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Abstract. We are interested in approximating vector-valued functions on a com-
pact set Ω ⊂ Rd. We consider reproducing kernel Hilbert spaces of Rm-valued func-
tions which each admit a unique matriv-valued reproducing kernel k. These spaces
seem promising, when modelling correlations between the target function compo-
nents. The approximation of a function is a linear combination of matrix-valued
kernel evaluations multiplied with coefficient vectors. To guarantee a fast evalua-
tion of the approximant the expansion size, i.e. the number of centers n is desired to
be small. We thus present three different greedy algorithms by which a suitable set
of centers is chosen in an incremental fashion: First, the P–Greedy which requires
no function evaluations, second and third, the f–Greedy and f/P–Greedy which
require function evaluations but produce centers tailored to the target function. The
efficiency of the approaches is investigated on some data from an artificial model.

1 Matrix-Valued Kernels

We will give a short overview on the theory of matrix-valued kernels and how
they can be applied in the context of approximation/surrogate modelling. For
further information and a more thorough introduction, we refer to literature,
e.g. [1,3].

For a compact set Ω ⊂ Rd a bivariate function k : Ω × Ω → Rm×m
is called a matrix-valued kernel if k(x, y) = k(y, x)T . It is further denoted
as (strictly) positive definite if for any finite set X = {x1, . . . , xn} ⊂ Ω of
pairwise distinct points the associated block Gramian matrix k(X,X) :=
(k(xi, xj))i,j ∈ Rmn×mn is positive (semi-)definite. In this case, there exists
a unique Hilbert space, the so called native space Hk of Rm-valued functions
over the domain Ω such that the kernel k satisfies

k(·, x)α ∈ Hk, ∀x ∈ Ω, ∀α ∈ Rm (1)

〈f, k(·, x)α〉Hk
= f(x)Tα, ∀x ∈ Ω, ∀ f ∈ Hk,∀α ∈ Rm (2)

where (2) is called the reproducing property.
It follows that the directional kernel evaluations k(·, x)α are the Riesz

representers of the directional point evaluation functionals δαx : Hk → R,
δαx (f) := f(x)Tα. With the Cauchy-Schwarz inequality these δαx are bounded.
Vice versa, if for a Hilbert space H of functions f : Ω → Rd all directional
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point evaluation functionals are bounded, there exists a unique positive def-
inite kernel which satisfies (1)–(2). Hence, such a Hilbert space is referred to
as reproducing kernel Hilbert space, or RKHS for short, and k is called its
reproducing kernel.

Given a function f : Ω → Rm and a set of n pairwise distinct points
X := {x1, . . . , xn}, the kernel interpolant sfX of f on the centers X can be
defined via

sfX(x) :=

n∑
i=1

k(x, xi)αi, (3)

where the coefficient vectors αi ∈ Rm solve the linear system

p∑
i=1

k(xj , xi)αi = f(xj), for j = 1, . . . , n. (4)

We assume in the following, that k is a (not necessarily strictly) positive
definite kernel and f ∈ Hk. In this case, (4) may have non-unique coeffi-

cient solutions, which however all represent the unique interpolant sfX . In
the case of strictly positive definite kernels, even the coefficient vectors in (4)
are unique for arbitrary finite sets of pairwise distinct points X ⊂ Ω, and
interpolation is also well-posed if f /∈ Hk. Moreover, as a consequence of the
reproducing property (2), the interpolant sfX can be identified as the best
approximation of f in the subspace N (X) ⊂ Hk given by

N (X) := span{k(·, x)α|x ∈ X,α ∈ Rm}. (5)

Since N (X) is a finite dimensional closed subspace, it is also an RKHS, since
the directional point evaluation functionals δαx restricted to N (X) are still
bounded. Hence, N (X) admits its own unique reproducing kernel kN (X). It
can be shown, c.f. [6], that this reproducing kernel is given by

kN (X)(x, y) = k(x,X)k(X,X)+k(X, y), (6)

where k(X,X)+ denotes the Moore-Penrose pseudoinverse of the Gramian
matrix k(X,X). Furthermore, the orthogonal projection operator ΠN (X) :
Hk → N (X) is well defined and, therefore, we are able to define the Power-
Function PX : H∗k → R via

PX(λ) = sup
f∈Hk\{0}

|λ(f)− λ(ΠN (X)(f))|
‖f‖Hk

, for λ ∈ H∗k. (7)

Using the Cauchy-Schwarz inequality and the fact that ΠN (X) is self-adjoint,
it can be shown, see [6], that for the directional point evaluation functional
δαx the Power-Function is given by

PX(δαx )2 = αT (k(x, x)− kN (X)(x, x))α. (8)
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For notational convenience, we denote as

PX(x) := k(x, x)− kN (X)(x, x) (9)

the Power-Function matrix, which in general is positive semidefinite.
Combining (7)–(9) we get the following directional error bound

|(sfX(x)− f(x))Tα|2 ≤ αTPX(x)α‖f‖2Hk
. (10)

2 Greedy Algorithm

For a given kernel and target function, the quality of the interpolant is de-
pendent on the choice of centers. For the selection of these centers we employ
the kernel greedy algorithm, whose pseudo code is given in Algorithm 1, and
which works as follows: We assume to have a given finite sampling ΩN ⊂ Ω
of the input space, an initial set of centers X ⊂ Ω, this may be empty, a
tolerance ε > 0 and an error indicator function E. Now, we iteratively se-
lect a point maximizing E, add it to the set of centers and compute the
next approximant by interpolation on the small set of chosen centers. This is
repeated until the tolerance ε is reached.

Algorithm 1 General Kernel Greedy Algorithm

Require: finite sampling of the input domain ΩN ⊂ Ω, kernel k : Ω×Ω → Rm×m,
target function f : Ω → Rm, initial set of centers X, error indicator function
E, tolerance ε > 0.

1: while max
x∈ΩN

E(k, f,X, x) ≥ ε do

2: x∗ = arg max
x∈ΩN

E(k, f,X, x)

3: X = X ∪ {x∗}
4: end while
5: return X

In the following we consider three instantiations by different choices of E,
resulting in the P–Greedy, f–Greedy and f/P–Greedy algorithms.

2.1 P–Greedy

The P–Greedy uses an error indicator that depends on the Power-function
but is independent of the target function. Hence, it results in a set of centers
which are suitable for variety of different target functions. Furthermore, no
(expensive) function evaluations are necessary in the selection process which
can thus be performed in a rapid manner. Using the directional error bound
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(10) and taking the supremum over all directions α ∈ Rm of length one, we
end up with the bound

‖sfX(x)− f(x)‖22 ≤ ‖PX(x)‖2‖f‖2Hk
, (11)

where ‖ · ‖2 denotes the Euclidean norm for vectors and the spectral norm
for matrices, respectively. The error indicator function E1 is then given as

E1(k, f,X, x) := E1(k,X, x) := ‖PX(x)‖2. (12)

We note, that by (6) we have kN (X)(x, x) = k(x, x) for all x ∈ X and thus
E1(k,X, x) = 0 for all x ∈ X. Moreover, as a direct consequence of (7) we
have E1(k,X, x) ≤ E1(k, Y, x) for all x ∈ Ω and Y ⊂ X. In particular the
algorithm terminates after a finite number of steps and no point is chosen a
second time.

In the scalar-valued case, see [2], this algorithm has recently been shown
to result in quasi-optimal approximations for kernels of Sobolev spaces [4]
and asymptotically uniformly distributed point sets.

2.2 f–Greedy

For the f–Greedy the error indicator function E2 is given by

E2(k, f,X, x) := ‖sfX(x)− f(x)‖22. (13)

One can see, that the indicator relies on the evaluation of the target func-
tion and should therefore select a set of centers that is tailored to the target
function. This is expected to lead to a smaller number of centers when com-
pared to the P–Greedy. However, it involves all target values f(x), x ∈ ΩN
which may not be cheaply available, and the resulting set of centers is in-
dividually suited to this particular target function. In contrast to the indi-
cator E1 the indicator E2 is in general not decreasing, i.e. the inequality
E2(k, f,X, x) ≤ E2(k, f, Y, x) for x ∈ Ω and Y ⊂ X does not necessarily
hold. Nonetheless, we still have E2(k, f,X, x) = 0 for all x ∈ X and no point
is selected twice.

2.3 f/P–Greedy

By the reproducing property (2) we obtain

‖f(x)− sfX(x)‖2 ≤ ‖k(x, x)‖2‖f − sfX‖Hk
, (14)

thus, the error in the Euclidean norm can be bounded by a kernel dependent
constant and the error in the Hilbert space norm. Hence, it seems reasonable
to choose an indicator function E3 in such a way, that the error in the Hilbert
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space norm is minimized. Since sfX is the best approximation of f in N (X)
we have

‖f − sfX‖
2
Hk

= ‖f‖2Hk
− ‖sfX‖

2
Hk

(15)

and, therefore, minimization of the left hand side is equivalent to maximizing
the Hilbert space norm of the interpolant sfX . For this purpose the error
idicator function E3 is chosen as

E3(k, f,X, x) := (sfX(x)− f(x))TPX(x)+(sfX(x)− f(x)). (16)

For scalar strictly positive definite kernels this is equal to

E3(k, f,X, x) :=
|sfX(x)− f(x)|

PX(x)

thus a fraction of an “f” and “P” dependent term motivating the notion
“f/P”–Greedy. The following lemma, which extends the results in [5] to
matrix-valued kernels, shows that the right hand side in (16) is equal to

the gain in the square of the Hilbert space norm of the interpolant ‖sfX‖2Hk
,

when the set of centers X is enriched by x:

Lemma 1 (Local optimality of the f/P–Greedy selection rule). Let
k : Ω × Ω → Rm×m be a positive definite matrix-valued kernel, f ∈ Hk and
X = {x1, . . . , xn} ⊂ Ω a finite set of pairwise distinct points. Let sfX ∈ N (X)
denote the unique interpolant of f on the centers X. Then it holds for all
x ∈ Ω:

‖sfX∪{x}‖
2
Hk

= ‖sfX‖
2
Hk

+ (sfX(x)− f(x))TPX(x)+(sfX(x)− f(x)). (17)

Proof. We restrict ourselves to the strictly p.d. case. For the non-strictly p.d.
case technical consideration of the null spaces of the kernel matrices is re-
quired without major change of the main arguments. For suitable coefficients
the interpolants can be expressed as

sfX∪{x} = k(·, X)α+ k(·, x)αn+1, α ∈ Rmn, αn+1 ∈ Rm

and
sfX = k(·, X)β, β ∈ Rmn.

Furthermore, let A := k(X,X) and B := k(X,x). Since both sfX∪{x} and sfX
interpolate f on X we have

Aα+Bαn+1 = Aβ ⇐⇒ β = α+A−1Bαn+1. (18)

For the norm of sfX∪{x} it holds

‖sfX∪{x}‖
2
Hk

= αTAα+ 2αTBαn+1 + αTn+1k(x, x)αn+1
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and using (18) we get

‖sfX‖
2
Hk

= βTAβ

= αTAα+ 2αTBαn+1 + αTn+1B
TA−1Bαn+1

= ‖sfX∪{x}‖
2
Hk
− αTn+1

(
k(x, x)−BTA−1B

)
αn+1

= ‖sfX∪{x}‖
2
Hk
− αTn+1PX(x)αn+1. (19)

For the difference between the target function and the interpolant on X we
again have via (18)

f(x)− sfX(x) = sfX∪{x}(x)− sfX(x) = BTα+ k(x, x)αn+1 −BTβ

=
(
k(x, x)−BTA−1B

)
αn+1 = PX(x)αn+1. (20)

Combining (19) and (20) concludes the proof as

‖sfX‖
2
Hk

= ‖sfX∪{x}‖
2
Hk
− αTn+1PX(x)αn+1

= ‖sfX‖
2
Hk

+ (sfX(x)− f(x))TPX(x)−1(sfX(x)− f(x)).

�

Similar to the f–Greedy, the f/P–Greedy is more expensive than the P–
Greedy and in general the indicator is not monotically decreasing. However,
due to the interpolation property we have E3(k, f,X, x) = 0 for all x ∈ X
and thus the algorithm again terminates with a finite number of centers.

3 Numerical Example

In this section we want to investigate the effect of the different error in-
dicator function on the quality of the approximation and the placement of
the centers. For this purpose we consider the unit disc segment Ω = {x =
(r cos(ϕ), r sin(ϕ))T ∈ R2| (r, ϕ)T ∈ Ω̃} with Ω̃ = [0, 1]× [ 13π,

5
3π], the target

function f = (fi)
8
i=1 : Ω → R8 given by

fi(x) :=

10∑
j=1

e−b(i+1)/2c‖x−xj‖2 , i = 1, . . . , 8,

with x1 = (0, 0)T and xj = 0.1(cos( j6π), sin( j6π))T , j = 2, . . . , 10 and the
kernel k : Ω×Ω → R8×8 given by a diagonal Gaussian with decaying widths

ki,j(x, y) :=

{
e−b(i+1)/2c‖x−y‖2 , i = j

0, i 6= j

By straightforward computation one can see that f(x) = k(x, Y )1 where Y =
{x1, . . . , x10} and 1 ∈ R80 is the vector containing only ones. In particular we
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Fig. 1. Error indicator decay (left) and maximum training error decay in the Eu-
clidean norm (right) for increasing number of centers.

have ‖f‖2Hk
= 1T k(Y, Y )1 ≈ 768.295. For the Greedy algorithm we choose

ΩN by transforming 50×50 uniformly distributed points in Ω̃ to rectangular
coordinates, which results in 2451 sample points and use the tolerance ε =
10−7. The sets of centers which are generated are denoted by Xi, i = 1, 2, 3
where the index corresponds to the index of the respective error indicator
function Ei, i = 1, 2, 3 from Section 2. In Figure 1 the decay of the error
indicator (maximum Ei over the training set ΩN ) and maximum training
error for an increasing number of centers are depicted. As we can see, it takes
114 iterations for the P–Greedy algorithm to terminate, where only 35 (f–
Greedy) and 29 (f/P–Greedy) are required for the other algorithms. This is
caused by the slow decay in the Power-function which in itself is caused by
the narrow Gaussians which model the last target function components. As
we mentioned before in Section 2.1, we can see in Figure 2 that the set X1 is
somewhat uniformly distributed while X3 is clearly not space filling.
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Fig. 2. Distributions of the centers X1, X2 and X3.

In Figure 3 the decay for the maximum test error in the Euclidean norm
err2i on the test set ΩM generated by transforming 100× 100 uniformly dis-
tributed points in Ω̃, and Hilbert space norm errki , i = 1, 2, 3 are shown. While
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the error in the Hilbert space norm is monotically decaying for any choice
of Ei. This is not the case for the Euclidean norm. However, in both cases
the f/P–Greedy generates the best sets with regards to the number of cen-
ters that are used in the interpolant expansion. For example, the P -Greedy
algorithm takes about 70 iteration to reach a Euclidean error of order 10−4,
while the f/P–Greedy requires 29 to reach the same result. Overall, all three
variants generate very sparse kernel-based models. Future work will aim at
surrogate modelling for engineering applications with those techniques.
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Fig. 3. Test error decay in the Euclidean norm (left) and in the Hilbert space norm
(right) for increasing number of centers.
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