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Abstract: Error estimation is important for the further acceptance and usage of reduced order
models to speed up simulations. We focus in this work on an a-posteriori error estimator for
second-order mechanical systems which is valid for all model order reduction techniques based
on Galerkin reduction. We analyze and improve this estimator in the following ways:
We conduct a sensitivity analysis of the error estimation on a beam model. It is shown that the
estimator is sensitive to the reduction methods, the input functions, and the model itself. It is
also shown that the overestimation can be arbitrarily small.
Matrix norm inequalities are used to prevent inversion of the matrix. This results in an overall
speedup of the error estimation routine as well as allows the scaling of the error estimator to
larger systems, which was not possible before. Additionally, we present how the error estimator
itself is plugged in a non-intrusive way to the Elastic Multibody simulation software Neweul-M2

with least possible effort.
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Estimation.

1. INTRODUCTION

Model order reduction (MOR) is an indispensable part of
the simulation process of elastic multibody systems. Due
to their modular structure, elastic multibody systems are
especially suited to be used in a multiphysics / mecha-
tronic simulation environment to model the mechanical
part of such systems, see Fig. 1. One common formulation
used to simulate elastic multibody systems is the floating
frame of reference formulation (FFRF). Within this formu-
lation, the motion rP of the point P of the i-th body is split
into a large nonlinearly described motion of the reference
frame Ki of the body and a linear modeled elastic motion
uP with respect to the reference frame, see Fig. 1.

Therefore, one single elastic body is described with a
nonlinear second order differential equationmI mr̃T
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which is divided into three parts, low-dimensional transla-
tional and rotational parts and high-dimensional elastic
part. The force vector ka{t,r,e} i consists of centrifugal,
Coriolis, volumetric, surface and external point forces and
point moments. Often, the internal elastic force ke i is
approximated by kee ≈ Keqe + Deq̇e. The lower part of
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Eq. (1) corresponds to the large system of elastic defor-
mations, where qe ∈ RN is the elastic coordinate vector
which is used to approximate the elastic deformation u
of body i at point R and time t by a Ritz approach
u(R, t) ≈ Φ(R)qe(t). The deformation expressed by the
linear elasticity approach is coupled with Ct ∈ RN×3 and
Cr ∈ RN×3 to the nonlinear rigid body part. In a first
approximation, only the lower right part of the nonlinear
ODE (1) is viewed as a linear time invariant multiple-input
multiple-output (MIMO) system:

Meq̈e(t) +Deq̇e(t) +Keqe(t) = Beue(t),

ye(t) = Ceqe(t).
(2)

The subparts of the equation are explained, e.g., in Fehr
(2011). However, it is important to mention that the
external forces and the coupling forces to the nonlinear
rigid body motion, Ctq̈t + Crq̈r, are considered as in-
puts ue(t) ∈ Rp by the control matrix Be ∈ RN×p. Fur-
thermore, the output ye(t) ∈ Rr captures deformations of
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Fig. 1. EMBS and Floating Frame of Reference approach.



interest via the observation matrix Ce ∈ Rr×N which can
be chosen arbitrarily.

This linear second order MIMO system is reduced sepa-
rately for every body by appropriate second order struc-
ture preserving reduction techniques, e.g., by a Petrov-
Galerkin ansatz qe(t) ≈ V q̄(t), where q̄ ∈ Rn, V ∈ RN×n
and n� N .

However, the reduced linear MIMO system is never simu-
lated. Instead, V is used in Eq. (1) to calculate a reduced
nonlinear ODE for one elastic body mI sym.
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which now depends on the reduced coordinates q̄. Here
C̄t = V TCt, C̄r = V TCr,M̄ = V TMeV , K̄ =
V TKeV , and D̄ = V TDeV . Furthermore, the terms k̄,
Î, and r̃c may also depend on the reduced coordinate and
are calculated based on the space spanned by the matrix
V , see Fehr (2011).

Error Estimation Methods Within this simulation pro-
cess, multiple approximations are made and every approx-
imation introduces an error. For example, the residual

Rm(t) = MeV q̈(t)+DeV q̇(t)+KeV q(t)−Beue(t), (4)

represents the error induced by the reduction of the
original second order MIMO system with a reduced second
order system. This linear error of the elastic part also
introduces an error in the overall nonlinear system.

But without information about the approximation error,
the simulation results cannot be trusted anymore. Calcula-
tion of the real error involves an evaluation of the original
system which is not feasible for large-scale systems. The
importance of error estimation for MOR has led to various
error estimation techniques; see, e.g., Panzer (2014) for
frequency domain errors or Gubisch and Volkwein (2017)
for a-priori time-domain error bounds. Research for Elastic
Multibody Systems (EMBS) is currently investigated. We
will focus in the following on second order MIMO systems
but already implemented our findings in an EMBS frame-
work. While a-priori error bounds give worst-case behavior
bounds but ensure good approximation independent of the
simulation setting, the individual simulation runs could
be much better than this worst case. This means that
the a-priori error bounds might be largely overestimating
the actual error. Therefore, a-posteriori error control as
explained in Haasdonk and Ohlberger (2011); Ruiner et al.
(2012) are used, examined and extended in this work.
One advantage of a-posteriori error control is that the
reduced model should give additional error information
for its current simulation setting of the reduced system for
each particular input signal, loading case, parameter, etc.
This allows creating adaptive simulations, in which the
accuracy of the reduced model is adapted if the reduction
error is too large. It is the goal of this paper to analyze this
error estimator in more detail and provide improvements
regarding the computation speed.

Another common approach to modeling elastic multibody
systems is the absolute coordinate formulation (ACF). In
contrast to FFRF, ACF uses global coordinates also for
elastic degrees of freedom of the system. This leads to a

system of the form (1) with a constant mass matrix. An
investigation of ACF and MOR error incurred therein is
presented in Bhatt et al. (2017).

The next section describes the model investigated in our
analysis and the simulation framework. This is followed
by a possible speedup with matrix inequalities and a
sensitivity analysis of the error estimator. We will also
show how the estimator is implemented in a non-intrusive
and easy to use manner within, e.g., Neweul-M2.

2. EXAMPLE AND INVOLVED PROGRAMS

The error bounds are developed here only for the linear
elastic part with the help of a small academic example, a
two-link elastic manipulator with slender arms, see Fig. 2.

Fig. 2. Two link elastic manipulator with slender arms.
The system is modeled either with plane stress 2D-
plane element (black, PLANE182 in ANSYS) or with
eight nodes hexahedron elements (blue, SOLID185 in
ANSYS). Two tangent frames located at the outer left
are used as reference frames.

As shown in Fig. 3, Morembs is used in a first step to
extract the FE data from the commercial FE software
ANSYS from ANSYS Inc. in our example. Morembs is
a MOR software package for second order mechanical
systems with various import and export capabilities to
EMBS and FE solvers developed at the Institute of En-
gineering and Computational Mechanics, see Fehr et al.
(2017). As explained in Fehr (2011), all parts in (1) can
be calculated from the system data of a free FE body. The
data is now available in Morembs but is also accessible for
RBmatlab, a MOR software package based on the Reduced
Basis approach and developed at the Institute of Applied
Analysis and Numerical Simulation, see Haasdonk (2017).
This simple example of a two-link elastic manipulator with
slender arms (see Fig. 2) is chosen since it can be modeled
both in Morembs, which uses reduction methods based on
system matrices like Krylov and Gramian-based methods,
as well as in RBmatlab, which uses data based reduction
like POD. This way, we can compare the results via a
common interface for validation.

In a next step the elastic projector, necessary to com-
pute all parts in (3), is calculated by finding a good
approximation V of the second-order MIMO system (2).
Furthermore, a symplectic basis (see Maboudi Afkham
and Hesthaven (2017)) can be calculated with RBmatlab
by using simulation data snapshots. Afterwards, Morembs
creates the projected data describing the elastic body used
in a reduced EMBS simulation. Within the reduced EMBS
simulation executed in Neweul-M2, the error estimator
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Fig. 3. Involved programs and workflow: The FE model from ANSYS is either reduced directly (based on the system
matrices) in Morembs or used in Neweul-M2 for snapshot generation. These snapshots can then be used in RBmatlab
to generate a reduced model. Either way, the reduced model is simulated in Neweul-M2. In parallel to the simulation,
the error is estimated in a separate Matlab class and used to decide if the simulation should continue or abort.

runs in parallel as will be described later. Neweul-M2 is
a software package written in Matlab for the dynamic
analysis of mechanical systems in the elastic multibody
setting described above, see Kurz et al. (2010).

3. ERROR ESTIMATOR AND IMPROVEMENTS

In this section, we will introduce the error estimator by
Ruiner et al. (2012) and present our improvements to it.

3.1 Original Error Estimator

For single linear FE bodies, an a-posteriori error estimator
for second order mechanical systems is given in Ruiner
et al. (2012). The error for the position states of the elastic
part is given as

em(t) = Φ11(t) · em,0 + Φ12(t) · ėm,0

+

∫ t

0

Φ12(t− τ) · R̃m(τ)dτ,

with Φ11 and Φ12 being the upper left / right part of the
fundamental matrix and

R̃m = M−1
e Rm. (5)

With the bounds C̃11(t) ≥ ‖Φ11(t)‖Gm
and C̃12(t) ≥

‖Φ12(t)‖Gm
, the error bound

4̃q(t) := C̃11(t)‖em,0‖Gm
+ C̃12(t)‖ėm,0‖Gm

+

∫ t

0

C̃12(t− τ)‖R̃m(τ)‖Gmdτ (6)

was first derived and later changed to

4q(t) := C11‖em,0‖Gm
+ C12‖ėm,0‖Gm

+ C12

∫ t

0

‖R̃m(τ)‖Gmdτ (7)

with the constants C11, C12 being independent of the
current time step andGm being a weighting matrix usually
chosen to be Me in the FE context. As error bounds, both
satisfy

‖em(t)‖Gm
≤ 4̃q(t) ≤ 4q(t).

Similarly, error bounds for the output

‖y(t)− ȳ(t)‖2 ≤ 4̃y(t) ≤ 4y(t).

can be calculated by

4̃y(t) : = C24̃q(t) (8)

4y(t) : = C24q(t) (9)

with the constant

C2 ≥ ‖Ce‖Gm,2 := max
‖z‖Gm=1

‖Cez‖2.

There are several advantages in using this specific error
estimator. First of all, it is based on work by Haasdonk
and Ohlberger (2011) for first order systems but the
estimators (6) and (7) were derived specifically for second
order systems (2). Second of all, the error estimator can
be applied to any Galerkin reduction. This makes the
aforementioned error estimator an ideal tool for practical
usage in simulation software. We will show in Section 5
how it can be easily deployed in a non-intrusive fashion.
Thirdly, it has the potential for improvements which will
be presented in the next section.

3.2 Speedup of Error Estimator

The error estimator is based upon the spectral norm of
a matrix Φ which consists of computing the maximum
singular value of Φ or – equivalently – the maximum
eigenvalue of ΦTΦ. Usually, iterative methods like the
Lanczos or Arnoldi algorithms are used to efficiently
compute a Krylov subspace for the approximation of the
maximum eigenvalue of ΦTΦ, see Sorensen (1996). These
algorithms are more advanced than the power iteration,
see Saad (2003). Therefore, the numerical spectral norm
will be an approximation up to a given accuracy and the
convergence rate differs from matrix to matrix.

We propose and analyze four alternatives to approximate
‖Φ‖Gm to get a fixed computational complexity, faster
calculation and better scaling for large systems. The
results are summarized in Table 1 for the same simulation
environment described in Section 4.

• The first two approximations are based on the upper
bounds ‖Φ‖2 ≤ ‖Φ‖Fro and ‖Φ‖2 ≤

√
‖Φ‖1‖Φ‖∞,

see (Golub and van Loan, 2013, Chapter 2.3). In
presence of the scaling matrix Gm, this leads to
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Then it follows:
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Both approximations (10) and (11) have the advan-
tage of a fixed computational complexity but only
(10) shows a moderate speedup together with a
small overestimation compared to the original norm
‖Φ‖Gm

, see Table 1.
• Both, the direct computation of ‖Φ‖Gm

and the
approximation with (10) and (11), need powers ofGm

which need to be pre-computed in the offline step.
This is impractical for large matrices. Computation
of the inverse and matrix square root not only leads
to large computation times but also results in dense
matrices taking up much memory. Therefore, the
computation of ‖Φ‖2 is traced back to a generalized
eigenvalue problem:

‖Φ‖Gm
=‖G

1
2
mΦG
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m )
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m ΦTGmΦG
− 1

2
m )

=

√
λmax(G−1

m ΦTGmΦ)

=
√
λmax(ΦTGmΦ,Gm) (12)

Here we used the symmetry of Gm, the equality
σmax(Ψ) =

√
λmax(ΨTΨ), equivalence of the spec-

trum of similar matrices, and defined λmax(Φ,Ψ) as
the maximum eigenvalue of the generalized eigenvalue
problem

Φx = λΨx. (13)

The computation of (12) does not involve any direct
matrix inversion by using the Implicitly Restarted
Arnoldi Method, which is also implemented in Matlab
via the ARPACK package, see Lehoucq et al. (1998).
Therefore, the norm ‖Φ‖Gm

can be also computed for
very large matrices in reasonable time. This can be
seen in the benchmark test presented in Table 1.
• If Gm is well-conditioned, one can also use the ap-

proximation ‖Φ‖Gm
≤

√
cond(Gm)‖Φ‖2 since

‖Φ‖Gm = ‖G
1
2
mΦG

− 1
2

m ‖2 ≤ ‖G
1
2
m‖2‖Φ‖2‖G

− 1
2

m ‖2
=

√
σmax(Gm)‖Φ‖2(

√
σmin(Gm))−1

=
√

cond(Gm)‖Φ‖2. (14)

As with (12), it does not involve any matrix inversion
in the online step but leads to high overestimation
due to the dependence on the condition number of
Gm, see Table 1.

In summary, our alternatives (10) and (12) for the com-
putation of the error bound led to high speedup with only
small overestimation in comparison to the original method
introduced in Ruiner et al. (2012). The solution of the
generalized eigenvalue problem (12) will be used in the
following experiments.

4. SENSITIVITY ANALYSIS

The sensitivity of the error estimator is of great interest if
we want to generalize its properties to other models and
inputs. Since the error estimator is only able to estimate
the error in the elastic degrees of freedom of one body,

Table 1. Comparison of the alternatives for
computing ‖Φ‖Gm as described in Section 3.2.
The values are relative to ‖Φ‖Gm and for the

estimator (6) with POD reduction.

substitution for ‖Φ‖Gm (10) (11) (12) (14)

speedup 2.6 1.2 4.6 6.0

overestimation 1.2 % 135 % 0.0 % 1178 %

only the first arm of the slender robot arm example is
considered as a single linear FE body excited with F =
10 sin(2πt/ s) N in the neg. y-direction at the right end of
the first arm. The second arm is not considered first. We
use the reorthogonalization as suggested by Buhr et al.
(2014) to achieve better results along with the following
reduction methods:

• CMS-Gram according to Holzwarth and Eberhard
(2015) which is an extension of Component Mode
Synthesis where the internal dynamics are reduced
to 30 degrees of freedom with frequency weighted
balanced truncation in the frequency range [0, 20] Hz,

• Krylov reduction to the dimension 15 with 15 shifts
equidistantly chosen between 0i and 35i,

• second order Gramian matrix reduction techniques
as described in Fehr (2011) where the computation of
frequency weighted Gramian matrices are calculated
with POD based on 20 snapshots in the frequency
range [0, 200] Hz to the dimension 7.

First, we investigate the performance of the error estimator
for these three reduction methods. As shown in Fig. 4,
POD leads to an error estimator several orders smaller
than Krylov or CMS-Gram for a SOLID 185 formulation.
In addition, the same experiments were run for the same
setup modeled now with the 2D plane stress element
PLANE 182. Since the error estimator for a PLANE 182
formulation behaves almost identical to the SOLID 185,
we will present our analysis only for one of these elements
and keep in mind that they are valid for both. This
shows that the error estimator is insensitive to different
modeling approaches. I a very first approach a SHELL 181
formulation (finite strain shell) was used. However, the
error bound was much higher due to the ill-conditioning
of the system matrices of the SHELL 181 model.

In Fig. 5, the real errors (solid lines) are compared with
the error bounds (dashed lines) for one output chosen at
the tip (y-axis) of the beam. Not only is the error bound,
defined in (8), very low with a value of 10−7 for POD-Gram
but it also follows almost perfectly the real error. The
small underestimations of some peaks are due to numerical
errors, e.g., during integration in (6). In contrast, the error
of the CMS-Gram and Krylov reduction are overestimated
by several orders. The error bound is even larger than the
maximum amplitude of the output.

It is also of great interest how sensitive the error estimator
is against a change in the input and the model itself. For
this, a Krylov reduction of size 10 as described above is
applied to one PLANE 182 beam with different amplitudes
(10 N to 100 N) and frequencies (1 Hz to 10 Hz) of the
excitation force. Figure 6 shows that the frequency has
a much higher impact on the error estimator than the
amplitude. The higher the frequency, the higher the error
bound. The slenderness ratio is defined as quotient of the



Fig. 4. State error bounds and comparison with reduced
simulation for SOLID 185.
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Fig. 5. Comparison of error bound and real error for
SOLID 185 at one output.

length and width of the beam. As seen in Figure 7, the
results vary by two orders but are not monotonic regarding
the slenderness ratio (5 to 100). A quotient of 20 : 1 seems
to be optimal for this model.

In summary, the error estimator is only moderately sen-
sitive to a change in the input or the model itself. This
allows generaliying results qualitatively to other models.
However, it is sensitive to numeric noise, e.g., the exper-
iment with the SHELL 181 formulation failed due to the
condition number of Me and the multiple reorthogonal-
ization by Buhr et al. (2014) had an influence. Since the
error estimator is highly sensitive to the reduction method,
analyses of the estimator are only valid for one specific
MOR method. We also showed that the overestimation
could be arbitrarily small as seen in the case of POD (black
line in Fig. 4), which was also not known before.
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Fig. 6. Sensitivity study of PLANE 182 regarding the
excitation force.
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5. ERROR ESTIMATION WITHIN AN EMBS
PROGRAM PACKAGE

In this section, we will show that the error estimator
of Ruiner et al. (2012) can be implemented non-intrusively,
i.e., only with a few changes in the used simulation
environment. In our case, this is Neweul-M2.

To allow for a smooth extension of the error estimator
to Neweul-M2, it is implemented as an external, i.e.,
independent Matlab class. During the creation of the class,
the system matrices, simulation details like the initial
values, and options are given as inputs to the computation
of the offline quantities from Ruiner et al. (2012). For the
online phase, the method calcErrorOnline of the error
estimator class is given to the function handle OutputFcn
of Neweul-M2, which serves the same purpose as for the
Matlab solvers: After each successful time step in the
simulation, the OutputFcn (in our case calcErrorOnline)
is called with the current time and state as input. The error
estimator class then computes the error in the state and
output from these inputs and the offline quantities. The
error bounds are then saved as class properties and can be
used later for post-processing. This parallel calculation of
the error estimator only lengthens the simulation time by
3 %, e.g., 6.2 s instead of 6.0 s for the PLANE 182 model.

The error estimator class provides several options to con-
trol the level of offline approximation, the way constants



in the residual integral will be approximated, and which
of the norm approximations from above should be used.

This way, not a single line in Neweul-M2 needs to be
changed in order to use the error estimator during the
reduced simulation. Therefore, the error estimator class
can easily be used with other simulation software when a
similar interface exists. Additionally, the use of a function
hook of the solver allows stopping the simulation if the
error estimator becomes larger than a user-defined thresh-
old. This also allows for refinement of the reduction basis.

It is also possible to use bases generated by the MOR
package RBmatlab in combination with Neweul-M2 and
the activated error estimator. For symplectic bases sizes
between 2 and 30, errors between 10−6 to 10−8 were
accomplished for the one beam PLANE 182 model. The
error estimator only achieved a bound of 101 to 100.

6. CONCLUSIONS AND FUTURE WORK

The error estimator of Ruiner et al. (2012) is applicable to
every second-order mechanical system and every Galerkin-
reduction-based MOR method. Despite its generality, the
estimator also had some downsides and unknown proper-
ties which we investigated. First, we sped up the calcula-
tion by a factor of 4.6 with an immeasurable additional
overestimation. We then performed a sensitivity analysis
which showed only moderate dependence on the model and
inputs but high dependence on the used reduction method.
This gave us further insight into the future deployment of
the error estimator to other models. We also accomplished
to find an example with almost no overestimation, which
shows the potential of the error estimator. Lastly, we
described a way to implement the error estimator in a
non-intrusive way for existing simulation software.

Future work may investigate why the overestimation varies
this much amongst different MOR methods. Additionally,
the error estimator of Ruiner et al. (2012) cannot be
applied to multibody systems directly but only to the
elastic degrees of freedom of one body. Therefore, an
extension based on the nonlinear coupling forces, given
as nonlinear input, needs to be carefully investigated
and further development is needed. Sensitivity studies
and further analytical research is in preparation for later
publication. Even though we were able to speed up the
error estimation process, it is still infeasible to compute the
constants C11 and C12 in the offline step for large systems.
Analytical bounds need to be found.
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