructed from
dominant eigenvectors {v(µi)}Mi=1 where a training set PM := {µ1, . . . , µM} ⊂ P can
be chosen arbitrarily. This method is online efficient, since the above computations
can be done during the offline phase. We present numerical studies for this procedure
in Section 5.

4.2. Online efficient norm calculation. We now shift our focus to the online-
efficient calculation of the norms

∥∥∥∥B
(
R+BT X̂B − αBTB

)−1

BT
∥∥∥∥, ‖AX̂‖ and ε =

‖R(X̂)‖, or upper bounds to these quantities.
First, we take a closer look at

H(X̂) := B
(
R+BT X̂B − αBTB

)−1

BT

which is symmetric and therefore satisfies ‖H(X̂)‖ = λmax(H(X̂)). Since the spectral
radius of a product of matrices remains identical, when the order is reversed, i.e. it
holds

‖H(X̂)‖ = λmax(H(X̂)) = λmax

((
R+BT X̂B − αBTB

)−1

BTB

)
,

we can compute the norm ‖H(X̂)‖ by determining the maximum eigenvalue of the

low dimensional matrix
(
R+BT X̂B − αBTB

)−1

BTB.

For AX̂ and R(X̂) instead of the spectral norm ‖ · ‖ we compute the Frobenius
norm ‖ ·‖F , as proposed in [21], which states an upper bound for the Euclidean norm.
It holds for all A ∈ Rn×n

‖A‖2 ≤ ‖A‖F ≤
√

rank(A)‖A‖2.(26)

If we apply (26) to the residual R(X̂) we get

rank(R(X̂)) = rank

(
ET X̂E −

(
AT −AT X̂B

(
R+BT X̂B

)−1

BT
)
X̂A− CTQC

)

≤ rank(ET X̂E) + rank(AT
X̂
X̂A) + rank(CTQC)

≤ N +N + p = 2N + p.

13



Therefore the Frobenius norm overestimates the spectral norm by a factor at most√
2N + p. To make use of the parameter separability of the system matrices we

calculate ‖R(X̂)‖F , via the identity ‖R(X̂)‖2F = tr(R(X̂)TR(X̂)) which results in

‖R(X̂)‖2F = tr(ET X̂EET X̂E) + tr(AT X̂AAT X̂A) + tr(CTQCCTQC)(27)

+ tr(AT X̂BR−1

X̂
BT X̂AAT X̂BR−1

X̂
BT X̂A)

+ 2 tr(CTQCAT X̂A)− 2 tr(ET X̂ECTQC)

+ 2 tr(AT X̂BR−1

X̂
BT X̂AET X̂E)

− 2 tr(ET X̂EAT X̂A)− 2 tr(AT X̂BR−1

X̂
BTR−1

X̂
X̂AAT X̂A)

− 2 tr(CTQCAT X̂BR−1

X̂
BT X̂A),

where we used the abreviation RX̂ =
(
R+BT X̂B

)
. Substituting X̂ = WXNW

T

and applying the identity tr(ST ) = tr(TS) we can restructure the matrices in each
term of (27) in such a way, that the argument of the trace operator can be written
as a product of low dimensional matrices most of which posses a parameter separable
decomposition. For example,

tr(ET X̂EET X̂E) = tr(XNW
TEETWXNW

TEETW ),

where

WTE(µ)ET (µ)W =

QE∑

i,j=1

Θi
E(µ)Θj

E(µ)WTEiE
T
j W︸ ︷︷ ︸

=:Mi,j

.

In a similar fashion the matrix RX̂ = R+BT X̂B = R+BTNXNBN can be computed
fast and the following inversion is comparably cheap because RX̂ ∈ Rm×m is low
dimensional. Overall, the complexity of the calculation of the Frobenius norm during
an online simulation only depends on the dimension N of the reduced system and the
number of terms in the parameter separable extension QA, QB , QC , QE . The norm
‖AX̂‖ can be calculated in an analogous fashion.

5. Numerical Examples. We now investigate the proposed application of the
LRFG algorithm to the DARE. All examples were calculated on a computer with 4
dual-core Intel Core i7-6700 CPUs with 3.40Ghz each, 16 GB RAM and were imple-
mented in the MATLAB toolbox RBmatlab, where we used version 1.16.09. Wherever
possible, we made use of parallelization techniques built into MATLAB. The MAT-
LAB version used for all examples is R2015b. The full dimensional DAREs are solved
by using a Newton iteration, where the Lyapunov-equation in each iteration is solved
by using a code that was thankfully provided by Patrick Kürschner, see also [5].

The model under consideration is an advection-diffusion equation on the unit
square Ω := [0, 1]2 with homogeneous Dirichlet boundary conditions on all edges and
distributed control input on the subdomain ΩB := [0.6, 0.8]× [0.4, 0.6]2. The PDE for
this example is given by

∂tw(t, ξ;µ)− µdiff∆w(t, ξ;µ) + µadv∂xw(t, ξ;µ) = 1ΩB (ξ)u(t), t ≥ 0, ξ ∈ Ω,

together with the boundary condition w(t, ξ;µ) = 0 on the boundary Γ := ∂Ω and zero
initial conditions w(0, ·;µ) = 0. The function 1ΩB denotes the indicator function of
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ΩB . We furthermore define a measurement output as s(t;µ) := 1
|ΩC |

∫
ΩC

w(t, ξ;µ)dξ

for t ≥ 0 where the measurement domain is chosen as ΩC := [0, 0.1] × [0.2, 0.8], see
Figure 1 for a picture of the setup. The control objective for this problem is to let the
output s(t;µ) follow a prescribed reference trajectory r(t). We obtain a fully discrete
difference equation for this model after semidiscretization of the PDE by using finite
differences in space on an equidistant grid in both dimensions, where an upwind
scheme is used for the discretization of the advection term and the boundary values
are not included in the solution vector, followed by the application of an implicit
Euler scheme with timestep ∆t for the temporal discretization. We end up with the
following discrete-time LTI system:

E(µ)xk+1(µ) = xk(µ) + ∆tBuk, k ≥ 0,

yk(µ) = Cxk(µ), k ≥ 0,

x0 = 0.

The mass matrix stems from the implicit discretization and takes the form E(µ) :=
(In−µdiff∆tA1−µadv∆tA2), where the matrix A1 describes the diffusive part and A2

adds the advection part to the equation. The matrix B is the discretized counterpart
of the indicator function and the output is spatially discretized by using a rectangular
quadrature rule, which results in the linear equation for yk(µ).

In order to formulate the tracking-control task stated above, we employ a linear-
quadratic regulator technique with an additional integral-action for the tracking: We
first discretize the reference trajectory as rk := r(k∆t) for k ≥ 0. We then add an
additional artifical state x̃k that sums up (integrates) the error between the desired
trajectory and the measurement output x̃k+1 := x̃k + ∆t(yk − rk). The augmented
system can then be written as

(
E(µ) 0

0 1

)(
xk+1

x̃k+1

)
=

(
I 0

∆tC 1

)(
xk
x̃k

)
+

(
∆tB

0

)
uk −

(
0

∆t

)
rk,

yk(µ) = Cxk.

We introduce the cost functional

J(x,u;µ) :=

∞∑

k=0

µtrackingx̃
2
k+1 + 0.1u2

k,

which, when minimized, forces x̃k to zero and hence results in the tracking Cxk → rk
for k →∞ whenever rk is constant in time. The parameter µtracking can be adjusted
to alter the tracking quality/speed: Larger values lead to a faster tracking but involve
higher control costs. To sum up, the problem consists of three parameters, and the
parameter domain is chosen as

µ = (µdiff, µadv, µtracking)
T ∈ P := [0.05, 0.2]× [0, 10]× [1, 10].

The full discretization in the following examples results in a n = 1601 dimensional
system with one input m = 1 and one output p = 1. An example of the full state and
the controlled output yk(µ) for two different parameters is provided in Figure 2(left).
The reference output trajectory in this case is a rectangular signal that changes sign
at t = 5 which both outputs nicely follow. From Figure 2(right) we can conclude that
the exact output yk and the approximated output for dimension N = 6 of the reduced
problem are basically indistinguishable.
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Fig. 1. Full 2D state plots for different parameter vectors (from left to right): µ = (0.05, 5, 10)T ,
(0.05, 1, 10)T , (0.2, 0, 10)T at t = 10.
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Fig. 2. Reference trajectory and two (true) output plots for parameters µ1 = (0.2, 1, 10)T , µ2 =
(0.2, 1, 10)T (left). Reference trajectory, output yk(µ) (right) for µ = (0.1, 1, 1)T and outputs for
increasing dimension N of the reduced problem.

As a first test we investigate the basis generation procedure for this example. For
this purpose, we discretize the parameter domain into 343 equidistant points as nodes
from a uniform grid in all three dimensions. We set the desired greedy tolerance to
εGreedy := 10−4 and run the basis generation Algorithm 1 with different POD tol-
erances. In Figure 3, a qualitative comparison is given in terms of the decay of the
error indicator. The marks in the plot indicate the points where full solutions are
calculated during the run of the greedy algorithm. The numerical results confirm the
expected behavior: The smallest basis is being constructed for εPOD = 0 with a size
of N = 43. Setting the POD tolerance to zero means that in each iteration only the
dominant mode is added to the basis, which naturally results in a very compressed ba-
sis, but requires the highest computational effort since many high dimensional DARE
solutions must be calculated: In this case 40, which means that 3 parameters got
revisited during the greedy iterations. Increasing the POD tolerance to εPOD > 0.99
leads to larger bases for this example, but allows a faster basis generation since fewer
full solutions are required. Clearly, there is a tradeoff between the desired basis size
and the number of full solutions that one can calculate offline. In all of the following
examples we choose the smallest basis, i.e. the N = 43 dimensional basis which was
constructed for εPOD = 0. We furthermore define another parameter set Ptest for all
tests, consisting of 10 randomly chosen elements from P, distinct to the training set
Ptrain.

Next, we analyze the true error which is induced by the RB approximation and
the corresponding error estimation from Section 4. In Figure 3 we show the true
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Fig. 3. Error indicator decay for different inner tolerances εPOD on the same training set (left).
True error, residual norm, validity criterion and error estimator (right) for all test parameters.

absolute error, the error estimator and the residual as well as the validity criterion.
Note that, although its calculation is really expensive, we choose the true value for
the constants γ(µ) in order to get rigorous results and validate the bounds. We will
later show that by using the approaches presented in this work, the constant can be
estimated much faster. Figure 3 reveals that the error estimator resamples the true
behavior of the error very accurately, although it is overestimated by a factor of ≈ 102.
However, as Figure 2 (right) indicates, the outputs are indistinguishable which proves
the quality of the RB approximation for this application. In all cases, the validity
criterion is below 1, and thus all results are rigorous.

The crucial ingredient in the error estimation is clearly the constant γ(µ). Theo-
rem 2 shows that it can be calculated by solving a large-scale discrete Lyapunov equa-
tion, which clearly is infeasible online. We thus proposed two methods to overcome
this issue and to enable real-time simulations: The first method is an efficient imple-
mentation of the power iteration (PI) algorithm to approximate the largest eigenvalue
of the Lyapunov-solution H. We perform this procedure for all elements in the test
set. Table 1 shows the mean relative approximation error meanµ∈Ptest

|γ(µ)−γPI(µ)|
γ(µ)

between the true value γ(µ) and the PI-approximation γPI(µ) as well as the corre-
sponding calculation times for different tolerances εPI. We see that even in relativly
low dimensions, the direct calculation easily becomes infeasible. In really high di-
mensions, say n� 10.000 this is infeasible. However, we can use the power-iteration
algorithm to approximate γ(µ) up to any desired tolerance in (offline-)reasonable time,
as the results in Table 1 indicate.

Table 1
Comparison of the calculation times for γ when using the full-approach (Lyapunov-equation

solve) and the power-iteration method for different tolerances εPI.

n=101 n=401 n=1601

t[s] Err t[s] Err t[s] Err

Full 0.02 - 0.58 - 65.29 -
εPI=1e-2 0.02 1.40e-02 0.06 2.52e-02 0.48 5.07e-02
εPI=1e-3 0.03 1.91e-03 0.13 2.72e-03 1.37 5.34e-03
εPI=1e-4 0.06 1.86e-04 0.23 2.63e-04 3.02 5.71e-04
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As explained in Subsection 4.1.1, γ(µ) can furthermore be approximated by pro-
jecting the Lyapunov-equation onto a suitable subspace, spanned by dominant eigen-
vectors of its solution. Those eigenvectors can be obtained “cheaply” by using the
power-iteration technique as before. Table 2 gives an overview of the results. With
moderate offline costs, very accurate approximations can be obtained online. Com-
pared to the huge costs that are required for one full calcualtion of γ(µ), this is a
tremendous improvement.

Table 2
Results for the projection-based calculation of γ(µ). The table shows the calculation times for

the offline step, average online calculation time and the mean, minimum and maximum relative
error over the test set Ptest for different offline training sizes.

8 27 64 125

Offline time [s] 130.7669 257.8988 463.0604 761.6805
Avg. Online time [s] 0.0114 0.0106 0.0100 0.0092

mean 0.0577 0.0028 0.0049 0.0014
min 0.0081 0.0001 0.0001 0.0000
max 0.1265 0.0064 0.0148 0.0053

Finally, we examine the calculation times of the overall procedure in Table 3.
One online simulation for this example takes only a fraction of a second, including the
calculation of the residual norm and the 2-norm of the closed-loop system. Altogether,
we reach speedup factors in the magnitude of several thousands. We note however
that the implementation of the large-scale DARE solver used in out experiments is
certainly not the most efficient implementation possible.

Table 3
Calculation times in seconds for one full-dimensional solution, the calculation of the reduced

solution, its residual norm and the closed-loop norm.

P PN ‖R(X̂)‖F ‖AX̂‖
mean 18.6486 0.0054 0.0005 0.0116
max 21.7083 0.0074 0.0008 0.0738
min 16.5895 0.0043 0.0004 0.0041

6. Conclusion. In this article we developed the RB-DARE framework for the
rapid approximation of solutions to the DARE. We showed how the whole reduction
procedure can be implemented efficiently, and how the resulting approximation can
be certified by a-posteriori error bounds. The bounds can be calculated quickly,
given rapid approximations of the relevant constants are available. The presented
application in the field of LQR control is only one example of many possible scenarios,
including for example discrete-time H∞, H2 control or Kalman-filtering.
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Appendix A. Proof of equality (8). It is sufficient to show that the residual
R(X) has an alternative representation via

R(X) = ETXE −ATXXAX − F (X)TF (X),

where F (X)T :=
[
CTQ1/2 KT

XR
1/2
]
. Therefore, let X ∈ Dn and RX := R+BTXB.

it holds, that

KT
XB

TXAX = KT
XB

TX (A−BKX)(28)

= KT
XB

TXA−KT
XB

TXBKX

= KT
XB

TXA−KT
X

(
R+BTXB −R

)
KX

= KT
XB

TXA−KT
X (RX −R)R−1

X BTXA

= KT
XB

TXA−KT
XB

TXA+KT
XRKX

= KT
XRKX .
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From which we conclude

R(X) = X −ATXA+ATXBKX − CTQC
= X −ATX (A−BKX)− CTQC −KT

XB
TXAX +KT

XB
TXAX

= X − (AT −KT
XB

T )XAX − CTQC −KT
XB

TXAX
(28)
= X − (A−BKX)TXAX −

(
CTQC +KT

XRKX

)

= X −ATXXAX − F (X)TF (X).
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