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Abstract. Kinematics and dynamics of cable-driven parallel robots are affected by the
cables used as force and motion transmitting elements. Flexural rigidity of these cables
is of major interest to better understand dynamics of these systems and to improve
their accuracy. The approach for modeling spatial cable dynamics, as presented in this
paper, is based on the modified rigid-finite element method using rigid bodies and spring-
damper elements. With this, a simulation of a planar 3 degrees of freedom cable-driven
parallel robot is constructed as a multi-body dynamics model. Under consideration of
holonomic constraints and Baumgarte stabilization, a simulation framework for the sim-
ulation of cable-driven parallel robots including dynamics of the cables is developed and
presented.

Key words: Parallel kinematics, multi-body dynamics, flexible joints, holonomic sys-
tems, model order reduction.

1 Introduction

Cable-driven mechanisms have been known for thousands of years starting in
ancient Egypt and reaching all the way till modern centuries. Such systems,
like mooring, supporting, or lifting devices in offshore engineering, cable-
suspension bridges, or cranes are very likely known to the reader. Another
field of application comes from replacing rigid links usually found in Gough-
Stewart platforms (see Fig. 1a) with cables, yielding a cable-driven parallel
robots (shortened cable robot, see Fig. 1b). This enables such systems to
outperform their rigid-link counterparts by magnitudes when it comes to
dynamics, workspace, or payload. On the downside, these benefits come at a
cost stemming from the use of flexible links as force and motion transmitting
elements as these introduce unilateral constraints into the system: cables can
only exert tensile forces i.e., can only pull. Additionally, their resistance to
transversal forces i.e., perpendicular to the cable’s neutral axis, is negligible.
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(a) CAD rendering of a Gough-Stewart
platform, a general hexapod with 6 degrees
of freedom and 6 actuators.

(b) Representation of a general cable robot
with 6 degrees of freedom and 8 actuators
(cables).

Fig. 1: Comparative display of a general Gough-Stewart platform (a) and a
cable robot (b).

This effect is very prominent when jerky motions or sharp changes in the
direction of motion along a trajectory occur.

Industrial application of the cable robot technology was first studied by
Albus et al.for the NIST RoboCrane [2]. To foster research, cables were as-
sumed ideal i.e., to be forming a straight line between two points without any
longitudinal flexibility or inherent dynamics. However, mechanical properties
of cables differ from rigid links thus modeling of cables was further extended.
Besides considering cable longitudinal flexibility by means of linear [10] or
non-linear models [5, 8], the dynamics were researched in only very limited
extend. In [7], the authors employed XDE to simulate cable robots with dis-
cretized cables allowing for coiling, yet the Reissner beam for cable modeling
with a resolution of 0.02m makes for very slow simulation and induced oscilla-
tions. The cable robot analysis and simulation framework CASPR [6] provides
tools for designing cable robots, yet simulation also allows for only state of
the art cable models. A multi-body approach for large-span suspended cable
robots was introduced in [3], neglecting extensibility of the cables as well as
bending stiffness, yet the authors explicitly consider winding of the cables.

In this contribution, the well-established finite element discretization
method for cables based on the modified rigid finite element method derived
by [1], accounting for both bending and longitudinal flexibility, is applied to
simulation of cable robots. The model is extended such that it allows for at-
taching multiple cables to arbitrary points on a rigid body that is assumed to
represent the mobile platform of cable robots. To account for expensive eval-
uation of the extended system dynamics, model order reduction techniques
are further employed reducing the computational complexity and enabling
efficient simulation of the system.

The structure of this paper is as follows: in Section 2, the model of a single
cable is derived as well as the synthesis for a multi-cable setup including the
cable robot mobile platform is shown. Analysis of the model is performed
and numerical results are given, including application of model order reduc-
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tion techniques since calculation of the equation dynamics is time-consuming.
After a discussion of the combined model in Section 3 highlighting its appli-
cability to simulation of cable robots, a conclusion is drawn in Section 4 also
pointing out further steps to improving the model.

2 Model Synthesis and Analysis

In this section, we derive the dynamics of the system used for simulation of
a cable robot. The model is based on the modified rigid finite element ap-
proached presented by Adamiec–Wójcik et al.[1]. Since our coordinate system
and notation differ and due to the importance of several components to the
work presented here, we will briefly reproduce the derivation.
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(a) Division of the cable into s segments inter-
connected with radial spring and damper ele-
ments inbetween.
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(b) Segment of the cable modeled as
rigid finite element (rfe) in a deformed
state.

Fig. 2: Planar cable model used with division of the cable (a) into s segments
composed of two rfes adjoined through linear sde shown in (b).

2.1 Cable Dynamics

We assume a planar cable model as shown in Fig. 2 comprised of stretching
and bending stiffness. The cable is fixed at Ai and split into s rigid finite
elements (rfes) with generalized coordinates strain ∆i and angle ϕi in qi =

[∆i,ϕi]
T. Each segment, denoted with (1) and (2), is composed of two rigid

bodies of mass mi and moment of inertia Ji connected via a linear spring-
damper element (sde). The full system state is
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q =
[
∆1, ϕ1, ∆2, ϕ2, . . . , ∆s, ϕs

]T
=
[
q1

T, q2
T, . . . , qs

T
]T
. (1)

The coordinate of each rfe segment can be readily derived to read

ri = r0 +
i

∑
k=1

(l0 +∆k)

[
sinϕk

−cosϕk

]
, i = 1, . . . ,s, (2)

where l0 = L/s is the unstrained length of each segment. Furthermore, the po-
sition of the distal point of the cable is to be given by rend(t), which translates
to the holonomic constraint ΦΦΦ(t)≡ 0 with

0 ≡ ΦΦΦ(t) = rs(t)− rend(t) t ≥ 0. (3)

The governing system dynamics are established through Lagrangian me-
chanics

d
dt

∂ L

∂ q̇i
− ∂ L

∂qi
+

c

∑
j=1

λ j
∂ ΦΦΦ j

∂qi
=

∂ P
∂ q̇i

+
s

∑
j=1

F j ·
∂ r j

∂qi
, i = 1, . . . ,2s (4)

in which L = ∑
s
i=1 Ti −Ui is the Lagrangian, ΦΦΦ j is the jth component of

the geometric constraints vector from Eq. (3) (in planar case c ≡ 2) and λ j

are Lagrange multipliers. Additional external forces F j = [Fj,x,Fj,z]
T at the

massless sde r j (cf. Eq. (2)) are also considered. Kinetic energies Ti, potential
energies Ui, and dissipative energies Pi of the ith segment are

Ti =
mi

2

(
‖ṙ(1)i ‖2 +‖ṙ(2)i ‖2

)
+

1
2

(
J(1)i + J(2)i

)
ϕ̇i

2, (5a)

Ui =
cL

2
∆

2
i +

cR

2
(ϕi −ϕi−1)

2 +mig
(

r(1)i,z + r(2)i,z

)
, (5b)

Pi =
dL

2
∆̇

2
i +

dR

2
(ϕ̇i − ϕ̇i−1)

2 , (5c)

considering spring and damper elements with respective linear and angular
spring coefficients cL, cR, and linear and angular damper coefficients dL and
dR, respectively.

The system dynamics can be described through the index-3 differential
algebraic equation system

M(t,q, q̇) · q̈ = f(t,q, q̇)+B(t,q, q̇) ·F(t)−ΦΦΦq(t,q)
T ·λλλ , 0 = ΦΦΦ(t,q) . (6)

Stable numerical simulations without induced drift requires index reduction
to receive an index-1 system, which is achieved by applying Baumgarte sta-
bilization technique (compare [4]):[

M ΦΦΦq
T

ΦΦΦq 0

][
q̈
λλλ

]
=

[
f+B ·F

γγγ −2αΦ̇ΦΦ −β 2ΦΦΦ

]
, γγγ ≡−

(
ΦΦΦqq̇

)
qq̇−2ΦΦΦqt q̇− Φ̈ΦΦ (7)
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2.2 Multi-Cable Dynamics with Platform

We extend the model derived in Section 2.1 such that it is applicable to sim-
ulation of cable robots consisting of a platform and m cables. To begin with,
we assume the platform to be of rectangular shape with width and height w
and h, respectively, mass mP, and moment of inertia JP. The platform can
be described by the generalized coordinates qp = [xp,zp,Θp]

T with Cartesian
position rp = [xp,zp]

T and angle of rotation Θp. Further stating the cables are
attached to the platform at the cable attachment points bi w.r.t. the plat-
form’s coordinate system, the holonomic constraints according to Eq. (3) for
the distal point of the ith cable ri,end(t) and the cable attachment point on
the platform rbi(t) yield

r(i)end(t) = rp(t)+Rbi, rbi(t) = r(i)s (t) . (8)

where R=R(Θp) is the rotation matrix for the current platform rotation. The
dynamics of the platform can be easily derived from Lagrangian mechanics
under consideration of holonomic constraints similar to Eq. (4) and Eq. (7),
respectively.

2.3 Model Order Reduction

The nonlinear DAE system Eq. (7) contains functions that are costly to
evaluate. This is due to the complex trigonometric couplings and interactions
within all nodes in the system. The overall computational demands might
thus be too high to allow for efficient simulations. Model order reduction
(MOR) techniques can help to overcome the above mentioned limitations
by replacing the computationally expensive model with cheap yet accurate
surrogates. For this purpose we employ the so-called trajectory-piecewise-
linear approach (TPWL-apprach), which was first introduced in [9]. By using
this technique, the complex non-linear functions are replaced by a weighted
linear combination of linearizations around several well-chosen points in the
state space: We hence choose a set of linearization points {t̄i, q̄i}i∈I for a
preferably small set I = {1, . . . ,NI}, and replace the non-linear functions by
linearizations of the following form:

f(t,q, q̇)≈ ∑
i∈I

ωi(q)(f(t̄i, q̄i, ¯̇qi)+Df(t̄i, q̄i, ¯̇qi)(q− q̄i)) . (9)

The weightings ωi(q) are chosen in such a way that ∑i∈I ωi(q) = 1 and are
calculated in order to switch and interpolate between the linearized models,
depending on where in the state space the simulation currently is located.
More sophisticated techniques and dimension reduction via projection can
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furthermore yield significant speedups as discussed in [9]. In our case, we
apply the TPWL approach to the equations for f only, and keep the nonlinear
holonomic constraint equations to guarantee that the cables are correctly
linked.

3 Discussion

For numerical simulation, we choose two cables with length L0 = 3m and
a platform of size 1m×0.3m. The cables are suspended at r(1)0 = [0,0]T and
r(2)0 = [1,−0.25]T and are attached at b1 = [−0.5,0.15]Tm and b2 = [0.5,0.15]Tm,
respectively. We choose s = 20 segments for the discretization of either cable,
resulting in a DAE system of dimension 170, including the algebraic equations
and Lagrange multipliers. All functions in the DAE formulation from Eq. (6)
are derived analytically by utilizing the symbolic calculation techniques of
MAPLE, and are then exported to optimized MATLAB functions. The re-
sulting DAE system is solved by using MATLAB’s builtin ode15s solver with
default accuracy.

As a test case, we simulate the system for T = 15s, where we apply a time-
dependent force on the center of the platform as depicted in Fig. 3. With
this setup we aim to investigate the transition of the cables from tensed
to non-tensed and back to tensed state. For such, the external force on the
platform is applied in the positive z-direction i.e., negative direction of gravity
to make the cables slack. During increasing force, the platform is being pushed
up and the cables go slack. With the external force decreasing, the cables
get tensed again yet apply different forces onto the platform. Comparing
this behavior with the standard cable model of straight lines, the platform’s
bouncing motion looks more realistically since the flexural rigidity of the
cables is no explicitly considered.

The simulation was run with the full non-linear model and took 39.1s. By
using the proposed TPWL-approach for f only, where we choose the initial
configuration and the true solution at times t ∈ {4.2s,5s,5.5s} as lineariza-
tion points, we can simulate the system in 20s and thus gain almost 53%
speedup while making a relative error of only 4.1%, measured in the space-

time norm ‖q‖ :=
(∫ T

0 ‖q(t)‖2 dt
)1/2

. Automatic techniques for the choice of
the linearization points and projection-based MOR techniques yield more
accurate and efficient results.
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Fig. 3: The simulation setting for our experiments (left). The solid line shows
the system at t = 0s, the dashed line at t = 4.3s. The right plots show the
x-deflection of the platform (top) for the full (∆x) and linearized (∆xlin)
simulations, as well as the applied external force (bottom).

4 Conclusions

A cable model based on the modified rigid finite element method, as presented
in this paper, shows reasonable results for the motion of the cables and the
platform. Using the approach given in this work, cables can be attached to
a rigid body representing the mobile platform. Due to the time-consuming
evaluation of the system dynamics, advanced mathematical techniques are
employed to accelerate the calculations. A combination of the proposed lin-
earization ansatz and a projection-based technique will lead to even larger
speed-ups.

Currently, the dynamics of the platform can only be simulated very limit-
edly, despite the model allowing for additional dynamics of the platform to
simulate cable robots with up to 6 degrees of freedom and additional cables.
To further improve numerical results, the mechanical properties of the ca-
ble need to be more closely obtained. As is known by related contributions,
elasticity of the used fiber cables is non-linear thus applying Hooke’s law
for tension may not be accurate enough. Additionally, initial investigations
make assuming a progressive bending stiffness of the cable with very small
resistance more accurate. With the modularity of the model, all of these ap-
proaches can easily be integrated in the presented simulation framework and
thus will be investigated in future work.
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