The Reduced Basis Method: Basic Ideas, Applications and Implementation Aspects

Sven Kaulmann, Martin Drohmann, Bernard Haasdonk, Mario Ohlberger

Institut für Numerische und Angewandte Mathematik
Universität Münster
http://wwwmath.uni-muenster.de/num

January 15th, 2010
1 Overview over the Reduced Basis Method
 - Fields of Application and Aim

2 Reduced Basis Method for Linear Evolution Problems
 - Problem and Discretization
 - Numerical Scheme
 - Reduced Basis Method
 - Offline/Online-Decomposition
 - Selection of the Reduced Basis Functions

3 Implementation Aspects
 - Implementation concept
 - Numerical results

4 Outlook
Outline

1. Overview over the Reduced Basis Method
 - Fields of Application and Aim

2. Reduced Basis Method for Linear Evolution Problems
 - Problem and Discretization
 - Numerical Scheme
 - Reduced Basis Method
 - Offline/Online-Decomposition
 - Selection of the Reduced Basis Functions

3. Implementation Aspects
 - Implementation concept
 - Numerical results

4. Outlook
Summary

Aim: Separate solution of parametrized partial differential equations into offline and online phase where

- **Offline phase:** slow, high-dimensional function spaces, FV, FE
- **Online phase:** quick, low-dimensional function spaces

\[\{ U_{\mu}^k | \mu \in \mathcal{P}, 0 \leq k \leq K \} \]
Summary

Aim: Separate solution of parametrized partial differential equations into offline and online phase where

Offline phase: slow, high-dimensional function spaces, FV, FE

Online phase: quick, low-dimensional function spaces

\[\mathcal{W}_H \]

\[\{ U^k_H(\mu) | \mu \in \mathcal{P}, 0 \leq k \leq K \} \]

\[\mathcal{W}_N \]
Summary

Aim: Separate solution of parametrized partial differential equations into offline and online phase where

- **Offline phase**: slow, high-dimensional function spaces, FV, FE
- **Online phase**: quick, low-dimensional function spaces

The method has been applied to problems such as:
- design optimization
- online simulation
- homogenization
Summary

Aim: Separate solution of parametrized partial differential equations into offline and online phase where

- **Offline phase**: slow, high-dimensional function spaces, FV, FE
- **Online phase**: quick, low-dimensional function spaces

The method has been applied to problems such as:
- design optimization
- online simulation
- homogenization
Outline

1. Overview over the Reduced Basis Method
 - Fields of Application and Aim

2. Reduced Basis Method for Linear Evolution Problems
 - Problem and Discretization
 - Numerical Scheme
 - Reduced Basis Method
 - Offline/Online-Decomposition
 - Selection of the Reduced Basis Functions

3. Implementation Aspects
 - Implementation concept
 - Numerical results

4. Outlook
Problem and Discretization

Parametrized Linear Evolution Equation

Let $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $t \in [0, T]$. Where are then looking for $u(\cdot, t; \mu) \in \mathcal{W} \subset L^2(\Omega)$, s.t.

$$\partial_t u(\cdot, t; \mu) + \mathcal{L}(\mu, t)[u(\cdot, t; \mu)] = 0$$

with given initial data and boundary conditions.
Parametrized Linear Evolution Equation

Let $\mu \in \mathcal{P} \subset \mathbb{R}^p$, $t \in [0, T]$. Where are then looking for $u(\cdot, t; \mu) \in \mathcal{W} \subset L^2(\Omega)$, s.t.

$$\partial_t u(\cdot, t; \mu) + \mathcal{L}(\mu, t)[u(\cdot, t; \mu)] = 0$$

with given initial data and boundary conditions.

Discretization

- Time discretization: $0 < t^0 < \cdots < t^K = T$
- Approximate \mathcal{W} by H-dimensional space $\mathcal{W}_H \subset L^2(\Omega)$
- Assumption: explicit discretization of spatial operator:
 $\mathcal{L}_E^k(\mu) = \mathcal{L}_E(\mu, t^k) : \mathcal{W}_H \rightarrow \mathcal{W}_H$
- We are looking for $u^k_H(\mu) \in \mathcal{W}_H$ for all t^k.
Example: Finite Volume Scheme

Using the time discretization we get:

\[
\frac{1}{\Delta t^k} \left(u^{k+1}(\mu) - u^k(\mu) \right) + \mathcal{L}_E(\mu, t^k)[u^k(\mu)] = 0,
\]
Example: Finite Volume Scheme

Using the time discretization we get:

\[
\frac{1}{\Delta t^k} \left(u^{k+1}(\mu) - u^k(\mu) \right) + \mathcal{L}_E(\mu, t^k)[u^k(\mu)] = 0,
\]

where \(\mathcal{L}_E^k(\mu)[u] = \mathcal{L}_E^k(\mu)[u] + b^k(\mu) \) and \(b^k \) comprises the boundary values.
Example: Finite Volume Scheme

Using the time discretization we get:

\[
\frac{1}{\Delta t^k} \left(u^{k+1}(\mu) - u^k(\mu) \right) + \mathcal{L}_E(\mu, t^k)[u^k(\mu)] = 0,
\]

where \(\mathcal{L}_E^k(\mu)[u] = \overline{\mathcal{L}}_E^k(\mu)[u] + b^k(\mu) \) and \(b^k \) comprises the boundary values.

Now let

\[
\mathcal{L}_E^k(\mu)[u] := u - \Delta t^k \overline{\mathcal{L}}_E^k(\mu)[u],
\]

we then get the scheme

\[
\begin{align*}
 u^0 &:= P[u_0(\cdot; \mu)] \\
 u^{k+1} &= \mathcal{L}_E^k(\mu)[u^k] + \Delta t^k b^k(\mu).
\end{align*}
\]
Let $S \subset \mathcal{P}$ be a finite sample of parameters.

Let $\mathcal{W}_N \subset \text{span}\{u_H(\cdot, t_n^k; \mu_n) \mid (\mu_n, t_n^k) \in S \times \{t^k\}_{k=0}^K\}$, the reduced basis space. ($\mathcal{W}_N \subset \mathcal{W}_H$ N-dimensional)

Let $\Phi_N := \{\varphi_n\}_{n=1}^N$ be an orthonormalized basis of \mathcal{W}_N, the reduced basis.
The Reduced Basis Space

1. Let $S \subset P$ be a finite sample of parameters.
2. Let $\mathcal{W}_N \subset \text{span} \left\{ u_H(\cdot, t_n^k; \mu_n) \mid (\mu_n, t_n^k) \in S \times \{t^k\}_{k=0}^K \right\}$, the reduced basis space. ($\mathcal{W}_N \subset \mathcal{W}_H$ N-dimensional)
3. Let $\Phi_N := \{\varphi_n\}_{n=1}^N$ be an orthonormalized basis of \mathcal{W}_N, the reduced basis.

Dimension Reduction

Galerkin-project the problem onto the reduced space: Look for $\{u^k_N(\mu)\}_{k=0}^K$, such that for all $\varphi \in \mathcal{W}_N$, $k = 0, \ldots, K - 1$ holds

$$\int_\Omega \left(u^0_N - P[u_0(\cdot; \mu)] \right) \varphi = 0$$

$$\int_\Omega \left(u^{k+1}_N - L_E[u^k_N] - \Delta t^k b^k \right) \varphi = 0.$$
RB Approximation Scheme

Expanding the solution as $u_N^k(\mu) = \sum_{i=0}^{N} a_i^k \varphi_i$, where $a^k = (a_i^k)_{i=1}^{N} \in \mathbb{R}^N$, we get the RB-approximation scheme

$$a_0^n := \int_{\Omega} P[u_0(\mu)] \varphi_n$$

$$a^{k+1} = L_k^E(\mu) a^k + \Delta t^k b^k(\mu),$$
RB Approximation Scheme

Expanding the solution as \(u^k_N(\mu) = \sum_{i=0}^{N} a_i^k \varphi_i \), where \(a^k = (a_i^k)_{i=1}^{N} \in \mathbb{R}^N \), we get the RB-approximation scheme

\[
\begin{align*}
a^0_n &:= \int_{\Omega} P[u_0(\mu)]\varphi_n \\
a^{k+1} &:= L^k_E(\mu)a^k + \Delta t^k b^k(\mu),
\end{align*}
\]

where

\[
\begin{align*}
(L^k_E(\mu))_{mn} &:= \int_{\Omega} \varphi_m L^k_E(\mu)[\varphi_n] \\
(b^k)_n &:= \int_{\Omega} b^k(\mu)\varphi_n.
\end{align*}
\]
Expanding the solution as $u_N^k(\mu) = \sum_{i=0}^{N} a_i^k \varphi_i$, where $a^k = (a_i^k)_{i=1}^{N} \in \mathbb{R}^N$, we get the RB-approximation scheme

$$a_0^n := \int_{\Omega} P[u_0(\mu)] \varphi_n$$

$$a^{k+1} = L_E^k(\mu) a^k + \Delta t^k b^k(\mu),$$

where

$$(L_E^k(\mu))_{mn} := \int_{\Omega} \varphi_m L_E^k(\mu)[\varphi_n]$$

$$(b^k)_n := \int_{\Omega} b^k(\mu) \varphi_n.$$
Affine Parameter Dependence

Assumption: Operators can be written as a linear combination of \textit{parameter dependent} and \textit{parameter independent} parts:

\[
L_E^k(\mu)[u] = \sum_{q=0}^{Q_{L_E}} L_{E}^{k,q}[u] \cdot \sigma_{E}^{q}(\mu)
\]

\[
b^{k}(x, \mu) = \sum_{q=0}^{Q_{b}} b^{k,q}(x) \cdot \sigma_{b}^{q}(\mu)
\]

\[
P[u_0(\mu)] = \sum_{q=0}^{Q_{P}} P^{q}[u_0] \cdot \sigma_{P}^{q}(\mu)
\]
Affine Parameter Dependence

Assumption: Operators can be written as a linear combination of parameter dependent and parameter independent parts:

\[
L^k_E(\mu)[u] = \sum_{q=0}^{Q_L} L^k_q[U] \cdot \sigma^q_E(\mu) \quad \rightarrow \quad L^k_E(\mu) = \sum_{q=0}^{Q_L} L^k_q \sigma^q_E(\mu)
\]

\[
b^k(x, \mu) = \sum_{q=0}^{Q_B} b^k_q(x) \cdot \sigma^q_B(\mu) \quad \rightarrow \quad b^k = \sum_{q=0}^{Q_B} b^k_q \sigma^q_B(\mu)
\]

\[
P[u_0(\mu)] = \sum_{q=0}^{Q_P} P^q[u_0] \cdot \sigma^q_P(\mu)
\]
Affine Parameter Dependence

Assumption: Operators can be written as a linear combination of parameter dependent and parameter independent parts:

\[L^k_E(\mu)[u] = \sum_{q=0}^{Q_{L_E}} L^{k,q}_E[u] \cdot \sigma^q_E(\mu) \rightarrow L^k_E(\mu) = \sum_{q=0}^{Q_{L_E}} L^{k,q}_E \sigma^q_E(\mu) \]

\[b^k(x,\mu) = \sum_{q=0}^{Q_b} b^{k,q}(x) \cdot \sigma^q_b(\mu) \rightarrow b^k = \sum_{q=0}^{Q_b} b^{k,q} \sigma^q_b(\mu) \]

\[P[u_0(\mu)] = \sum_{q=0}^{Q_P} P^q[u_0] \cdot \sigma^q_P(\mu) \]

where

\[(L^{k,q}_E)_{mn} = \int_\Omega \varphi_m L^{k,q}_E[\varphi_n] \]

\[(b^{k,q})_n = \int_\Omega b^{k,q} \varphi_n. \]
Affine Parameter Dependence

Assumption: Operators can be written as a linear combination of parameter dependent and parameter independent parts:

\[L_E^k(\mu)[u] = \sum_{q=0}^{Q_{LE}} L_{E}^{k,q}[u] \cdot \sigma_{E}^{q}(\mu) \quad \Rightarrow \quad L_E^k(\mu) = \sum_{q=0}^{Q_{LE}} L_{E}^{k,q} \sigma_{E}^{q}(\mu) \]

\[b^k(x, \mu) = \sum_{q=0}^{Q_{b}} b^{k,q}(x) \cdot \sigma_{b}^{q}(\mu) \quad \Rightarrow \quad b^k = \sum_{q=0}^{Q_{b}} b^{k,q} \sigma_{b}^{q}(\mu) \]

\[P[u_0(\mu)] = \sum_{q=0}^{Q_{P}} P^q[u_0] \cdot \sigma_{P}^{q}(\mu) \]

where

\[(L_{E}^{k,q})_{mn} = \int_{\Omega} \varphi_m L_{E}^{k,q} \varphi_n \]

\[(b^{k,q})_{n} = \int_{\Omega} b^{k,q} \varphi_n. \]

\[\Rightarrow \text{ Enables an efficient offline/online-decomposition.} \]
Example: POD-Greedy

Need rigorous and efficient a posteriori error bound: \(\| u^k_H(\mu) - u^k_N(\mu) \| \leq \Delta^k_N(\mu) \). Then proceed as follows:

1. Add a first function to the reduced space (\(P^k[u_0] \) for all \(k \), e.g.).
2. Find the \(\mu^* \in S \subset P, k^* \in K \) that maximize the error in the current reduced space (Greedy):
 \[\Delta^{k^*}_N(\mu^*) = \max_{\mu \in S, 0 \leq k \leq K} \Delta^k_N(\mu). \]
3. Perform the detailed simulation for this \((\mu^*, k^*) \).
4. From the whole trajectory \(\{ u^k_H(\mu^*) \}_{k=0}^K \), choose a new base function using principal component analysis (PCA).
5. Repeat steps 2-4 until a desired accuracy is reached.
Outline

1. Overview over the Reduced Basis Method
 - Fields of Application and Aim

2. Reduced Basis Method for Linear Evolution Problems
 - Problem and Discretization
 - Numerical Scheme
 - Reduced Basis Method
 - Offline/Online-Decomposition
 - Selection of the Reduced Basis Functions

3. Implementation Aspects
 - Implementation concept
 - Numerical results

4. Outlook
Idea: Separate low- and high-dimensional computations.

Wanted:

- Easy-to-use interface for low dimensional computations and control of the reduced basis generation $\Rightarrow RBmatlab^a$
- Rapid and easily adaptable solver for all high dimensional computations $\Rightarrow DUNE^b$
- Communication over network, s.t. the two phases can be distributed to different machines.

\[^a\text{http://www.morepas.org}\]
\[^b\text{http://www.dune-project.org}\]
Implementation Aspects

- Implementation concept
 - high dim computation
 - communication of low dim data
 - low dim computation
 - Control structures
 - direct parameter function usage
 - model
 - Visualization
 - Reconstruction

Offline data
- reduced basis space
- grid
- high dim operators

Solvers
- dune
- comsol
- others

Network
- Server
- Client

RBmatlab
- Reduced simulation
- Visualization control
- Reduced basis generation
 - greedy

Error estimators

Sven Kaulmann (skaulmann@wwu.de) ()
WONAPDE 2010
January 15th, 2010 14 / 19
Implementation Aspects

Numerical results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>One High-dim. Solution</th>
<th>Generation of Reduced Basis</th>
<th>Generation of Online Matrices</th>
<th>Reduced Simulation</th>
<th>Reconstruction</th>
<th>Number of Grid Cells</th>
<th>Mean L^∞-L^2-Error 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Transport (25 base functions)</td>
<td>11s</td>
<td>8m 23s</td>
<td>6,69s</td>
<td>0,11s</td>
<td>0,33s</td>
<td>1024</td>
<td>1,42E-03</td>
</tr>
<tr>
<td>2D Transport (50 base functions)</td>
<td>11s</td>
<td>37m 30s</td>
<td>21s</td>
<td>0,15s</td>
<td>0,42s</td>
<td>1024</td>
<td>4,64E-04</td>
</tr>
<tr>
<td>3D Transport (50 base functions)</td>
<td>15m 44s</td>
<td>43h 37m</td>
<td>77m 39s</td>
<td>0,15s</td>
<td>26s</td>
<td>32768</td>
<td>9,11E-04</td>
</tr>
</tbody>
</table>

1 Error between full and reduced simulation, tested with 250 randomized μ-Values

Figure: Numerical results for a transport problem in 2D and 3D with non-divergence-free velocity.

Figure: Transport with velocity $\nu = (0.8, -2 \cdot y^2 + 2 \cdot y + \frac{1}{2}, -0.8)^T$
Outline

1. Overview over the Reduced Basis Method
 - Fields of Application and Aim

2. Reduced Basis Method for Linear Evolution Problems
 - Problem and Discretization
 - Numerical Scheme
 - Reduced Basis Method
 - Offline/Online-Decomposition
 - Selection of the Reduced Basis Functions

3. Implementation Aspects
 - Implementation concept
 - Numerical results

4. Outlook
Future work

- Implementation of different fluxes and implicit operators.
- GUI, visualization using GRAPEa.
- Parallelization of the offline phase.
- Empirical interpolation of discrete operators for operators with non-affine parameter dependence and non-linear operators.
- Advanced application of the RB method to homogenizationb and corresponding implementation.

ahttp://numod.ins.uni-bonn.de/grape/

bBased on [Boyaval, 2008]
References

reduced basis approximation and a posteriori error estimation for parametrized partial differential equations.
Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering

reduced basis method for finite volume approximations of parametrized linear evolution equations.

reduced-basis approach for homogenization beyond the periodic setting.

[DUNE] Website.
DUNE - distributed and unified numerics environment.
http://www.dune-project.org

[DUNE-RB] Website.
RBmatlab.
http://www.morepas.org
Thank you for your attention!